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1 Local Properties

Most of the properties of J-holomorphic maps to the almost complex manifold (M, J) described
in this section do not depend on M being compact. The exceptions are Corollaries 1.19, 1.20,
and 1.27, which are direct consequences of Propositions 1.18 and 1.26. The main statements in
this section are Proposition 1.1, Theorem 1.11, Corollary 1.19, and Proposition 1.26.

1.1 Local structure of J-holomorphic maps

Proposition 1.1 below is a local description of solutions of a non-linear differential equation which
generalizes the J-holomorphic curves equation. It is used in the proof of Theorem 1.11 as well as
to describe the general structure of J-holomorphic maps.

For each R€R™, denote by Br C C the open ball of radius R around the origin and let B}, = Bg—{0}.

Proposition 1.1 ([1, Theorem 2.2]). Suppose p,e €RY, with p>2, ue LY (B¢;C") for somene€Z™,
J € L¥(B¢; EndgC"), and C € LP(B¢; EndgC"™) are such that

u(0) =0, J(2)? = —Iden, us(2) + J(2)us(2) + C(2)u(z) =0 V z=s+it€ B, . (1.1)
Then, there exist 6 € (0,€), ® € LY(Bs; GL2yR), and a Jen-holomorphic map o: Bs— C™ such that
a(0) =0, J(2)®(z) =®(2)Jen, P(2)o(z) =u(z) V 2€By, (1.2)

where Jon =1 is the standard complex structure on C".



By the Sobolev Embedding Theorem, the assumption p>2 implies that « is a continuous function
and in particular the first two equations in (1.1) and in (1.2) make sense. This assumption also
implies that the left-hand side of the third equation in (1.1) lies in L? and that the left-hand sides
of the second and third equations in (1.2) lie in L]. Proposition 1.1 is proved at the end of this
section.

Example 1.2. Let ¢: C— C denote the usual conjugate. Define
-1
= _ i 0\ 1 0 1 0\ 9 L
N G S T T ) R e
u: C — C?, u(s+it) = (z,5°).

Thus, J is an almost complex structure on C? and u is a j—holomorphic map, i.e. it satisfies the
last condition in (1.1) with J(z)=J(u(z)) and C(z)=0. The functions

0:C—C? o(2) =(z,0), ®: C— GL4R, d(s+it) = <sc—|1—i8t (1)> ,
satisfy (1.2).

Corollary 1.3. With the assumptions as in Proposition 1.1, either u=0 or there exist {€Z" and

aeC™—0 such that

u(z) — azt

lim =0.

z—0 Ze

Corollary 1.4. If (M, J) is an almost complex manifold and u: (£,j) — (M, J) is a non-constant
J-holomorphic map from a connected Riemann surface, then the subset

u ! ({u(z): z€%, d;u=0})C %
is discrete. If in addition x € M, the subset u='(x) CX is also discrete.
Corollary 1.5. Suppose (M, J) is an almost complex manifold,
u,u's (5,5), (2,§) — (M, J)

are J-holomorphic maps, zo € ¥ is such that d,y;u#0, and 2y € X' is such that u'(z)) =u(zo). If
there exist sequences z; € X—zy and z, € X' —2z{ such that

lim z = 2o, lim z, =2, and u(z)=1u(z) VieZ",
i—00 1—00

then there exists a holomorphic map o: U' — X from a neighborhood of z(, in ¥’ such that o(z() = 2o
and u'|yr =uoo.

Proof. It can be assumed that (X,j, z0), (X',§, 2(,) = (B1,]0,0), where B; C C is the unit ball with
the standard complex structure. Since d,,u# 0 and u is J-holomorphic, u is an embedding near
0€ B; and so is a slice in a coordinate system. Thus, we can assume that

u,u' = (v,w): (B1,0) — (CxC"10), u(z) = (2,0) € CxC"1,

and u,u’ are J-holomorphic with respect to some almost complex structure

Ji(z,y)  Jie(x,y) > i o L
J(z,y) = :CxCP ' — CcxCt, ) €CxC L
() ( Jor(x,y)  Jaa(z,y) % X (z,y) € Cx
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Since v is J-holomorphic,

Jo1(2,0) =0, Jos(z,00>=-Id VzeB cC. (1.3)
Since v is J-holomorphic,

dsw + Joz (v(z), w(2)) dw + Ja1 (v(2), w(2))Opv = 0.

Combining this with

1
dJij (z, ty) 0Jij
) = Tyl 0) + [ S ar = 7 a0 +Zyz/ 2

(z, ty
and the first equation in (1.3), we find that

dsw + Jaz(v(2),0) 9w + C(2)w(z) = 0, where C € LP(By; EndgC" ™),

n—1 1 1
2y = Zy(</ an22 dt)@tw|z+ (/ %Jﬂ dt)85v|z>.
i1 0 Y l(u(z)tw(2)) 0 Y l(u(z)tw(2))

Thus, by Proposition 1.1 and the second identity in (1.3),

w(z) = (z)w(z) V z € By,

for some 6 € (0,1), ® € LY(Bs; GLa,,—2R), and holomorphic map w: Bs — C"~L. Since v/(2]) =u(z;),
w(2})=0 for all i€Z™. Since 2z — 0 and 2} 0, it follows that w=0. This implies the claim with
U'=Bs and o =v. O

Corollary 1.6. Let (M, J) be an almost complex manifold with a Riemannian metric g compatible
with J. If te M and uw: X — M is a J-holomorphic map from a compact Riemann surface with
boundary such that x € u(X)—u(0X), then

1 N
i ) <27

where BY(x) C M is the ball of radius 6 around x in M with respect to the metric g.

Proof. By the continuity of u, we can assume that M =C", J agrees with the standard complex
structure Jen at the origin, g agrees with the standard metric gor at the origin, ¥ = B, for some
e€R* and u(0)=0. In particular, there exists C'>1 such that

}Jx—JCn’ < C|z|, ‘gx—g(cn} < C|z| VoeC” st |z| <1, (1.4)
where | - | denotes the usual norm of z (i.e. the distance to the origin with respect to gcn).
By Corollary 1.3,
u(z) =a- (zé + f(2)) (1.5)

after possibly shrinking e, for some £€Z%*, a€C"~! -0, and a smooth function f on B, such that

|f(z)] < C|z|! V 2z€Be. (1.6)



Let z=s+it as before. By (1.5) and (1.6),

us(z) = ol - (ze_l + f(z)) (1.7)
for a smooth function f on B, such that

()| <Clz)*  VzeB.. (1.8)
We can also assume that the three constants C' in (1.4), (1.6), and (1.8) are the same, C'>1,

Coe = (C+Clal+C?|al)e < 1,

and |u(z)|<1 for all z€ B,. By (1.4)-(1.8),
u(2)lg

o2

, m — 1) < Clz| +C’|a||z[€ + C’2|0z]|z|e+1 < Cqulz| VYzeB.C B, (1.9)

where | - |; denotes the distance to the origin in C™ with respect to the metric g.

Given r€(0,1), let 6, €(0, €) be such that

., <(1_2i)|a|> . (1.10)

For any 6 €(0,4,], (1.9) and (1.10) give

1/¢
A (qamm) = w@eBo).

1/¢
g
u(2) € B(O) — 1= (o)
5\ Jug(2)|
<(— 1—r < Us(Z)lg <1
'Z'—<<1—r>rar> = TS ot ST

Combining these, we obtain

(L= (jafll=l 1) < / g2 < / (L) (Jafll2l 1)
/|z<( ’ W BJ0) ¢ el (=t )%

(A=r)la]
Evaluating the outer integrals, we find that

1—r\? 147
<1+r) (m6? < E(uly-1(5300y) < <1 ) {md”.

r

These inequalities hold for all 7€ (0,1) and § € (0, d,); the claim is obtained by sending r—0. [

Before establishing the full statement of Proposition 1.1, we consider a special case.

Lemma 1.7. Suppose p,e €ER™, withp>2, u€ L¥(Be; C") for somen€Z™, and A€ LP(B,; EndcC")
are such that
u(0) =0, us + Jenue(z) + A(z)u(z) =0 V z=s+it€ B, (1.11)

where Jen =i is the standard complez structure on C". Then, there exist § € (0,¢€), ® € L}(Bs; GL,C),
a Jen-holomorphic map o: Bs—> C™ such that

o(0) =0, ®(0) = Idcn, O(2)o(z) =u(z) V z€B;. (1.12)



Proof. For each 0 €0, €], we define

A(z), if z€ By;

As € LP(S% EndcC") by As(z) = _
0, otherwise;
Dy : LY (5% EndcC") — LP(S% (T*S%)* ' @cEndcC”) by DsO = (O4+JcnO;+As0)dz.

Since the cokernel of Dy =20 is isomorphic H!(S?; C)®cEndcC", Dy is surjective and the homo-
morphism

Dy: LY (S% EndcC™) — LP(S% (T*5?) ™ @cEndcC”) & EndcC?,  © — (Dy©,0(0)),
is an isomorphism. Since
1Ds© — DoB|, < 145]1 20 1®llco < CllAs]Io[|®]lp ¥ © € LY(S? EndcC™)
and ||As||L» —> 0 as § — 0, the homomorphism
Dys: LF(S% EndcC") — LP(S?% (T*5?) ' @cEndcC") @ EndcC”,  © — (D;6,0(0)),
is also an isomorphism for § > 0 sufficient small. Let Oy :D(;1 (0,Idcn). Since Dy is an isomorphism,

|05 -1der | o < C@5-1den| < D305 1dco)] = €[4,

leo

Since ||As||Lr — 0 as 6 — 0, O € LY (Bs; GL,C). By the third equation in (1.11), the function
U:@glu then satisfies
0'(0):0, 05+J(C7L0't20 VZEBg,

i.e. 0 is Jon-holomorphic, as required. 0

Proof of Proposition 1.1. (1) Since B, is contractible, the complex vector bundles u*(T'C", Jcn)
and u*(T'C™, J) over B, are isomorphic. Thus, there exists

U € LY(Be; GLg,R) st. J(2)U(z) =VU(z)Jen VYV z€B..
Let v=V¥"1y. By the assumptions on u, v€ L{(B,; C") and
v(0) =0, vs(2) + Jonvy(2) + C(2)v(2) =0 YV z=s+it€ B, (1.13)
where C' =01 (U, + JT; + CV) € LP(B.; EndgC").
Thus, we have reduced the problem to the case J=Jcn.
(2) Let C*t= %(C’ T J@nC'JCn) be the C-linear and C-antilinear parts of C, i.e. C*Jen = £JenCE.

With (-,-) denoting the Hermitian inner-product on C" which is C-antilinear in the second input,
define

[v(2)|72(v(2), whv(2), if v(z) #0;

0, otherwise;

D € L*(B; EndrC"), D(z)w = { A=CT+C™D.

Since DJen =—JenD and Dv=wv, A € LP(B.; EndcC") and Av=Cwv. Thus, by (1.13),
vs + Jenvy + Av =0.

The claim now follows from Lemma 1.7. O



Corollary 1.8. Suppose n € Z*, e € R, J is a smooth almost complex structure on C" with
Jo=Jcrn , and u: Be — C" is a J-holomorphic map with w(0) =0. Then, there exist § € (0,¢€),
C €RT, ® € C%Bjs; GL2yR), and a Jen-holomorphic map o : Bs — C" such that ® is smooth
on Bs—0,

o(0) =0, ®(0)=Idcr, J(u(2))®(z)=®(z)Jen, u(z)=P(2)0(2), |d:®| < C VzeB;—0.

Proof. We can assume that u is not identically 0 on some neighborhood of 0 € B,. Similarly to (1)
in the proof of Proposition 1.1, there exists

U e C®(C" GLyR) st W(0) =Iden, J(z)¥(x) = U(z)Jen ¥ zeCm.

Let v(z) = ¥(u(z))"tu(z). By Proposition 1.1, we can choose complex linear coordinates on C"
so that
v(2) = (f(2),9(2))h(z) € CaC™' V¥ 2€B.

), holomorphic function h on By with ~(0)=0, and continuous functions f and g

for some € € (0, ¢
(0)=1 and ¢(0)=0. By Lemma 1.9 below, there exists 6 € (0, ¢') so that the function

on By with f
. _ f(z) 0
®: Bs — GLgyR, ®(z) = U(u(z)) (g(z) N
is continuous on Bs and smooth on Bs—0 with |d,®| uniformly bounded on Bs—0. Taking
o(z)=(h(z),0), we conclude the proof. O

Lemma 1.9. Suppose e€R™, and f,h: B.— C are continuous functions such that h is holomor-
phic, h(z)#z for some z € B, and the function

B, — C, z — f(2)h(z), (1.14)
is smooth. Then there exist §,C €R™ such that f is differentiable on B.—0 and
|d.f|<C  Vz2eB;—0. (1.15)

Proof. After a holomorphic change of coordinate on Bs C B, we can assume that h(z) = z¢ for
some £ €70, Define
9: B —C,  g(z) = f(2)2" = f(0)2".

By Taylor’s Theorem and the assumptions on the function (1.14), there exists C'>0 such that the
smooth function g satisfies
|g(z)} < Ozt V zeBs.

Dividing by g by 2¢, we thus obtain (1.15). O
Remark 1.10. Corollary 1.8 refines the conclusion of Proposition 1.1 for J-holomorphic maps.
In contrast to the output (®,0) of Proposition 1.1, the output of Corollary 1.8 does not depend

continuously on the input u with respect to the LY-norms. This makes Corollary 1.8 less suitable
for applications in settings involving families of J-holomorphic maps.



1.2 The Monotonicity Lemma

Theorem 1.11 below is a key step in the continuity part of the proof of the Removal of Singularity
Theorem 2.1. The precise nature of the lower energy bound in this theorem, i.e. of the function on
the right hand-side of (1.16), does not matter, as long as it is positive for § > 0.

Theorem 1.11 (Monotonicity Lemma). If (M, J) is an almost complex manifold and g is a Rie-
mannian metric on M, there exists a continuous function C: M —R™ with the following property.
If u: ¥— M s a J-holomorphic map from a compact Riemann surface with boundary, x € u(X%),
and 0 €eRT is such that u(0X)NBY(x)=0, then

w62

Eol) 2 Trc@mpon

(1.16)

If w=g(J-,-) is a symplectic form on M, then the above fraction can be replaced by r62e=C@)9%,
According to this theorem, “completely getting out” of the ball Bs(z) via a J-holomorphic map
requires an energy bounded below by a little less than 762. Thus, the L?-norm of a J-holomorphic
map u exerts some control over the C%-norm of u. If p > 2, the L{-norm of any smooth map f
from a two-dimensional manifold controls the C%-norm of f. However, this is not the case of the
L2-norm, as illustrated by the example of [5, Lemma 10.4.1]: the function

1, if [2] < 4;
fsrR2— 00,1,  fs(z) = mEL i < |2 <1,
0, if |z] > 1;

with any 6 € (0,1) is continuous and satisfies

2T
dfs]? = ——.
/]R?‘ fé‘ 1115

It is arbitrarily close in the L?-norm to a smooth function fg. Thus, it is possible to “completely
get out” of Bs(x) using a smooth function with arbitrarily small energy (fs does this for x =1
in R).

Proof of Theorem 1.11. It is sufficient to establish the claim for § <d,(x) for some continuous
function §,: M — R smaller than half the injectivity radius function r,: M — R™. Furthermore,
we can assume that the metric g on ng (@) (z) is determined by J and some symplectic form w so

that J is w-tame on BY

5, (2) (z) and w-compatible at z (the form w may depend on ).

Choose a C*°-function n: R— [0, 1] such that

Let (, be the vector field on ng (@) (z) given by (. (y) =exp, (). Given d€ (0, d4(x)) and a C*°-map
u: X — M from a compact Riemann surface, define

cerewman) by 66 = o ) )



the vanishing assumption on 7 implies that £ is well-defined. If z=s+it is a coordinate on 3,

V= () et GG ) o M) VGt

where V is the Levi-Civita connection of the metric g; see Lemma 1.15. Combining Lemma 1.14
with the w-compatibility assumption at z, (1.17), and Corollary 1.17, we find that

/(<us,V£ (ut, V&) )ds/\dt‘
x

/ €l sl uel+dg (2, u(2)) (V€ luel+[us][Ve])) ds Adt

( ))> (Jus]®+ |ue|?)ds Adt 19
o do(z,u(2)) dg(x, u(z
_/277 ( 9( 5 ( ))) !]( 5 ( )) (]u5]2—|—|ut|2)ds/\dt>,
if u is J-holomorphic.
On the other hand, (1.17) gives
B ) A VS EE
(1, 9.6) = f () st G ) o
e B 0, 9 G
By Corollary 1.17,
(us, Vi(=Ca(u(2)))) 2 [us]? = Cl@)dy(, ul(2))?|us| . (1.20)
If w is J-holomorphic, then |us|=|u¢|, (us,ur) =0, and
(us, Co(u(2)))? + (ut, Ga(u(2)))* < Jusl*|Calu(2))* = %(\us\QﬂLl%!?)dg(waU(Z))2- (1.21)
Since 1 <0, (1.19)-(1.21) give
g () B o) (D) ()
< Cm( B a0 o) (o P4) + 0 T+ V) (12)
< o<x>n(W>62(|us|2+|ut\2) + (s, Vi) + (s, Vi),
whenever v is J-holomorphic and w(9X)NBY (z)=0.
Let u: ¥ — M be a J-holomorphic map such that z€u(X),
A, (6) = ;/2,7<dg(x’;‘(z))> (Jus|* +w[*)dsndt,  A(S) = ;Al(Bg(m)) (Jus|*+|ue|*)dsndt .
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Thus,

1 dy(z,u(z dy(x,u(z
8) = 4 [ (D) Bl o s
Combining this identity with (1.22) and (1.18), we find that
1
—§6Aj7(6) + Ay (8) < C(x)6%Ap(8) + C(x)6 Ay (6) + C(2)5Ap(6),

for all 6 eRT such that u(9¥)NBJ(x)=0. The last inequality is equivalent to

<A7’(5)/(1+(§i):)6)4>, > 0. (1.23)

By Lebesgue’s Dominated Convergence Theorem, A, (d) — A(d) from below as n— x(_sc,1) (the
characteristic function of (—oo,1)). Thus, by (1.23),

52
o A(‘”/ 1 C(@)9)!

is a non-decreasing function of 4, as long as w(0X)NBY(xz) =0. By Corollary 1.6,

. 52 AW
i <A(5)/(1+C(:n)5)4)_5h—r>no 2 =T

This implies the claim. O

Exercise 1.12. Suppose (M, w) is a symplectic manifold, J is an w-tame almost complex structure
on M,

1
gs(v,0) = f(w(v, Juv') — w(Jv,v’)),
2 YV u,0' €T, M, z€M, (1.24)
wy(v,v') = i(w(Jv, Jv') — w(v, "))

and f: ¥ — M is a C'-map. Show that

gJ(f57fs) +9J(ft7ft) = QW(fsaft) +gJ(fs+thafs+th) +2WJ(fsaft)a

if z=s+it is a local coordinate on X.

Exercise 1.13. Let (M,w,J), g5, ws, and f be as in Exercise 1.12, and £ € I'(X;w*T'M). Show
that the 2-forms

(gJ(fSa vsé) + gJ(fb Vté))dS/\dta (WJ(VS& ft)+wJ(f57 th))ds/\dt
are independent of the choice of local coordinate z = s+it.

Lemma 1.14. Suppose (M,w) is a symplectic manifold, J is an w-compatible almost complex
structure on M, and V is the Levi-Civita connection of the metric gy. If (3,j) is a compact
Riemann surface with boundary and w: > — M s a J-holomorphic map, then

/E(gJ(Us,Vsﬁ)+9J(Ut,Vt€))d8/\dt=/2({ng}(us,ut)+wJ(Vs§,ut)+wJ(Us,Vti))ds/\dt

for all E€T(3Z;u*T M) such that &|gx=0.



Proof. Let ur(z) =exp,,)(7€(2)) for z€3 and 7 €R close to 0. Denote by S the closed oriented
surface obtained by gluing two copies of ¥ along the common boundary and reversing the orienta-
tion on the second copy and by u; the map restricting to u; on the first copy of ¥ and to u on the
second. By Exercise 1.12,

By ) = [ () () ) dsndt = By ()

1

:/Aﬁfwjt2/gJ((uT)S—}—J(uT)t,(uT)S—i—J(uT)t)ds/\dt20 VT
% b

(1.25)

The first integral on the right-hand side of (1.25) vanishes, because w is closed and u, represents
the zero class in Hy(M;Z). Thus, the function

T — By, (ur) — /ELUJ((UT)S, (ur)¢)dsAdt — Ey, (u)

is minimized at 7=0 (when it equals 0) and so

0= %(fm - [Lon( twnasnar) B -
= (5 [0 01+ s w0) = [ s () )tsnat)

P

7=0
Since V is g-compatible and torsion-free,

1d

= (0 ((ur)ss (1)) + 9 ((ur)es (ur)1))

= QJ(USa VT(UT)S‘TZO) + gJ(Uu VT(UT)t|T=0)
2dr

=0
= QJ(US; st) + gJ(Ut7 vté.) ’
d

EwJ((uT)s, (ur)t) T {Vewstus, u) + wi(Ve(ur)s, u) +wis((ur)s, Ve(ur))

= {ngj}(us,ut) + CUJ(ng,Ut)-‘y-WJ(US, th) .

(1.27)

Combining (1.26) and (1.27), we obtain the claim. O

Lemma 1.15. Let (M,g) be a Riemannian manifold and x,y € M be such that 2dg4(x,y) <
re(x),m¢(y), where dgy is the distance function with respect to g and r4(-) is the injectivity radius
of g at the specified point. If a: (—e,€) — M is a smooth curve such that a(0)=vy, then

= —(a/(0), exp;1 ).

1d 2
’Edg (337 a(T)) .

Proof. The smoothness of 7— dy(z, a(7))? is immediate, since exp,, is a diffeomorphism onto the
ball Bfg(x) (z). If B(7)=exp, ' a(7),

1d
2dr

dy@a(n)’| =3I

T=

= <B/<O)7 B(O)>

=0

= ({dg(0) exp, }(8(0)), {dg(0) exp, }(B(0))) = (a’(0), —exp, " ) ;

the third equality holds by Gauss’s Lemma. O

g
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Lemma 1.16. If (M, g) is a Riemannian manifold, there exists a continuous function C: M — R™
with the following property. If t€ M, ve T, M, and T — J(7) is a Jacobi vector field along the
geodesic v(T)=exp, (Tv) with C(x)|v|<1 and J(0)=0, then

|7'(1) = J()| < Ca) Pl I (1)].
Proof. If f(r)=|rJ'(7)—J(7)| and R, is the Riemann curvature tensor of g, then f(0)=0 and
f@) (1) = ("), 7] (1) = J (7)) = T(R(Y (1), J(7))' (7), 7] (1) = I (7))
< C@)P|J(r)rf(r) < 2C (@)l (D)7 £(7);
the last inequality holds if |v| is sufficiently small. Thus,
f'(r) < 20()ol|I (1),
which implies the claim. O

Corollary 1.17. If (M, g) is a Riemannian manifold, there exists a continuous function C: M —s R*
with the following property. If x € M and ( is the vector field on B, (,)/2(z) given by (;(y) :expzjl(x),
then

‘V’LUC:E + w’ < C(x)dg(xv y)2|w’ Vow eTyMa ye Brg(x)/2($)7

where V is the Levi-Civita connection of g.

Proof. Let T—u(s,7) be a family of geodesics such that

d
’LL(S7O) =7, U(O, 1) =Y, @U(S, 1)

= w.
s=0

Then, J(7) = diu(s, 7')}8 o 18 a Jacobi vector field along the geodesic 7— (0, 7) with

S =

d

J(O) =0, J(l) = w, CSE (U(S, 1)) = —7U(S,T) 5
dr T=1
V(e = Bdu(s,T) _ Bdu(s,T) _ ().
ds dr (577_):(0,1) dr ds (5’7_):(071)
Thus, the claim follows from Lemma 1.16. O

1.3 The Mean Value Inequality

Proposition 1.18 (Mean Value Inequality). If (M,J) is an almost complex manifold and g is a
Riemannian metric on M compatible with J, there exists a continuous function hjg: M xR—RT
with the following property. If u: B — M 1is a J-holomorphic map such that

u(Br) C BY(z) and Ey(u) < hyg(z,r)
for some xe M and r €R, then

0 B,(u). (1.28)

1
doul? < —
[dou] TR?2

11



According to Proposition 1.18, the norms of the differentials of J-holomorphic maps away from the
boundary of the domain are “uniformly” bounded by their L?-norms (the integral of the square of
the norm). In general, one would not expect the value of a function to be bounded by its integral.
Proposition 1.18 immediately implies that the energy of J-holomorphic maps from the Riemann
sphere S? is bounded below.

Proof of Proposition 1.18. Let ¢(z) = %|dzu|2. By Lemma 1.25 below, A¢ > —A;,¢? with
Ajg: MxR—R" determined by (M,.J,g). The claim with h;, = 7/8A;, thus follows from
Proposition 1.24. [

Corollary 1.19 (Lower Energy Bound). If (M, J) is a compact almost complex manifold and g is a
Riemannian metric on M, then there exists hj g ER™ such that Ey(u)> hjg for every non-constant
J-holomorphic map u: S? — X.

Proof. By the compactness of M, we can assume that g is compatible with J. Let hj, >0 be
the minimal value of the function A, in the statement of Proposition 1.18 on the compact space
M x [0, diamgy(M)]. If u: S — X is J-holomorphic map with Eg(u)<hy,,

16 16
’dzu|2 < @EQ(QABR(Z)) S WE‘Q(U) W ZGC, R€R+

by Proposition 1.18, since Br(z) C C as Riemann surfaces. Thus, d,u=0 for all z€C, and so u is
constant. O

If : U—R is a C?-function on an open subset of R?, let

0%y 0%¢
A¢:@+w5¢ss+¢tt

denote the Laplacian of ¢.

Corollary 1.20. If (M, J) is a compact almost complex manifold and g is a Riemannian metric
on M, there exists a continuous function €j4: RT —RY such that

diamg(u([—R—l—l,R—l] XS’I)) <4
whenever u: (—R, R)x S — M is a J-holomorphic map with Eq4(u) < €,4(8) and § ERT.

Proof. Let hj,>0 be the minimal value of the function A;, in the statement of Proposition 1.18
on the compact space M x [0, diamgy(M)]. If E4(u)<hjg4, then

|d.ul* <8E,(u) Vz€[-R+1,R—1]xS".

Thus, diamg(u(rx S1)) <164/E,(u) for every r€[—~R+1, R—1]. If

6y = diamy (u([~R+1, R—1]x SY)) > 641/ E,(u),
there exist
r_,ro,74 €E[-R+1,R—1], 6_,00,0, € S* s.t.

r— <ro<ry, dg(u(ro,bo),u(rs,b+)) > =6,.

N | —
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Applying Theorem 1.11 with
1
Y= [r_,ry] xSt x =u(ro,0), and 52151“

we conclude that
762

E > %
" 2 6 Cga
for some Cj,€R' dependent only on (M, J,g). It follows that the function

) 52 762
Chg =TI <642’ 16(1+CJ,g5)4>
has the claimed property. O
Exercise 1.21. Show that in the polar coordinates (r,6) on R?,
Ap =+ 1 0 + 1 2pp . (1.29)
Lemma 1.22. If ¢: BR—R is C?, then

2rR$(0) = —R (InR—Inr)A¢ + ®. (1.30)
(T,G)EBR 6BR
Proof. By Stokes’ Theorem applied to ¢df on Br— B,
27 rR
¢odf — odf = / ordrAdl = / / (r¢p)r—tdrdd
0 Js

8BRr 9B; Br—Bs

2 27 rR
:/ (lnR—ln5)5¢r(6,9)d0+/ / (In R—In7)(¢pr + 7 ) drd;
0 0 Js

the last equality above is obtained by applying integration by parts to the functions Inr —In R
and r¢,. Sending § — 0 and using (1.29), we obtain

1
= ¢ —2m¢(0) :O+/ (InR—Inr)Ag,
R 0BRr (r0)eBr
which is equivalent to (1.30). O

Corollary 1.23. If ¢: Bg—R is C? and A¢p>—C for some C €RT, then

1, ., 1
6(0) < SOR’ + — Lo (1.31)

Proof. By (1.30),

27 pr 2
27TT(Z>(O)§C7”/ / (lnr—lnp)pdpd9+/ ¢:CT'2W'L+ ¢  Vre(0,R).
0 Jo OB, 4 Jop,
Integrating the above in r € (0, R), we obtain

R? R4
2r(0) - — < 27C - =+ [ .
0)- 5 16 ' Jp,

This inequality is equivalent to (1.31). O
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Proposition 1.24. If ¢: Bp — R20 is C? and there exists A € Rt such that A¢ > —A¢p? and

¢ < l, then
R

5 8A

#(0) < o. (1.32)

eyl
Proof. Replacing A by A=R2?A and ¢ by

0:B1— R, ¢(2) = 6(R),
we can assume that R=1, as well as that ¢ is defined on Bj.

(1) Define
f:00,1) —R by f(r)=(1-r)’supg¢;

T

in particular, f(0)=¢(0) and f(1)=0. Choose r*€[0,1) and z* € B,~ such that

fOr*)=supf and d(z") =supop = c*.
B

T

Let 5:%(1—7‘*)>0; see Figure 1. Thus,

__ J(r*+9) )
sup ¢ < sup ¢ = (1—r)2

=4¢(2%) = 4c*.
Bs(=) Byess (1—(7’*—1—(5))2 ¢(Z ) c

<
In particular, A¢ > —A¢? > —16Ac*? on Bs(z*).
(2) Using Corollary 1.23, we thus find that

1 1
16Ac™ - p* + — ¢ < 24c%p% + —; / ¢ ¥V pelo,d]. (1.33)
TP™ JB,(2*) ™" JB;

| =

¢ =¢(z") <

If 24c¢*6% < %, the p=4 case of the above inequality gives

Lot o0 w0 =ro <o =42 <E [ o
B

2~ wH? ey

~—~
|

NI
IN

as claimed. If 2Ac*02 > 1, p=(4Ac* 0 and (1.33) gives

1 4Ac*

- .4Ac*+ T

é.
B1

T
Thus, — < | ¢, contrary to the assumption. O
8A By

Lemma 1.25. If (M, J) is an almost complex manifold and g is a Riemannian metric on M com-
patible with J, there exists a continuous function Aj,: M xR—RT with the following property.
If QCC is an open subset, u: Q—s M is a J-holomorphic map, and u(Q) C Bi(z) for some x€ M
and r €R, the function ¢(z)= %|dzu|§ satisfies A > — Ay q(z,7)P2.

14



Figure 1: Setup for the proof of Proposition 1.24

Proof. Let z=stit be the standard coordinate on C and denote by us and u; the s and t-partials of u,
respectively. Since u is J-holomorphic, i.e. us=—Ju, and g is J-compatible, i.e. g(J-, J-)=g(-,),
lus|? = |u¢|?, where |-| is the norm with respect to the metric g. Since the Levi-Civita connection V

of g is g-compatible,

1 d?
iﬁyusﬁ = |Vt |? + (Ve Vius, ug) = [Veug|? + (Vi Vu, ) ;
the last equality holds because V is torsion-free. Similarly,

1d* )
5@%\ = |Vsue|* + (Vs Viug, uy).
Since ugs=—Juy,

<V5Vtus, ut> = —(VSVt(Jut), ut>
= —(JV Vi, up) — (V) Viug, ug) — (Vs (Ve )ur), ug)
= —(sttut,us> — <(VSJ)Vtut,ut) — <V3((th)ut),ut> .

Putting (1.34)-(1.36), we find that
1
§A¢ = |Vius|? + [Vsug|? + (Ry(ug, ws)ug, us) — (Vs )Viug, ug) — (Vs (Ve Jur), ur)

where Ry is the curvature tensor of the connection V. Since u(2) C BY(z),

‘(Rg(ut,us)ut,usﬂ < Cg(x,r)|u8|2|ut|2,
(Vs D)V eur, up)| < Cgl,m)uslfuel [Ve(Tus)| < Cpg, m)us el (us] ||+ Veus])
< (Cuglw,r)+Crgla,r))|us*ue|* + [ Vieus|?,
[(Vs((Ve)ue), u) | < Copg(ar, )l (|us|fue +|Vsuel)
< Cyglm, m)|us|lue® + Oy, r)? Jug* + |V sug|*.

Combining (1.37) and (1.38), we find that
1
586 = =C(a,7) (Jus[*ue*+ [us][ue] + e 1) > =8C ()%,

as claimed.
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1.4 Energy bound on long cylinders

Proposition 1.26. If (M,J) is a symplectic manifold and g is a Riemannian metric on M,
then there exist continuous functions 854,hy4,Crg: M — RT with the following properties. If
u: [—R, R]x S'— M s a J-holomorphic map such that Tmu C ng (0 1))(u(O, 1)), then

sg )

Ey(u; [-R+T,R—T)xS") < Cyg(u(1,0))e TEy(u) VT >0. (1.39)

If in addition Eg(u) < hjg(u(0,1)), then
diamg (u([~R+T, R—T]xS")) < Cy(u(1,0))e T2\ /Eg(u) VT >1. (1.40)

Corollary 1.27. If (M, J) is a compact almost complex manifold and g is a Riemannian metric
on M, there exist hj,, Cj, € RY with the following property. If u: [-R,R]xS' — M is a
J-holomorphic map such that Eg(u) <hjg4, then

Eg(u; [-R+T,R—T]xS5") < Cyge T Ey(u) VT >0,
diamg (u([~R+T, R—T]xS")) < Cyge 72\ /Ey(u) VT >2.

Proof. Let 6 € Rt be the minimum of the function 64 in Proposition 1.26. Take Cj,>1 to be
at least as the big as the maximum of the function C, in Proposition 1.26 and h;, € R to be
smaller than the minimum of the function A;, in Proposition 1.26 and the number €;4(d) with
€7,4(+) as in Corollary 1.20. O

As an example, the energy of the injective map
[-R,R] x S' — C,  (s,0) — se?,

is the area of its image, i.e. 7T(e2R—e_2R). Thus, the exponent e~7 in (1.39) can be replaced by e =27

in this case. The proof of Proposition 1.26 shows that in general the exponent can be taken to
be e #T with p arbitrarily close to 2, but at the cost of increasing C' 7,9 and reducing d74.

Lemma 1.28 (Poincare Inequality). If f: S' —RY is a smooth function such that f027rf(9)d9:0,
2 2w
[ ir@pao < [yt
0 0

k<oo .
Proof: We can write f(6) = 3. age'*®. Since fOQWf(H)dﬁzo, ap=0. Thus,

k>—o0
o k<oo k<oo o
/ FOPO= 3 < Y kgl = / £(6)[2d6.
0 k>—oc0 k>—oc0 0

Proof of Proposition 1.26. It is sufficient to establish the first statement under the assumption
that (M,g) is C" with the standard Riemannian metric, J agrees with the standard complex
structure Jy at 0€ C", and u(0,1)=0. Let

ou = (us + Jouyg) .

N =
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By our assumptions, there exist §',C >0 (dependent on u(0,1)) such that
0| < C6|d.ul Vzeu ' (Bs(0), 6<48 . (1.41)

Write u= f+ig, with f, g taking values in R™ and assume that Imu C Bs(0). By Exercise 1.12 (or
a direct computation), (1.41), and Stokes’ Theorem,

/ duf? = 4/ 13u® + 2/ d(f-dg)
[—t,t]x St [—t,t]x St [—t,t]x St

(1.42)

§40252/ ]5u|2+2/ f-ggd9—2/ fg0d0.

[—t,t]x St {t}xS1 {—t}xs1
Let f=f —% 027r fdé. By Holder’s inequality and Lemma 1.28,
1 1
~ 519 2 2 2
[ raao= [ faars ([ i) ([ lwkas)

{£t}x St {£t}x St {£t}x St {£t}x St (1 43)

1 1
<( [ ika) ([ wPar) <l [ .
(£t} xSt (£t} xS 2 Jittyxst

3lugl® = 2lug|?® + ’ut - 25u’2 < 2|dul? + 8|5u}2,

Since

the inequalities (1.41)-(1.43) give

(1_40252)/ dul? < 2(1+4C252)(/ yduy2da+/ yduPde).
[—,¢]x S 3 {t}x St {—t}xSt

Thus, the function

1
e(T) = E,(u; [-R+T,R—T)) = 2/[ A
— s — ><

satisfies e(T') < —&/(T') for all T € [-R, R], if 0 is sufficiently small (depending on C'). This im-
plies (1.39).

|du|?dfds

Let hyg(x)=(x,074(x)), with hj4(-,-) as in Proposition 1.18 and 6,5 4(+) as provided by the previous
paragraph. Suppose u also satisfies the last condition in Proposition 1.26. By Proposition 1.18
and (1.39),

eyl < 3y/By(u: [|s| L. ]s| 11 x 51) < 34/Ca(w(0, 1))+ [E, ()

for all s € [-R+1, R—1] and § € S. Thus, for any s, s3 € [~ R+T, R—T] with T>1 and 0,0, € S*,

§2
dy (1(51,01), u(s, 02)) < 31/Cr (u(0, 1))el+1511=R)/2 ng)(H / e<1+lsl—R>/2ds)
81
< (37+12) /Cra(u(0, 1))y By u) 0112

This establishes (1.40). O
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2 Global Properties

The properties of J-holomorphic maps to the almost complex manifold (M, J) described in this
section depend on M being compact.

For each ReR™, denote by Br C C the open ball of radius R around the origin and let B}, = Bp—{0},
as before.

Theorem 2.1 (Removal of Singularity). Let (M,J) be a compact almost complex manifold and
u: By — M be a J-holomorphic map with respect to the standard complex structure i on C. If
the energy E(u) of u, with respect to any metric on Br and on M, is finite, then u extends to a
J-holomorphic map u: Bp — M.

A basic example of a holomorphic function uw: C* — C that does not extend over the origin 0€C
is z—>1/z. The energy of u[p; with respect to the standard metric on C is given by

E(uls;) 1/ duf? / ! /%/Rldde;é
ulgs) = = ul® = — = r—dr 00.
B 2 /By By |22 0 Jo

The above integral would have been finite if |du|? were replaced by |du|?>~¢ for any e > 0. This
observation illustrates the crucial role played by the energy in the theory of J-holomorphic maps.

It is a standard fact in complex analysis that a bounded holomorphic map u: B — C" extends
to a holomorphic map %: Bp —> C™. This implies the conclusion of Theorem 2.1 whenever J is
an integrable almost complex structure and u(Bj) is contained in a complex coordinate chart for
some § € (0, R). We will use the finiteness of the energy of u to show that the latter is the case;
the integrability of J turns out to be irrelevant here.

Proof of Theorem 2.1. We can assume that R =1. The first step is to show that u extends
continuously over the origin.

(1) The map .
v:R™ xS — M, v(r,0) :u(e”‘e),

is J-holomorphic and satisfies F(v)=E(u)<oo. For each i €Z™, define
vi: R xS vi(r, ) = v(r—i,0).

This map is again J-holomorphic and E(v;) = E(v|(_s,—;)xg1) approaches zero as i — oo, since
E(v) <oo. Proposition 1.18 then implies that |dv;|p~ — 0. Since M is a compact, v; contains a
subsequence which converges uniformly on compact subsets to a C'-function ve: R xS — M
with dvs =0. Thus, v, is the constant map to a point z € M.

We next show that
lim o(r,d)=z Ve S

r——00
and so the extension of u defined by @(0) ==z is continuous. Suppose instead that there exist § >0

and a sequence (7, 0)) €ER™xS! such that r, — —oc and v(rg, 0x) € B3s(x). By the same reasoning
as in the previous paragraph, we can assume that the functions

@ki@ixsl, 17].3(7",9) :U(T"i_rkve)a
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Tk+1 ik Tk 0

Q

Bs(y) Bs(x) Bs(y)

Figure 2: Setup for the proof of Theorem 2.1

converge uniformly on compact subsets to the constant function to some y € M — Bss(x). By the
uniform convergence of v and v, we can choose sequences r; and i € Z~ such that

Tet1 < 1 < Tk, U({ik}xsl) C B(s(a}), U({Tk}xsl) C Bg(y).

et Qp = [r 1,7“k] x S and 2, € Q be such that v(z;) € Bs(r); see Figure 2. Since v(9Q)N
( =0

k)
£ = 3 ECla) = 3w gy

the second inequality above holds by Theorem 1.11. However, this contradicts the assumption that
E(v)<oo.

B(S(

(2) It remains to show that the extension u is a smooth function. We can now assume that
u: (B1,0) — (C™,0) is a continuous map such that its restriction to B is smooth and satisfies

us + J(w)uy =0 (2.1)

for some smooth almost complex structure J on C™ such that J(0)=i. O

3 Convergence

The next lemma is used to show that no energy is lost under Gromov’s convergence and the
resulting bubbles connect.

Lemma 3.1. If (M,J) is a compact almost complex manifold and g is a Riemannian metric
on M, then there exists hj, € RT with the following properties. If u;: By — M is a sequence
of J-holomorphic maps converging uniformly in the C*-topology on compact subsets of By to a
J-holomorphic map uw: By — M such the limit

m= lim lim FE4(u;; Bs) (3.1)

6—0i—o00
exists and is nonzero, then
(1) m = hyg;

(2) the limit m(0) = lim Eg4(u;; Bs) exists and is a continuous, non-decreasing function of 6;
i—00

(3) for every sequence z; € By converging to 0, ignm Eg(u;; Bs(z))=m(6);
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(4) for every sequence z; € Bs converging to 0, p€(0,m), and i€ Z* sufficiently large, there exists
a unique 6;(p) ERT such that Ey(ug; By, (2:)) =

(5) for every sequence z; € Bs converging to 0 and p€ (m—hyg,m),

Gl lim Ey(ui; Bre,() (i) = m, (3.2)
lim lim lim diamg(u;(Bs—Bpgs,(u)(2i))) = 0. (3.3)

R—00 6—0i—>00

Proof. Let hj4 be the smaller of the constants h ;4 in Corollaries 1.19 and 1.27. Let u;, u, and m
be as in the statement of the lemma.

(1) By the rescaling procedure at the beginning of [5, Section 4.2], a subsequence of u; gives rise
to a non-constant J-holomorphic map v (bubble at 0) such that

< li i i =m.
Eov) < 5h—n>10 oY Eq(us; Bs) = m

By Corollary 1.19, hj 4 < E4(v).
(2) Since du; converges uniformly to du on compact subsets of B,
m(0) = lim Eg(u;; Bs) = lim lim Eg(uj; By) + lim  lim Eg(u;; Bs — By)

i—00 §’'—01—00 §’—01—00

=m+ lim Fy(u;Bs — By) = m + E4(u; Bs).
6'—0
Since E4(u; Bs) is a continuous, non-decreasing function of ¢, so is m(d).

(3) For each &' €RY, 2; € By for all i€ Z™ sufficiently large and so
Eg(ui; Bs—y) < Eg(ui; Bs(2i)) < Eg(ui; Bstsr).
This implies that

m(0—0") < lim Eg(u; Bs(z)) < m(6+4") V& eRT.

i—>00
The claim now follows from (2).

(4) By (3), (2), and (3.1),

1
lim Eg(u;; Bs(2:)) —m‘ < i(m—,u)

1—00

for some 0 € (0,1). Thus, there exists i(u) €Z" such that
|Eg(ui; Bs(2:)) —m| < m—p Vi >i(u)

and thus Ey(u;; Bs(2;)) > p for all i >i(u). Since each Ey(u;; Bs(2;)) is a continuous, increasing func-
tion of § which vanishes at 6 =0, there exists a unique d;(12) € (0,0) such that Eq(u;; Bs,(,)(2:)) = -
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(5) By (3.1), () — 0 as i — oo for every p € (0,m). Suppose (3.2) does not hold for some
pe (m—~hyg,m). After passing to a subsequence, we can assume that

lim  lim FEy(ui; Brs,(u(2i)) = 1" (3.4)

R—00 i—>00

for some p* €[, m). By (3), (2), and (3.1),

lim lim Ey(u;; Bs(z)) =m. (3.5)

6—0i—r00

Thus, after passing to another subsequence, we can assume that there exists a sequence d; — 0
such that
lim Eg(us; Bs, (%)) = m. (3.6)

—>00

Since §; — 0, (3.5) and (3.6) imply that

lim lim Ey(u;; Brs,(2)) = m. (3.7)

R—00 i—>00

By (3.7) and the definition of d;(x) in (4),

lim E(u; Brs, (21) = Bs, () (2i)) =m — p < hyg.

71— 00

Thus, (1.39) applies with (R,T) replaced by (3 In(Rd;/8;()),InR) and u replaced by the J-
holomorphic map '
v(r,0) = u(zi—i- R6;6; (1) e”'He)

and gives

E(u; Bs,(21)) — E(u; Bps,(u)(2i)) = E(u; Bs,(2) = Bps,(u)(2i)) < Cég Ey(u)

for all 7 sufficiently large (depending on R). However, this contradicts (3.4) and (3.6), since p* <m.
This argument is illustrated in Figure 3. Thus, (3.2) holds.

It remains to establish (3.3). By (3), (2), and (3.1),

iy B, B Bro(en)) =l Jim Jig, Bl (s Ba()) = .

Combining this with the definition of d;(u), we find that

lim lim lim Egy(ui; Bro(2i) = Bs,(2i)) =m — p < hyyg.

R—00 0—071—>00

Thus, for all R>0, § >0 sufficiently small (depending on R), and
Eg (ui; BR6(Zi)_Bz§i(;L) (Zl)) < hJ}g Vi> i(R, 5)
Corollary 1.27 then gives

CJ,g

VR
This gives (3.3). O

diamg (ui(Bs(2i) — Brs;(u) (%)) <

hig,  Yi>i(R,0).
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Figure 3: Contradiction in the proof of Lemma 3.1

We next show that a sequence of maps as in Lemma 3.1 gives rise to a continuous map from a
tree of spheres attached at 0 € Bj, i.e. a connected union of spheres that have a distinguished,
base component and no loops; the distinguished component will be attached at co € S? to 0 € B;.
The combinatorial structure of such a tree is described by a finite rooted linearly ordered set, i.e. a
partially ordered set (I, <) such that

e there is a minimal element (root) ig €1, i.e. ig<h for every he I —{ip}, and
e for all Ay, ho,i€ 1 with hi, hy <1, either hi=hs, or h1 <hs, or ho <h;.

For each ¢ € I —{ip}, let p(i) € I denote the immediate predecessor of i, i.e. p(i) € I such that
h<p(i)<i for all he I—{p(i)} such that h<p(i); it exists by the first condition above and unique
by the second. In the first diagram in Figure 4, the vertices (dots) represent the elements of a
rooted linearly ordered set (I, <) and the edges run from i € I —{ip} down to p(i). Given a finite
rooted linearly ordered set (I, <) with minimal element iy and a function

z: I-{ig} — C, i —> z, s.t. (p(i1), zi,) # (pli2), ziy) Y ir,ig € I-{io}, i17i2, (3.8)

let
Y= <|_|{i}><5’2>/~, (i,00) ~ (p(i),z) Viel—{io};
i€l
see the second diagram in Figure 4. Thus, the tree of spheres ¥ is obtained by attaching co in the
sphere indexed by i to z; in the sphere indexed by p(i). The last condition in (3.8) insures that ¥
is a nodal Riemann surface, i.e. each non-smooth point (node) has only two local branches (pieces
homeomorphic to C).

Figure 4: A rooted linearly ordered set and an associated tree of spheres
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Proposition 3.2. Let (M, J) be a compact almost complex manifold, g be a Riemannian metric
on M, and u;: By — M be a sequence of J-holomorphic maps converging uniformly in the C*°-
topology on compact subsets of BT to a J-holomorphic map w: By — M. If the limit

m= lim lim E4(u;; Bs) (3.9)

6—0i—r00
exists and is nonzero, then there exist
(a) a nodal Riemann surface Yo consisting of By with a tree of spheres attached at 0€ By,

(b) a continuous Map Ueo : Yoo —> M which is J-holomorphic map on By and on each of the
spheres,

(c) a subsequence of {u;} still denoted by {u;}, and

(d) an injective holomorphic map ;: U;— By, where U; CC is an open subset,
such that

(1) Eg(too; Yoo —B1) =m,

(2) C=UZ, Ui,

(8) u;oh; converges to us uniformly in the C*-topology on compact subsets of the complement of
the nodes oo, wy, ..., wy in the sphere Sg attached at 0 € By,

(4) if uoo|53 is constant, S contains at least three nodes of Yoo;
(5) (d) applies with ({u;},0), By, and m replaced by ({u;o;},w?), a neighborhood of w} in C, and

m lim lim Ey(u;0t5; Bs(w))), (3.10)

/ =
T §—50i—00
for eachr=1,... k.
Proof. Let hj4 be the smallest of the numbers /7, in Corollaries 1.19 and 1.27 and in Lemma 3.1.

In particular, m>h;, by Lemma 3.1(1).

For each i€ Z™T sufficiently large, choose z; € By so that

|dz,us| = sup [dug). (3.11)
z€B1
Since z=0 is the only point in B such that |d,u;| — 00, z; — 0 as i —» co. Thus, there exists
8o €RT such that Bg,(2;) C By for all i€ Z* sufficiently large. By Lemma 3.1(4) and (3.9), for all
i€ Z" sufficiently large there exists d; € (0, dg) such that

h
Eg(ui;B(si(zi)) =m-— ;’g . (3.12)

Define
YU = B50/5i — B by wz(w) =z +ow.

Since 0; — 0, (2) holds.
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For each i€ Z™ sufficiently large, let
v; = w;o;: Bsy s, — M.
Since u; is J-holomorphic and v; is biholomorphic onto its image, v; is J-holomorphic and
Ey(vi) = Bg(us; Bsy(21)) < Eg(w) <C VieZ".

Thus, by the rescaling procedure at the beginning of [5, Section 4.2], there exist a finite collection
wi,...,wy; € C of distinct points, a J-holomorphic map v: S? — M, and a subsequence of {u;},
still denoted by {u;}, such that w;o; converges to v uniformly in the C'*°-topology on compact
subsets of the complement of the nodes oo, w7, ..., w; in the sphere Sg attached at 0 € By and
the limit (3.10) exists and is at least hj4; see also the proof of Theorem 3.3 below. In particular,
(3) holds. Furthermore,

k k
B ‘= lim lim lim Eg(v;,B Bs( lim lm E(v;B
g(v)+;mr i fim tim B (vi, Br— U1 s(wr)) + Jim i B (vi; By () (3.13)
= lim lim Ey(vi, Bg) = lim lim By (u;, Brs, (2)) = m;

the last equality holds by (3.2).

We next show that u(0) =v(c0), i.e. that the bubble (S2,v) connects to (B, u) at z=0. Note that
d = 1 l d i+0), = 1li li lim dg(u;(z;+6),v;
9 (1(0),v(c0)) pim  lim g (u(zi+9),v(R)) m lim lim dg o (ui(2+6), vi(R))

= lim hm lim d (ui(zl-—i—&),ui(zi—{—R(Si))

R—00 6—0i—00
§R£nm5h£>102£n dlamg(uZ(Bg(zZ) BR(;i(zi))).

Along with (3.2), this implies that «(0) =v(c0).

Suppose v: S? — M is a constant map. By (3.13), k> 1 and so there exists w* € C such that
|dy=vi| —> 00 as i —>o00. By (3.11) and the definition of 1);, |dov;| > |dyv;| for all we C contained
in the domain of v; and so |dgv;| — 0o as i —> oco. By (3.10) and (3.12),

h
/
my = li lim E Bs) < 1 E B)=m—=-<m
0= 520113’100 (ulodjla 5) lm (ulowla 1) 9 <m,
and so k> 2, as claimed in (4). Since the amount of energy of v; contained in C— By approaches
hyg/2, as illustrated in Figure 5, there must be in particular a blowup point w* with |w*| =1,
though this is not material.

The above establishes Proposition 3.2 whenever k£ =0 by taking us|p1 = u and u\sg =wv. Since
mj.>hyg for every r, k=0if m<2h;,. If k>1, m| <m—h;, because E4(v)>h;4 if v is not constant
and k > 2 otherwise. Thus, by induction on [m/hy4] € ZT, we can assume that Proposition 3.2
holds when applied to {v;} on a small neighborhood of each w; € C with j=1,... k. This yields
a continuous map v; : X; — M from a tree of spheres ¥; such that v; is J-holomorphic on each
sphere and v;(co) =v(wj). Identifying oo in the base sphere of each X; with w} € S2, which has
been already attached to 0 € B}, we obtain a continuous map s : oo —> M with the desired
properties. O
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1 @ 50/5;

Figure 5: The energy distribution of the rescaled map v; in the proof of Proposition 3.2

Theorem 3.3 (Gromov’s Convergence). Let (M, J) be a compact almost complex manifold with
Riemannian metric g, ¥ be a compact Riemann surface, and u; : > — M be a sequence of J-
holomorphic maps. If liminf Eg(u;) <oo, there exist

(a) a compact nodal Riemann surface Yoo obtained from ¥ by identifying a point on each of £ trees
of spheres, for some £€Z=°, with distinct points 27, ..., 2; €N,

(b) a continuous map Uso : Yoo —> M which is J-holomorphic map on ¥ and on each of the
spheres,

(c) a subsequence of {u;} still denoted by {u;}, and

(d) for each zi,...,2z; €X.CYu, a biholomorphic map vj,;: Uj.; — U;, where Uj,; CC is an open
subset and U; > z7 is an open neighborhood,

such that
(1) Eg(us) = lim Ey(us),
11— 00
(2) u; converges to us uniformly in the C*°-topology on compact subsets of X—{z{,..., 2},
(3) C =2, Uj,; for every j=1,...,¢,

(4) u;ioj,; converges to us uniformly in the C>-topology on compact subsets of the complement

of the nodes oo, Wigse - ,w;f,kj in the sphere SJ2 attached at zj* ey,

(5) if uso|g2 is constant, 5]2 contains at least three nodes in total;

J
(6) (d) applies with ({ui}, 27, ..., 2;) replaced by ({uiotj;i}t, wjq,. .. ,w;f;kj) for each j=1,... L.
Proof. Let hj4 be the smallest of the numbers /7, in Corollaries 1.19 and 1.27 and in Lemma 3.1.
By the rescaling procedure at the beginning of [5, Section 4.2],

lim sup ‘dz*u} =00 — lim limsup F, (B(;(Z*)) > hyg,
1—00 —0 j—00
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whenever z* €X. Since E4(u;) <C for all i, there exist a finite collection zj,...,2; € ¥ of distinct
points and a subsequence of {u;}, still denoted by {u;}, such that |du;| is uniformly bounded on
compact subsets of ¥ —{z],...,2;} and the limit

=1 lim FE(u;; Bs(z; 14
M= i (s Bs (25)) (3.14)
exists for each j=1,...,¢ and is at least /4. By the first property and Theorem 2.1, a subsequence
of {u;}, still denoted by {u;} converges uniformly in the C*°-topology on compact subsets of ¥ —
{z1,..., 2/} to a J-holomorphic map u. Furthermore,
4 ¢ 4
By(u)+ 3 _my = lim Tim Ey(u; 3= Ba(z)) + ) lim Tm By (us; Bs())
7j=1 7j=1 7j=1 (315)
i i Eglue) = limy By (i)

Let Uy, ...,U; be open neighborhoods of z7,..., z;, respectively, such that Ujl ﬂUjQ =() whenever
J17#J2-

For each j =1,...,¢, Proposition 3.2 provides a continuous map v; : ¥; — M from a tree of
spheres X such that v; is J-holomorphic on each sphere and v;(c0) =u(z}). Identifying oo in the
base sphere of each 3; with z]* € X, we obtain a continuous map s : 2o —> M with the desired
properties. O

4 An example

We now give an example illustrating Gromov’s convergence in a classical setting.

Let n€Z*, with n>2, and P?"~!=CP"~!. Denote by ¢ the positive generator of Hy(P" 1;Z)~Z,
i.e. the homology class represented by the standard P! CP"~!. A degree d map f: P! —P" !is a
continuous map such that f.[P!]=dl. A holomorphic degree d map f: P1 —P"~! is given by

[u,v] — [Ri(u,v),..., Rn(u,v)]

for some degree d homogeneous polynomials Ry, ..., Rq on C? without a common linear factor.
Since the tuple (AR1, ..., AR,,) determines the same map as (Ry,..., R,) for any A€ C*, the space
of degree d holomorphic maps f: P! —P"~! is a dense open subset of

:{n,d = ((Symd(c2)n _ {0})/((:* ~ ]P)(dJrl)nil .

Suppose fj: P — P! is a sequence of holomorphic degree d maps determining the equivalence
classes of n-tuples of homogeneous polynomials

Rk - [Rk;la R Rk;n] € :{nvd

without a common linear factor. Passing to a subsequence, we can assume that [Ry] converges to
some

R = [(vlu—ulv)dl (O —umv)m Sy, (vu—ug ) (vmu—umv)den] €Xpa, (41)
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with dy,...,d, €Z" and homogeneous polynomials
S=[S1,...,5)] € X4
without a common linear factor and with do € Z=°. By (4.1),

do+di+...+d,, =d.

Suppose zp € C—{uyi/v1,. .., Un/vn} and S, (20,1) #0 for some ig=1,...,n (such iy exists, since
S1,...,8, do not have a common linear factor). This implies that Ry, (z0,1) # 0 for all £ large
enough and so

L Rea ) Jm Rei(# 1) u)d L (o —um)mSi(z, 1) Si(z,1)

im = = —

k—oo Rpio(2,1)  Hm Rpio(2,1)  (viz—up)® ... (Umz—um)® S (2,1)  Siy(z,1)
k— o0

for all i=1,...,n and z close to zy. Furthermore, the convergence is uniform on a neighborhood
of z9. Thus, the sequence f, C*-converges on compact subsets of P —{[u1,v1],. .., [tm,vm]} to
the holomorphic degree dy map ¢: P! — P*~! determined by S.

Let w be the Fubini-Study symplectic form on P"~! normalized so that (w,f)=1. For each § >0
and j=1,...,m, denote by Bs([u;j,v;]) the ball of radius § around [uj,v;] in P! and let

m
— | Bs(luj,vy))
j=1
For each j=1,...,m, let
. . >0
Wi, 0] ({f5}) = Jim T E(fil g (u, 0,)) € R

be the energy sinking into the bubble point [u;,v;]. By Gromov’s Compactness Theorem, the
number my,, , 1({fx}) is the value of w on some element of Hy(P"~1;7), i.e. an integer. Below we

show that m[uj,vj]({fk}) =d;

Since the sequence f, C*°-converges to the degree dy map g: P! — P"~! on compact subsets of
P —{[u1,v1], - - -, [tm, U]},

do = {w,dol) = B(g) = lim E(glp) = lim  Tim E(felp).

Thus,
Z [uJ7UJ]({fk} Z llmo llm E(fk}|B§(u],'U]D) = 51im0 llm E(fk‘ U Bﬁ([ujﬂ)]]))
j=1
;nﬁm (B~ B(filey)) =d—do=dr ...+
In particular, my,, . 1({fx})=d; if m=1, no matter what the “residual” tuple of polynomials S is.

In the next paragraph we show that this mass identity holds for m>1 as well.
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By the assumption on Ry, there exist Ag.;.;., € C with k€ 7t large, i=1,...,n, j=1,...,m, and
p=1,...,d; and tuples
S, = [Sk;h S ;Sk;n] € %mdo

of polynomials without a common linear factor such that

lim S, =S Lm Apyoip =1 Vi,j
11m k ) kinoo kiisgip 1, 7,D,

k—o0
m  dj
Ry (u,v) = H H(Uj“_)‘k;i;j;pujv) - Skii(u,v) YV ki,
j=1p=1
For each jo=1,...,m, let
Tjo = [Tiosts - - Tjon] € Xnia—ay,
be a tuple of polynomials without a common linear factor. If in addition, :=1,...,n, e€R, and
keZt, let
m
Si;jo;e(u7 v) = H (vju_ujv)dj - Si(u,v) + eTjo;i(ua v), i=1,...,n,
J#Jo
dj,
Risivjise (1, 0) = Risi(,0) + € [ [ (Wjou=Aksisjorptio?) - Tioui(w,0), i =1,...,n.
p=1
The polynomials in each of the above two sets have no common linear factor for all i1 =1,...,n,

e € R sufficiently small, and k sufficiently large (with the conditions on € and k independent of each
other). We denote by fi.jo:e: P! —P"~! the holomorphic degree d map determined by the tuple

Rk;jo;e = [Rk;l;jo;ea sy Rk;n;jo;e] .

For § € R sufficiently small, the ratios

Riiijose(u,v) —14e Tjy;i(u, v)
Rk;i(u, ’U) m 4
71;[ Hl(vju_Ak;i;j;p“jU) + Shsi(u,v)
J#jo p=

converge uniformly to 1 on Bj([uj,,vj,]) as e—0, since the denominator in the last fraction does
not vanish on Bj([uj,, vj,]). Thus, there exists k* € Z* such that

‘dsz;jo;e‘

kol _q) =o.

lim sup sup
e—0 k>k* ZeB(S([uj() 7Uj()])

Thus, for any j=1,...,m,

Wiy} ({f}) = lim Tim B (fil gy 0p) = Jim Hm i B(fijiel By (u; 0,)

i
61—>0k 6—0 k—00e—0
= Jim N Tm B (Sl psugo0) = 10w 0 ({figed) = limdj = dj;

the second-to-last inequality above holds by the m =1 case considered above, since

lim Ry = [(vlu—ulv)dlsl;j;e, e (vlu—ulv)dlSn;j;e] € Xna
k—o0
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and the polynomials S1,j.,. .., Sn;j:c have no linear factor in common.

By Gromov’s Compactness Theorem, a subsequence of {fx} converges to the equivalence class of
a holomorphic degree dy map f: ¥ — P"!, where ¥ is a nodal Riemann surface consisting of
the component ¥y = P! corresponding to the original P! and finitely many trees of P!’s coming
off from ¥y; the maps on the components in the trees are defined only up reparametrization of
the domain. By the above, f|s, is the map g determined by the “relatively prime part” S of the
limit R of the tuples of polynomials. The trees are attached at the roots [uj, v;] of the common
linear factors vju—wujv of the polynomials in R; the degree of the restriction of f to each tree is
the power of the multiplicity d; of the corresponding common linear factor.

This example shows that there is a continuous surjective map
Moo (P <P, (1,d)) — Xna (4.2)

which restricts to [f,g] — [g o f71] on Mo o(P! x P~ L (1,d)). In particular, Gromov’s moduli
spaces refine classical compactifications of spaces of holomorphic maps P! — P"~!. On the other
hand, the former are defined for arbitrary almost Kahler manifolds, which makes them naturally
suited for applying topological methods. The right-hand side of (4.2) is known as the linear sigma
model in the Mirror Symmetry literature. The morphism (4.2) plays a prominent role in the proof
of mirror symmetry for the genus 0 Gromov-Witten invariants in [2] and [3]; see [4, Section 30.2].
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