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Abstract

We provide a treatment of transversality for J-holomorphic maps and the associated evaluation
maps and derivatives of arbitrary order from the generally overlooked viewpoint of Ivashkovich-
Shevchishin. In contrast to the usual approach, we establish these statements simultaneously
through a single application of a universal moduli space setup.
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1 Introduction

Gromov’s introduction [10] of J-holomorphic curves techniques into symplectic topology has rev-
olutionized this field and led to its numerous connections with algebraic geometry. The ideas put
forward in [10] have been further elucidated and developed in [16, 18, 22, 23, 15] and in many other
works. Chapters 2 and 4 of [18] concern two of the three fundamental building blocks of the subject
of J-holomorphic curves, the local structure of J-holomorphic maps and Gromov’s convergence for
sequences of J-holomorphic maps; an alternative systematic exposition of these two topics appears
in [33]. Chapter 3 and Sections 6.2 and 6.3 of [18], Section 4 of [22], and Section 3 of [23] deal with
the third fundamental building block of the subject, transversality issues for J-holomorphic maps
that are relevant to constructing pseudocycles out of moduli spaces of these maps. The present
paper provides a streamlined and more general treatment of these issues. We adapt this treatment
to moduli spaces of real J-holomorphic maps in [34], providing a geometric interpretation of the
positive-genera real Gromov-Witten invariants of [5] in semi-positive cases.

1.1 Preview of the main statements

We begin by formulating the main statements of this paper in the most basic case of J-holomorphic
maps from connected domains. The g “ 0 case of Theorem 1.1 and the pg,mq “ p0, 0q case of
Theorem 1.2(2) below include the main conclusions of [18, Chapter 3]. The analogues of these
statements for J-holomorphic maps from disconnected domains, provided by Theorems 1.3 and 1.4
in Section 1.2, imply the main conclusions of [18, Sections 6.2,6.3]. We illustrate the general ap-
proach behind the proofs of the main statements in this paper on the special cases of Theorems 1.1
and 1.2 in Section 1.3.

We call a subset pJ of a topological space J ubiquitous if pJ contains a countable intersection of
open dense subsets of J (the term used in [18] is residual). We discuss the significance of this
notion in the contexts such as those of the main theorems of this paper in Section 3.1.

For a manifold X, denote by J pXq the space of almost complex structures J on X with the
C8-topology. If in addition ω is a symplectic form on X, let

JωpXq Ă J 1
ωpXq Ă J pXq (1.1)

be the subspaces of ω-compatible and of ω-tamed almost complex structures. For g, kPZě0,
APH2pX;Zq, and J PJ pXq, denote by M˚

g,kpA; Jq the moduli space of equivalence classes of simple

degree A J-holomorphic maps u from smooth connected compact genus g Riemann surfaces pΣ, jq
with k (distinct) marked points to X. For each i“1, . . . , k, let

evi : M
˚
g,kpA; Jq ÝÑ X and Li ÝÑ M˚

g,kpA; Jq

be the evaluation map and the universal tangent line bundle, respectively, for the i-th marked point;
see Section 2.3.

Theorem 1.1. Let X be a 2n-manifold. There exists a ubiquitous subset pJ ĂJ pXq such that the
moduli space M˚

g,kpA; Jq is a smooth oriented manifold of dimension

dimRM˚
g,kpA; Jq “ 2

`@
c1pTXq, A

D
`pn´3qp1´gq`k

˘
(1.2)
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and evi is a smooth map for all

g, kPZě0, i“1, . . . , k, APH2pX;Zq, J P pJ . (1.3)

For every symplectic form ω on X, the same statement holds with J pXq replaced by JωpXq
and J 1

ωpXq.

Let ∇ be a connection in TX and Σ be a smooth surface. Given z P Σ and v P TzΣ, choose a
smooth curve

αv : p´δ, δq ÝÑ Σ, τ ÝÑ αvpτq, s.t. αvp0q “ z, α1
vp0q “ v. (1.4)

For a smooth map f : Σ ÝÑ X, denote by D∇
f,αv

the covariant derivative of sections of α˚
vf

˚TX

with respect to τ determined by ∇. For mPZ`, let

Dm
f v “ D∇

f,αv
. . .D∇

f,αvlooooooomooooooon
m´1

d

dτ
pf ˝αq

ˇ̌
ˇ
τ“0

P TfpzqX .

In particular, D1
fv “ dxfpvq is independent of the choices of ∇ and αv satisfying (1.4). If

D1
fv, . . . ,D

m´1
f v vanish, then Dm

f v is also independent of these choices. If in addition f is
pJ, jq-holomorphic for some J PJ pXq and jPJ pΣq, then

Dm
f

`
c ¨j v

˘
“ cm ¨J

`
Dm

f v
˘

@ cPC; (1.5)

this follows from [33, Corollary 3.6].

Let g, kPZě0, APH2pX;Zq, and J PJ pXq. For a tuple m”pmiqi“1,...,k in pZě0qk, define

Z˚
g,mpA; Jq “

 
rz1, . . . , zk, u : ΣÝÑXsPM˚

g,kpA; Jq : Dm
u v“0 @ mPZ`, mďmi,

vPTziΣ, i“1, . . . , k
(
.

(1.6)

By (1.5), the section

Dmi`1
i P Γ

`
Z˚
g,mpA; Jq;L

˚ bCpmi`1q
i bCev

˚
i pTX, Jq

˘
, (1.7)

Dmi`1
i vbm “ Dmi`1

u v @ ru, vsPLi,

is well-defined for every i“1, . . . , k.

Theorem 1.2. Let X be a 2n-manifold.

(1) There exists a ubiquitous subset pJ ĂJ pXq such that the space Z˚
g,mpA; Jq is a smooth oriented

submanifold of M˚
g,kpA; Jq of codimension n|m| and (1.7) is a smooth section transverse to the

zero set for all g, k, i, A, and J as in (1.3) and mPpZě0qk.

(2) If k PZ
ě0 and h : Y ÝÑXk is a smooth map from a smooth manifold, then pJ can be chosen

in (1) so that in addition the restriction of the smooth map

ev”ev1ˆ. . .ˆevk : M
˚
g,kpA; Jq ÝÑ Xk

to Z˚
g,mpA; Jq is transverse to h for all g, A, J and m as in (1).
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For every symplectic form ω on X, the same statements hold with J pXq replaced by JωpXq
and J 1

ωpXq.

Theorems 1.3 and 1.4 in Section 1.2 extend Theorems 1.1 and 1.2 to J-holomorphic maps from dis-
connected domains. They directly imply the same statements for J-holomorphic maps from nodal
domains, as well as for the more general GU domains introduced in [22]. Other special cases of
Theorems 1.3 and 1.4 of the closely related Theorems 2.5 and 2.6 include Lemma 7.5 in [11], Theo-
rems 1.1 and 1.2 in [20], Proposition A.1 in [26], Proposition 1.8 in [29], and Theorem 1.5(1) in [31].

The crucial new ingredient for the purposes of constructing pseudocycles out of moduli spaces of
stable J-holomorphic maps from positive-genus Riemann surfaces is the notion of inhomogeneous
perturbation ν of the B̄J -operator introduced in [22]; see Section 2.4. It in particular leads to
extensions of Theorems 1.3 and 1.4 to degree A“0 maps; see Theorems 2.5 and 2.6 in Section 2.5.

1.2 Transversality for J-holomorphic maps

Let X be a manifold and B be a manifold, possibly with boundary. Denote by

πX : BˆX ÝÑ X

the projection to the second component, by J pB;Xq the space of fiberwise complex structures on
the vector bundle π˚

XTX with the C8-topology, and by SymppB;Xq the space of smooth fiberwise
symplectic structures on π˚

XTX. For J PJ pB;Xq, ω P SymppB;Xq, and b PB, let Jb PJ pXq and
ωb PSymppXq be the associated almost complex and symplectic structures onX. For J˝ PJ pBB;Xq,
define

JJ p̋B;Xq “
 
J PJ pB;Xq : Jb “pJ˝qb @ bPBB

(
. (1.8)

For ωPSymppB;Xq, denote by

JωpB;Xq Ă J 1
ωpB;Xq Ă J pB;Xq

the subspaces of ω-compatible and of ω-tamed almost complex structures. For J˝ PJωpBB;Xq and
J˝ PJ 1

ωpBB;Xq, define

Jω;J p̋B;Xq Ă JωpB;Xq and J 1
ω;J p̋B;Xq Ă J 1

ωpB;Xq,

respectively, similarly (1.8).

For χ P Z, k P Z
ě0, APH2pX;Zq, and J P J pXq, denote by M‚˚

χ,kpA; Jq the moduli space of
equivalence classes of simple degree A J-holomorphic maps u from smooth, possibly disconnected,
compact Riemann surfaces pΣ, jq of holomorphic Euler characteristic χ with k (distinct) marked
points to X. For a manifold B, possibly with boundary, and J PJ pB;Xq, let

M‚˚
χ,kpA; Jq “

 
pb, rusq : bPB, rusPM‚˚

χ,kpA; Jbq
(
.

This space inherits a topology from spaces of smooth maps from smooth domains. For each iPrks,
denote by

evi : M
‚˚
χ,kpA; Jq “ÝÑ X and Li ÝÑ M‚˚

χ,kpA; Jq (1.9)
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the natural evaluation map and the universal tangent line bundle, respectively, for the i-th marked
point; these are pullbacks from one of the factors. For a tuple m”pmiqiPrks in pZě0qk, define

Z‚˚
χ,mpA; Jq Ă M‚˚

χ,kpA; Jq and Dmi`1
i P Γ

`
Z‚˚
χ,mpA; Jq;L

˚ bCpmi`1q
i bCev

˚
i pTX, Jq

˘
(1.10)

as in (1.6) and (1.7) with M‚˚
χ,kpA; Jq in place of M˚

g,kpA; Jq.

Theorem 1.3. Let X be a 2n-manifold. For every manifold B˝, there exists a ubiquitous subset

pJ pB˝;XqĂJ pB˝;Xq (1.11)

with the following properties.

(0) If B1
˝ , B

2
˝ , . . . are the topological components of B˝, then

pJ pB˝;Xq “ pJ pB1
˝ ;Xq ˆ pJ pB2

˝ ;Xq ˆ . . . .

(1) For all χPZ, kPZ` APH2pX;Zq, and J P pJ pB˝;Xq,

(1a) M‚˚
χ,kpA; Jq is a smooth manifold of dimension

dimRM‚˚
χ,kpA; Jq “ dimRB˝`2

`@
c1pTXq, A

D
`pn´3qχ`k

˘
,

(1b) Z‚˚
χ,mpA; Jq is a smooth submanifold of M‚˚

χ,kpA; Jq of codimension 2n|m|, and the section

Dmi`1 in (1.10) is smooth and transverse to the zero set for all mPpZě0qk and iPrks.

(2) For all J˝ P pJ pB˝;Xq and manifolds B with boundary BB“B˝, there exists a ubiquitous subset

pJJ˝pB;XqĂJJ˝pB;Xq (1.12)

satisfying the properties in (1) with B˝ and manifold replaced by B and manifold with boundary
so that

B M‚˚
χ,kpA; Jq “ M‚˚

χ,kpA; J˝q, BZ‚˚
χ,mpA; Jq “ Z‚˚

χ,mpA; J˝q . (1.13)

(3) An orientation on B˝ determines orientations on all spaces in (1) so that (2) holds in the
category of oriented manifolds.

For every ωPSymppB;Xq, the same statements hold with J replaced by Jω and J 1
ω.

Theorem 1.4. Let X and B˝ be as in Theorem 1.3. If kPZě0 and h : Y ÝÑXk is a smooth map
from a manifold, there exists a ubiquitous subset as in (1.11) satisfying (1) in Theorem 1.3 and the
following properties.

(1) For all χ, A, mPpZě0qk, and J P pJ pB˝;Xq as in Theorem 1.3(1), the properties (1a) and (1b)
in Theorem 1.3 are satisfied and the map

ev”ev1ˆ. . .ˆevk : Z
˚
χ,mpJq ÝÑ Xk (1.14)

is transverse to h.

(2) For all J˝ and B as in Theorem 1.3(2), there exists a ubiquitous subset as in (1.12) satisfying
the conditions in Theorem 1.3(2) and the additional condition in (1) above.

For every ωPSymppB;Xq, the same statements hold with J replaced by Jω and J 1
ω.

The ubiquitous subsets as in (1.11) and (1.12) provided by Theorem 1.4 depend on h. In typical
applications of Theorems 1.3 and 1.4, B˝ is either a one-point set or a two-point set and B“r0, 1s.
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1.3 Preview of the proofs

Let X, g, k, and A be as in Theorem 1.1. Denote by rB˚
g pAq the space of triples pΣ, j, uq consisting

of a smooth connected compact Riemann surface pΣ, jq and a simple degree A map ΣÝÑX with
the C8-topology. For g“0, we always take pΣ, jq to be S2 “P

1 with its standard complex structure.
For g “ 1, we allow pΣ, jq to vary in the space of pairs arising as the quotients C{Λτ with Λτ ĂC

denoting the lattice spanned by 1 and τ PC such that Im τ ą0. For g“2, we fix Σ and allow j to
vary in the Teichmüller space Tg determined by Σ. We denote by T0 and T1 the one-point space
and the open upper-half plane HĂC, respectively.

For pΣ, j, uqP rB˚
g pAq, let

Γpuq”Γ
`
Σ;u˚TX

˘
, Γ0,1

J,j puq”ΓpΣ; pT ˚Σ, jq0,1bCu
˚pTX, Jq

˘
,

B̄J,ju “
1

2

`
du`J ˝du˝j

˘
P Γ0,1

J,j puq .

The moduli space M˚
g,kpA; Jq of Theorem 1.1 is a smooth manifold of the expected dimension (1.2)

if the linearization

DJ ;pj,uq : Tpj,uq
rB˚
g pAq “ TjTg‘Γpuq ÝÑ Γ0,1

J,j puq (1.15)

of the B̄J -operator on the space rB˚
g pAq at pΣ, j, uq is surjective whenever B̄J,ju “ 0; see Proposi-

tion 4.2.

The standard way of establishing Theorem 1.1 is to show that the linearization

DJ ;pj,uqB̄ : TpJ,j,uq

`
J ˆ rB˚

g pAq
˘

“ TJJ ‘Tpj,uq
rB˚
g pAq ÝÑ Γ0,1

J,j puq (1.16)

of the B̄-operator on the space J ˆ rB˚
g pAq at pJ ; j, uq is surjective for all elements of the universal

moduli space

UĂM˚
g pAq ”

 
pJ ; j, uqPJ ˆ rB˚

g pAq : B̄J,ju“0
(
. (1.17)

The restriction of (1.16) to Tpj,uq
rB˚
g pAq is (1.15). The surjectivity of (1.16) for every element

of (1.17) implies that

(S1) this subspace is an infinite-dimensional manifold,

(S2) the homomorphism (1.15) is onto for all pΣ, j, uq P rB˚
g pAq with B̄J,ju“ 0 if and only if J is a

regular value of the projection

π : UĂM˚
g pAq ÝÑ J , πpJ ; j, uq “ J, (1.18)

(S3) the subspace pJ of regular values of (1.18) is ubiquitous;

see Section 4.3.

The surjectivity of (1.16), established in the proof of [18, Proposition 3.2.1], is a consequence of the
ellipticity of the B̄J -operator and is obtained by explicitly showing that DJ ;pj,uqB̄pTJJ q covers the
cokernel of (1.15); see Lemma 3.1. The general principle behind the argument summarized in the
previous paragraph is captured by Proposition 4.2. This principle would have applied directly in
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the present situation if J and rB˚
g pAq were Banach manifolds (they are instead infinite-dimensional

manifolds locally modeled on Fréchet vector spaces of smooth maps). The standard approach to
deal with this issue is to replace J and rB˚

g pAq with their Cℓ and W
p
k -analogues, respectively;

see Section 3.4. The desired conclusion in the C8-category then follows via Taubes’s argument,
appearing in the proofs of [18, Theorems 3.1.6(ii),6.2.6(ii)] and captured by Proposition 4.5. An
alternative approach to dealing with the above issue, which stays in the C8-category, is due to
Floer; it is outlined in [18, Remark 3.2.7] and in the last two pages of [18, Section 3.4], which are
not used for anything else in [18].

For the constructions of GW-pseudocycles in [18, Section 6.6], [22, Section 2], and [23, Section 2]
and for many other purposes in GW-theory, it is useful to establish that the spaces M˚

γpJq of
equivalence classes of simple J-holomorphic maps from nodal domains of a fixed combinatorial
type γ are also smooth manifolds of the expected dimensions. The possible combinatorial types
are the connected genus g graphs γ whose vertices v are decorated by the elements gv PZě0 and Av

of H2pX;Zq; see Section 3.2. The vertices and edges of γ correspond to the irreducible components
and the nodes of the domains of the elements of M˚

γpJq. Each space M˚
γpJq is an open subset of

the preimage of a submanifold ∆γ of a Cartesian product Xγ under a map

evγ :
ź

v

M˚
gv ,Sv

pAv; Jq ÝÑ Xγ , (1.19)

where M˚
gv ,Sv

pAv; Jq is the moduli space of equivalence classes of simple degree Av J-holomorphic
maps uv from smooth connected compact genus gv Riemann surfaces pΣv, jvq with (distinct) marked
points indexed by the set Sv of the flags based at vertex v; see the beginning of Section 3.4. The
expected dimension of M˚

γpJq is

dimRM˚
γpJq “ dimRM˚

g,0pA; Jq ´ 2|γ|,

where g is the sum of the genus of the graph γ and of all the numbers gv assigned to the vertices
of γ, A is the sum of the homology classes Av assigned to these vertices, |γ| is the number of nodes
of γ, and the first term on the right-hand side is as in (1.2).

For a generic J , the map evγ in (1.19) is smooth. It is thus sufficient to show that evγ is transverse
to ∆γ for a still generic J . By the proof of Proposition 4.2, this is implied by the transversality of
the smooth map

evγ :
 `
J, pjv, uvqv

˘
P J ˆ

ź

v

rB˚
gv ,Sv

pAvq : pJ ; jv, uvqPUĂM˚
gv ,Sv

pAvq @ v
(

ÝÑ Xγ (1.20)

to ∆γ , where rB˚
gv ,Sv

pAvq and UĂM˚
gv ,Sv

pAvq are the degree Av genus gv Sv-marked analogues of the

configurations space rB˚
g pAq and the universal moduli space UĂM˚

g pAq in (1.17), respectively. This
in particular implies that the associated universal moduli space

UĂM˚
γ ”

 `
J, pjv, uvqv

˘
P J ˆ

ź

v

rB˚
gv ,Sv

pAvq :
“
pjv, uvqv

‰
PM˚

γpJq
(

(1.21)

is a smooth manifold.
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The transversality of (1.20) for the genus 0 nodal domains (thus, the genus of γ is 0 and gv “0 for
all v) is [18, Proposition 6.2.8]. Its proof is specific to the genus 0 case (though it is also applicable
to maps that are constant on some irreducible components). It combines the reasoning as in the
proof of [18, Proposition 3.2.1], which establishes the surjectivity of (1.16) in the g“0 case, with
[18, Theorem 6.3.1], according to which the differential of the evaluation map

evf : UĂM˚
gv ,Sv

pAvq ÝÑ X

is a submersion for every f P Sv. The proof of the latter applies the technical conclusion of [18,
Lemma 3.4.3]. Less detailed versions of this approach in more general settings appear in Section 4
of [22] and in Section 3 of [23].

Theorem 1.2(1) is essentially [26, Proposition A.1]. The proof of the latter applies the approach
of [18] summarized above to the direct sum of the bundle sections Dm

i with mďmi and i“1, . . . , k
over the domain of the map evγ in (1.20) instead of the map evγ . The analogues of Theorem 6.3.1
and Lemma 3.4.3 of [18] in this situation are Lemma A.3 in [26] and Theorem 2.100 in [27], respec-
tively.

Propositions 2.3 and 4.1 in [20] imply the m“0 case of Theorem 1.2 with h being the inclusion of
the diagonal ∆ĂX2. Unlike the two-step proofs in [18, 22, 23, 26], the reasoning in [20] obtains
the relevant analogues of the universal moduli space (1.21) in one step as the preimages of Banach
submanifolds by transverse maps. However, this approach does not extend beyond the m“0 case
of Theorem 1.2, as the relevant maps would no longer be transverse.

We follow a completely different approach in showing that the analogues U rZ˚
γ;m of the universal

moduli spaces (1.21) relevant to Theorems 1.1-1.4 are cut out transversely. For pΣ, j, uqP rB˚
g pAq, a

finite tuple z”pzf qfPS of points on Σ, and a tuple m”pmf qfPS of nonnegative integers, let

Γmpu; zq “
 
ξPΓpuq : ξpzf q“0, ∇mξ|zi “0 @ m“1, . . . ,mf , f PS

(
,

Γ0,1
J,j;mpu; zq “

 
ηPΓ0,1

J,j puq : ∇m´1η|zi “0 @ m“1, . . . ,mf , f PS
(
.

It is immediate that the C8-analogues rB˚
γ;m of the moduli spaces U rZ˚

γ;m (i.e. before imposing

B̄ condition) are infinite-dimensional manifolds; see Lemma 3.3. The smoothness of U rZ˚
γ;m then

follows from the surjectivity of the analogue of (1.16) over U rZ˚
γ;m for each element pJ ; pjv, uvqvPSvq

of U rZ˚
γ;m. The latter is in turn the case if the image under DpJ ;jv ,uvqB̄ of the subspace of TJJ

consisting of infinitesimal deformations of J supported in an arbitrarily small open subset of X
intersecting the image uvpΣvq of each component uv of u covers the cokernel of the restriction

DJ ;pjv ,uvq : Γmvpuv; zvq ÝÑ Γ0,1
J,jv;mv

puv; zvq (1.22)

of the homomorphism DJ ;pjv ,uvq as in (1.15) for every v, where zv is the tuple of marked points
carried by uv (which includes the nodes of the domain Σ of u carried by Σv) and mv is an associated
tuple of nonnegative integers; see the proof of Proposition 3.5.

In complex geometry, a restriction as in (1.22) corresponds to an operator on the sections of the
vector bundle

u˚
vpTX, JqbCOΣv

ˆ
´

ÿ

fPS

mfzf

˙
ÝÑ Σv, (1.23)
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where the OΣv factor above is the holomorphic line bundle determined by the divisor ´
ÿ

fPS

mfzf

in Σv; see [9, Section 1.1]. The twisting construction of [24, Lemma 2.4.1] extends this classical
correspondence to generalized Cauchy-Riemann operators over Riemann surfaces as in (1.15). By
Serre Duality [12, Lemma 2.3.2], the cokernel of a restriction as in (1.22) is then isomorphic to
the dual of the kernel of the formal adjoint operator D˚

J ;pjv ,uvq on the p1, 0q-forms that may now
have poles at the points zf ; see Proposition 4.9. This is immaterial for pairing such forms with the
infinitesimal deformations of J , as done in the proof of Proposition 3.2.1 in [18], provided they are
supported away from uvpzf q. Thus, the same argument applies to the restricted operator (1.15);
see Lemma 3.1.

In summary, our approach to Theorems 1.1-1.4 involves the appearance of only one universal moduli
space. Similarly to the arguments in [18, 20, 22, 23, 26], it runs off the “local universal transver-
sality” of Lemma 3.1. The proof of the “local universal transversality” (in all cases) depends on
the ellipticity of a generalized Cauchy-Riemann operator and on Serre Duality for such an oper-
ator. In contrast to [18, 20, 22, 23, 26], we obtain “local universal transversality” for generalized
Cauchy-Riemann operators on all twistings of u˚TX as in (1.23), instead of just on u˚TX. This
results in no additional complications and avoids the delicate arguments on local deformations of
J-holomorphic maps that underpin the proofs of [18, Theorem 6.3.1] and [26, Lemma A.3].

The complications in constructing GW-pseudocycles in positive genera that arise from J-holomorphic
maps that are constant maps on some irreducible components of the domain are avoided in [22, 23]
by contracting such irreducible components and producing a so-called GU map. The domains
of these maps are Riemann surfaces whose singular points may contain more than two smooth
branches; see Sections 2.1 and 2.3. Our approach for establishing Theorems 1.1-1.4 readily extends
to spaces of GU maps of a fixed combinatorial type via the “local universal transversality” of
Lemma 3.2; see Theorems 2.5 and 2.6.

1.4 Outline and acknowledgments

The relevant notation for the moduli spaces of complex curves and for their covers is set up in
Section 2.2. Terminology concerning maps from singular Riemann surfaces is defined Section 2.3.
Section 2.4 introduces a version of Ruan-Tian perturbations. We define the spaces

M˚
γ;γ0,̟

pJ, νq Ă M:˚
γ;γ0,̟

pJ, νq Ă Mγ;γ0,̟pJ, νq

of basic and reduced GU maps of a fixed combinatorial type and state analogues of Theorems 1.3
and 1.4 for them in Section 2.5. These analogues are proved in Sections 3.3 and 3.4. The first of
these sections introduces suitable deformation-obstruction settings and then shows that the defor-
mations of Ruan-Tian pairs pJ, νq suffice to cover the obstruction space in all relevant cases; see
Lemmas 3.1 and 3.2. By Section 3.4, Lemmas 3.1 and 3.2 ensure the smoothness of the universal
moduli space of basic pJ, νq-maps of a fixed combinatorial type. The latter implies the smoothness
of the corresponding space of pJ, νq-maps for a fixed pair pJ, νq; see Proposition 4.4. This then
concludes the proof of Theorems 2.5 and 2.6.

The proof of Theorems 1.3 and 1.4, which we omit, is a simplified version of the proof of Theo-
rems 2.5 and 2.6. In particular, it does not require Lemma 3.2. Theorems 1.3 and 1.4 are essentially
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the Ver0 “H case of Theorems 2.5 and 2.6 (this case is not formally admissible in the terminology
of the two theorems).

The present paper grew out of the author’s desire for a systematic treatment of transversality issues
arising in various settings in the theory of J-holomorphic curves, including the common ones as
in [18, 22, 23] and the more specialized one in [5, 11, 14, 20, 26, 29, 31]. He would like to thank
P. Georgieva, J. Starr, and C. Wendl for enlightening discussions that influenced the preparation
of the present paper.

2 Spaces of pJ, νq-maps

The Ruan-Tian perturbations ν used to regularize the Cauchy-Riemann equation B̄J,ju“0 for maps

into an almost complex manifold pX, Jq are sections of certain bundles over rUg,kˆX, where rUg,k

is the universal curve (2.8) over a finite cover ĂMg,k of Mg,k as in Definition 2.1 with S “ rks.

Unfortunately, the total space of rUg,k in general has singularities around the nodal points of the
fibers of π of the from

 
pt, x, yqP C

3 : xy“ tm
(

ÝÑ C, pt, x, yq ÝÑ t;

see the proof of [1, Proposition 1.4]. This causes some difficulty in defining notions of smoothness
for bundle sections over rUg,kˆX. The approach of [23, Section 2] to deal with this issue is to embed
the universal curve (2.8) into some P

N . Following a suggestion of P. Georgieva, we bypass such an
embedding by using perturbations supported away from the nodes as in [15].

The notions of marked nodal and GU Riemann surfaces are introduced in Section 2.1. The topol-
ogy of the Deligne-Mumford moduli space Mg,S of stable genus g S-marked nodal curves and cov-

ers ĂMg,k of Mg,k are described in Section 2.2. We introduce GU maps to a manifold in Section 2.3
and Ruan-Tian perturbations in the first half of Section 2.4. In the second half of Section 2.4, we
define notions of a GU pJ, νq-map and moduli spaces of pJ, νq-maps in the spirit of [23, Section 3].
In Section 2.5, we define spaces of GU pJ, νq-maps of a fixed combinatorial type and relax the
degree restriction in the statements of Theorems 1.3 and 1.4; see Theorems 2.5 and 2.6.

2.1 GU Riemann surfaces

A (smooth) Riemann surface or complex curve is a pair pΣ, jq consisting of a compact smooth two-
dimensional manifold Σ (without boundary) and a complex structure j in the fibers of TΣ. A nodal

Riemann surface is a pair pΣ, jq obtained from a Riemann surface prΣ, jq by identifying pairs of dis-
tinct points in a finite subset rSΣ Ă rΣ (with each point of rSΣ identified with precisely one other point
of rSΣ); see Figure 1. A GU Riemann surface is a pair pΣ, jq obtained from a Riemann surface prΣ, jq
by identifying each point in a finite subset rSΣ Ă rΣ with at least one other point of rSΣ. In both
cases, the pair prΣ, jq is called the normalization of pΣ, jq.

An irreducible component of pΣ, jq is the image of a topological component of rΣ under the quotient
projection

qΣ : rΣ ÝÑ Σ . (2.1)
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Figure 1: Nodal Riemann surfaces of (arithmetic) genera 1 and 2, respectively

We call the images of the points of rSΣ under this map the lumps of Σ. Each lump joins two or
more smooth branches. A lump in a nodal surface joins precisely two smooth branches and is thus
a node in the usual sense. We denote the set of lumps of a GU Riemann surface pΣ, jq by SΣ and
its complement by Σ˚. The (arithmetic) genus of a GU Riemann surface pΣ, jq is the number

apΣq “
2 ´ χprΣq

2
`
ˇ̌ rSΣ

ˇ̌
´
ˇ̌
SΣ

ˇ̌
, (2.2)

where χprΣq is the Euler characteristic of rΣ.

An equivalence between GU Riemann surfaces pΣ, jq and pΣ1, j1q is a homeomorphism h : ΣÝÑΣ1

induced by a biholomorphic map rh from prΣ, jq to prΣ1, j1q. A GU map u between GU Riemann
surfaces pΣ, jq and pΣ1, j1q is a holomorphic map ru from prΣ0, jq, where rΣ0 is a union of topological
components of rΣ, to prΣ1, j1q such that the restriction of ru to every topological component of rΣ0 is
not constant. We call the topological components of the closure of rΣ´rΣ0 the contracted components
of u. Such a map is of degree 1 if |ru´1pz1q|“1 for every z1 P rΣ1 and ru´1prSΣ1qĂ rSΣ. A GU morphism

between GU Riemann surfaces pΣ, jq and pΣ1, j1q is a continuous map u : Σ ÝÑ Σ1 such that the
restriction of u to the union Σ0 of the irreducible components of Σ on which u is not constant
is induced by a GU map. We say that such a morphism is of degree 1 if its restriction to Σ0 is
induced by a degree 1 GU map. We call it a contraction if in addition for every z1 PΣ1 the subset
u´1pz1qĂΣ is either a point or a connected GU Riemann surface of genus 0.

Let S be a finite set. A genus g S-marked GU Riemann surface is a tuple

C ”
`
Σ, j, pziqiPS

˘
, (2.3)

where pΣ, jq is a GU Riemann surface of genus g and zi P rΣ. A genus g S-marked nodal Riemann

surface is a genus g S-marked GU Riemann surface as in (2.3) such that pΣ, jq is a nodal Riemann
surface and zi R rSΣ are distinct points. Since the restriction of (2.1) to rΣ´rSΣ is a homeomorphism
onto Σ˚, it is customary to view the marked points zi of a nodal Riemann surface as distinct points
of Σ˚. It is also common to index the marked points by the sets

rks ”
 
iPZ` : iďk

(
, kPZě0,

but allowing arbitrary finite indexing sets is often more convenient.
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An equivalence between a genus g S-marked GU Riemann surface C as in (2.3) and another genus g
S-marked GU Riemann surface

C1 ”
`
Σ1, j1, pz1

iqiPS
˘

(2.4)

is an equivalence h between the GU Riemann surfaces pΣ, jq and pΣ1, j1q such that rhpziq“z1
i for

all iPS. We denote by AutpCq the group of automorphisms, i.e. self-equivalences, of a genus g

S-marked GU Riemann surface C. Such a Riemann surface is called stable if AutpCq is a finite
group.

An S-marked GU map u between S-marked GU Riemann surfaces C and C1 as above (not nec-
essarily of the same genus) is a GU map u between the GU Riemann surfaces pΣ, jq and pΣ1, j1q
so that rupziq“z1

i for all iPS such that zi PDompruq and z1
i PruprSΣXDompruqq for all iPS such that

zi RDompruq. An S-marked GU morphism between C and C1 is a GU morphism u between pΣ, jq and
pΣ1, j1q such that upqΣpziqq“qΣ1pz1

iq for all iPS.

If rΣ0, . . . , rΣN is a partition of rΣ into unions of topological components so that Σr ” qΣprΣrq is
disjoint from Σs for r, sPrN s distinct, then

apΣq “
Nÿ

r“0

apΣrq `
Nÿ

r“1

´ˇ̌
q´1
Σ pΣ0qXrΣr

ˇ̌
´1

¯
. (2.5)

If u is a degree 1 GU morphism from a connected GU surface pΣ, jq to pΣ1, j1q, rΣ0 Ă rΣ is the domain
of the holomorphic map ru as above,

SΣ0
” tzPΣ0 : |q´1

Σ pzqXrΣ0|ě2
(

are the lumps of Σ0, and Σ1, . . . ,ΣN ĂΣ are the topological components of qΣprΣ́ rΣ0q, then

apΣ1q “apΣ0q `
`
|SΣ0

|´|upSΣ0
q|
˘

`
Nÿ

r“1

ˇ̌
qΣprΣ0qXqΣprΣrq´SΣ0

ˇ̌
´
ˇ̌
upΣ1Y. . .YΣN q´upSΣ0

q
ˇ̌
.

(2.6)

If for every z1 PΣ1 the subset u´1pz1qĂΣ is connected, then

ˇ̌
upΣ1Y. . .YΣN q´upSΣ0

q
ˇ̌

“
ˇ̌ 
rPrN s : qΣprΣ0qXqΣprΣrqXSΣ0

“H
(ˇ̌
.

If Σ1 is nodal (in addition to u being a morphism), then

ˇ̌
upSΣ0

q
ˇ̌

“
ˇ̌
SΣ0

ˇ̌
,

ˇ̌
qΣprΣ0qXqΣprΣrqXSΣ0

ˇ̌
ď 1 @ rPrN s.

Combining the observations in the last two sentences with (2.5) and (2.6), we conclude that
apΣq“apΣ1q if u is a contraction to a nodal Riemann surface pΣ1, j1q.

From the previous sentence, we obtain the following. If u is an S-marked contraction from a
connected S-marked nodal Riemann surface C to another S-marked nodal Riemann surface C1,
then apCq“apC1q and every contracted topological component Σr of u is a genus 0 Riemann surface
which shares one or two nodes with the non-contracted part Σ0 of u and carries at most one marked
point zi. If Σr does carry a marked point, then it shares precisely one node with Σ0.
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0 λ20 λ10

∆

U

π

z˚ z˚

Σ8 Σλ20
Σλ10

Figure 2: A complex-geometric presentation of a flat family of deformations of C8 “π´1p0q and a
differential-geometric presentation of these Riemann surfaces.

2.2 Moduli spaces of nodal Riemann surfaces

Let C be a genus g S-marked nodal Riemann surface as in (2.3). A flat family of deformations

of C is a tuple pπ, psiqiPSq, where π : U ÝÑ∆ is a holomorphic map from a complex manifold to a
neighborhood ∆ĂC

N of 0 and si : ∆ÝÑU are holomorphic sections of π, such that

‚ Σλ ”π´1pλq is a nodal Riemann surface and sipλqPΣ˚
λ are distinct points for each λPCN ,

‚ π´1p0q“pΣ, jq and sip0q“zi for each iPS,

‚ π is a submersion outside of the nodes of the fibers of π,

‚ for every λ˚ ” pλ˚
1 , . . . , λ

˚
N q P ∆ and every node z˚ P Σλ˚ , there exist i P rN s with λi “ 0,

neighborhoods ∆λ˚ of λ˚ in ∆ and Uz˚ of z˚ in U , and a holomorphic map

Ψ: Uz˚ ÝÑ
 `

pλ1, . . . , λN q, x, y
˘

P∆λ˚ ˆC
2 : xy“λi

(

such that Ψ is a homeomorphism onto a neighborhood of pλ˚, 0, 0q and the composition of Ψ
with the projection to ∆λ˚ equals π|Uz˚ .

Figure 2 shows such a family from two perspectives.

A sequence of genus g S-marked nodal Riemann surfaces Cr converges to a genus g S-marked
nodal Riemann surface C if there exist a flat family of deformations of C as above and λr P ∆ for
all r sufficiently large such that λr ÝÑ 0 as r ÝÑ 8 and the genus g S-marked nodal Riemann
surface pπ´1pλrq, psipλrqqiPSq is equivalent to Cr. This in particular topologizes the set Mg,S of
the equivalence classes of stable connected genus g S-marked nodal Riemann surfaces. By [13,
Theorem 2.7], Mg,S

‚ is compact and Hausdorff in the resulting topology,

‚ contains the subset Mg,S of equivalence classes of stable connected genus g S-marked smooth
Riemann surfaces as an open subspace, and

‚ carries a natural complex orbifold structure of dimension

dimCMg,S “ 3g´3 ` |S|.
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If 2g`|S|ě3, there is a forgetful morphism

fg,S : Ug,S “Mg,S\t`u ÝÑ Mg,S ;

it drops the extra marked point and contracts the unstable irreducible component(s) of the result-
ing curve if necessary. This morphism determines the universal family over Mg,S . For k PZě0, we
denote by Mg,k the moduli space Mg,rks and by Ug,k its universal family Ug,rks.

For a tuple D ” pg1, S1; g2, S2q consisting of g1, g2 P Z
ě0 with g“g1`g2 and S1, S2 Ă S with

S“S1\S2, denote by
MD Ă Mg,S

the closure of the subspace of marked curves with two irreducible components Σ1 and Σ2 of genera g1
and g2, respectively, and carrying the marked points indexed by S1 and S2, respectively. Let

ιD : Mg1,S1\t`uˆ Mg2,S2\t`u ÝÑ Mg,S

be the natural immersion with image MD (it identifies the two extra marked points into a node).
We denote by Divg,S the set of tuples D as above.

Definition 2.1. Suppose gPZě0 and S is a finite set so that 2g`|S|ě3. Let

p : ĂMg,S ÝÑ Mg,S (2.7)

be a finite branched cover in the orbifold category. A universal curve over ĂMg,S is a tuple

`
π : rUg,S ÝÑ ĂMg,S , psiqiPS

˘
, (2.8)

where rUg,S is a projective variety and π is a projective morphism with disjoint sections si, such that

for each rC P ĂMg,S the tuple pπ´1prCq, psiprCqqiPSq is a stable genus g S marked nodal Riemann surface

whose equivalence class is pprCq.

Definition 2.2. Suppose gPZě0 and S is a finite set so that 2g`|S|ě3. A cover (2.7) is regular if
it admits a universal curve and for every element D ” pg1, S1; g2, S2q of Divg,S there exist covers
ĂMgi,Si\t`u of Mgi,Si\t`u such that

`
Mg1,S1\t`uˆ Mg2,S2\t`u

˘
ˆpιD ,pq

ĂMg,S « ĂMg1,S1\t`uˆ ĂMg2,S2\t`u .

The moduli space M0,S is a complex manifold isomorphic to a blowup of pP1q|S|´3. It can be
embedded into pP1qN for N “Np|S|q sufficiently large; see [18, Appendix D]. The universal family
over M0,S satisfies the requirement of Definition 2.1. For g ě 2, [1, Theorems 2.2,3.9] provide
covers (2.7) satisfying the last requirement of Definition 2.2 so that the orbifold fiber product

π : rUg,k ” ĂMg,Sb
Mg,S

Ug,S ÝÑ ĂMg,S (2.9)

satisfies the requirement of Definition 2.1; see also [21, Section 2.2]. The same reasoning applies in
the g“1 case if S‰H.

14



2.3 Maps from GU domains

Let X be a manifold. If Σ is a connected smooth orientable surface, a C1-map u : ΣÝÑX is

‚ somewhere injective if there exists zPΣ such that u´1pupzqq“tzu and dzu‰0,

‚ multiply covered if u “ u1 ˝h for some connected smooth orientable surface Σ1, branched cover
h :ΣÝÑΣ1 of degree different from ˘1, and a C1-map u1 : Σ1 ÝÑX,

‚ simple if it is not multiply covered.

By [33, Proposition 4.11], a simple J-holomorphic map is somewhere injective.

Let ℓ P Z
` \ t8u and pΣ, jq be a GU Riemann surface pΣ, jq. A continuous map u : ΣÝÑX is

a Cℓ-map if the induced map ru : rΣ ÝÑ X is Cℓ. The degree of a Cℓ-map u : ΣÝÑX is the
homology class

A ” u˚rΣs “ ru˚rrΣs P H2pX;Zq. (2.10)

If in addition J PJ pXq, we define

B̄J,ju “
1

2

`
dru ` J ˝dru˝j

˘
:
`
T rΣ,´j

˘
ÝÑ ru˚pTX, Jq .

A Cℓ-map u : ΣÝÑX is J-holomorphic if B̄J,ju“0.

Let S be a finite set. An S-marked GU Cℓ-map is a tuple u” pC, uq, where C is an S-marked GU
Riemann surface as in (2.3) and u is a Cℓ-map from pΣ, jq. We call such a tuple

(1) reduced if the restriction of ru to every topological component of rΣ is simple and the images of
any two such components under ru are distinct;

(2) basic if u is reduced, zi P rΣ´ rSΣ for every iPS, and these points are distinct.

If pΣ, jq is an S-marked nodal Riemann surface, then a reduced Cℓ-map is basic. An S-marked
GU Cℓ-map u as above is equivalent to another S-marked Cℓ-map pC1, u1q if there exists an equiv-
alence h between C and C1 such that u“u1˝h. An S-marked GU Cℓ-map u is stable if its group of
automorphisms is finite.

For APH2pX;Zq, gPZ`, and J PJ pXq, let M:
g,SpA; Jq be the space of equivalence classes of stable

J-holomorphic maps from connected smooth genus g S-marked GU Riemann surfaces. It inherits
a topology from the space of smooth maps into X. Denote by

M
:˚
g,SpA; Jq,Mg,SpA; Jq Ă M

:
g,SpA; Jq

the subspaces of reduced maps and of maps from domains with distinct marked points. Let

M˚
g,SpA; Jq ” M

:˚
g,SpA; JqXMg,SpA; Jq Ă M

:
g,SpA; Jq

the subspaces of basic maps. For each iPS, let

evi : M
:
g,SpA; Jq ÝÑ X,

“
Σ, j, pzjqjPS , u

‰
ÝÑ upziq,
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be the evaluation map for the i-th marked point.

For A‰0, the map

f : M:
g,S\t`upA; Jq ÝÑ M

:
g,SpA; Jq,

“
Σ, j, pziqiPS\t`u, u

‰
ÝÑ

“
Σ, j, pziqiPS , u

‰
, (2.11)

is a well-defined continuous orbi-bundle. The fiber of f over rΣ, j, pziqiPS , us is the quotient of Σ by
AutpΣ, j, pziqiPS , uq. The tangent spaces to the fibers determine a complex line orbi-bundle

T ÝÑ M
:
g,S\t`upA; Jq .

For each iPS, let
si : M

:
g,SpA; Jq ÝÑ M

:
g,S\t`upA; Jq

be the section such that

si
`
rΣ, j, pzjqjPS , us

˘
“
“
Σ, j, pz1

jqjPS\t`u, u
‰
, z1

j “

#
zj , if j PS;

zi, if j“`.

The complex line orbi-bundle
Li ”s˚

i T ÝÑ M
:
g,SpA; Jq (2.12)

is called the universal tangent line bundle for the i-th marked point.

The direct analogue of the line bundle (2.12) can be similarly defined over the space of equivalence
classes of stable Cℓ-maps from connected smooth genus g S-marked GU Riemann surfaces and for
A“0 (after suitably restricting the domain of f in (2.11)). The restriction of (2.12) to Mg,SpA; Jq
naturally extends over Gromov’s space of equivalence classes of stable nodal J-holomorphic maps
into X, but this is not relevant for the purposes of the present paper.

2.4 Ruan-Tian perturbations

Let g, k P Z
ě0 with 2g`k ě 3 and p as in (2.7) be a regular cover with S “ rks. We denote by

rU ˚
g,k Ă rUg,k the complement of the nodes of the fibers of π in (2.8) and by

T p ” ker d
`
π| rU ˚

g,k

˘
ÝÑ rU ˚

g,k

the vertical tangent bundle. The latter is a complex line bundle; let jU denote its complex structure.

Let X be a manifold and
π1, π2 : rU ˚

g,kˆX ÝÑ rU ˚
g,k, X

be the projection maps. For a section ν of a bundle E over rU ˚
g,k ˆX, we denote by supppνq the

closure of the set  
pz, xqP rU ˚

g,kˆX : νpz, xq‰0
(

Ă rUg,kˆX

in rUg,kˆX. For J PJ pXq, let

Γ0,1
p pX; Jq “

!
ν PΓ

` rU ˚
g,kˆX;π˚

1 pT p,´jU q˚bCπ
˚
2 pTX, Jq

˘
:

supppνq Ă
` rU˚

g,k´
kď

i“1

Impsiq
˘

ˆX
)
.

(2.13)
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The condition that supppνq be disjoint from the sections si is needed to define analogues of the
bundle sections (1.7) in Section 2.5.

Define
HppXq “

 
pJ, νq : J P J pXq, ν PΓ0,1

p pX; Jq
(
. (2.14)

If in addition ω is a symplectic form on X, let

Hp;ωpXq Ă H1
p;ωpXq Ă HppXq (2.15)

be the subspaces of pairs pJ, νq so that J PJωpXq and J PJ 1
ωpXq, respectively.

Definition 2.3. Suppose g, g1, kPZě0 with 2g`kě3, p as in (2.7) is a regular cover, pX, Jq is an
almost complex manifold, and ν PΓ0,1

p pX; Jq. A genus g1 k-marked GU pJ, νq-map is a tuple

u ”
`
C, uM : Σ´Ñ rUg,k, u : ΣÝÑX

˘
, (2.16)

where C is a connected genus g1 k-marked GU Riemann surface as in (2.3), uM is a degree 1
k-marked GU map onto a fiber C1 of (2.8), and u is a C1-map such that

B̄J,jru
ˇ̌
z

“

#
ν
`
ruMpzq, rupzq

˘
˝dzruM, if zPDompruMq;

0, otherwise.

Definition 2.4. Suppose g, g1, k, p, pX, Jq, and ν are as in Definition 2.3. A pJ, νq-map u as
in (2.16) is

(1) reduced if the restriction of ru to every contracted component of uM is somewhere injective and
the images of any two such components under ru are distinct;

(2) basic if u is reduced and zi P rΣ´ rSΣ are distinct points.

The degree of a GU pJ, νq-map (2.16) is the degree of u as in (2.10). We call a GU pJ, νq-map u as
in (2.16) a nodal pJ, νq-morphism if C is a k-marked nodal Riemann surface and uM is an S-marked
contraction to a fiber C1 of (2.8); see Section 2.1. This implies that g1 “ g and that ruM does not
contract any loops of spheres. A reduced nodal pJ, νq-morphism is automatically basic.

A pJ, νq-map u as in (2.16) is equivalent to another pJ, νq-map

u1 ”
`
C1, u1

M : Σ1´Ñ rUg,k, u
1 : Σ1 ÝÑX

˘

if there exists an equivalence h between C and C1 such that

ruM “ ru1
M˝rh

ˇ̌
DompruMq

and u “ u1˝h .

A pJ, νq-map u is stable if its group of automorphisms is finite. This is the case if and only if the
degree of the restriction of ru to every contracted component of uM containing only one or two
special (nodal or marked) points is not zero.
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For APH2pX;Zq, let

dimg,kpAq “
@
c1pTXq, A

D
`pn´3qp1´gq`k, where 2n”dimRX . (2.17)

For pJ, νq P HppXq, we denote by Mg,kpA; J, νq the moduli space of equivalences classes of stable
degree A genus g k-marked nodal pJ, νq-morphisms and by

Mg,kpA; J, νq Ă Mg,kpA; J, νq

the subspace of maps from smooth domains; all of these maps are basic in the sense of Definition 2.4.
This subspace inherits a topology from the space of smooth maps into X. The map

stˆev : Mg,kpA; J, νq ÝÑ Mg,kˆXk,
“
C, uM, u

‰
ÝÑ

`
ppπpuMpΣqqq, pupziqqiPrks

˘
, (2.18)

is continuous with respect to this topology.

Let B be a manifold, possibly with boundary. Denote by

πB, πU , πX : Bˆ rU˚
g,kˆX ÝÑ B, rU˚

g,k, X

the projection maps. For
ν P Γ

`
Bˆ rU˚

g,kˆX;π˚
UT p˚bRπ

˚
XTX

˘

and bPB, let
νb P Γ

` rU˚
g,kˆX;π˚

1T p˚bRπ
˚
2TX

˘

be the associated bundle section. Define

HppB;Xq “
 

pJ, νqPJ pB;XqˆΓ
`
Bˆ rU˚

g,kˆX;π˚
UT p˚bRπ

˚
XTX

˘
: pJb, νbqPHppXq @ bPB

(
.

For ωPSymppB;Xq, denote by

Hp;ωpB;Xq Ă H1
p;ωpB;Xq Ă HppB;Xq

the subspaces of pairs pJ, νq so that J P JωpXq and J P J 1
ωpXq, respectively. For pJ˝, ν˝q in

Hp;ωpBB;Xq, H1
p;ωpBB;Xq, or HppBB;Xq, define

Hω;J˝,ν p̋B;Xq Ă Hp;ωpB;Xq, H1
ω;J˝,ν p̋B;Xq Ă H1

p;ωpB;Xq, HJ˝,ν p̋B;Xq Ă HppB;Xq,

respectively, analogously to (1.8).

2.5 Transversality for pJ, νq-maps

The general structure of GU Riemann surfaces and GU J-holomorphic maps are described by
graph-like combinatorial objects. An edge of a graph is an element of the two-fold symmetric
product of the set of vertices or equivalently a two-element subset of the set of flags (an edge either
joins two different vertices or goes from a vertex back to itself). However, the topological types
of GU Riemann surfaces correspond to more complicated objects, which we call GU graphs below.
An edge of a GU graph is an m-element subset of the set of flags for some mě2. All these objects
are defined below.
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Let S be a finite set. An S-marked GU graph is a tuple

γ ”
`
g :VerÝÑZ

ě0, ε : S\FlÝÑVer,Edg
˘
, (2.19)

where Ver and Fl are finite sets (of vertices and flags, respectively) and Edg is a partition of Fl
into subsets e with |e| ě 2. An S-marked graph is an S-marked GU graph as in (2.19) such that
|e|“2 for every ePEdg. An S-marked graph can be depicted as in the left and middle diagrams of
Figure 3 on page 21, where S “ t1, 2u and a line segment connects each label iPS with εpiq PVer.
An example of a GU graph which is not a graph is represented by the right diagram of Figure 3,
along with the specifications in the two lines above its caption. Let

apγq ” 1`
ÿ

vPVer

gpvq ´ |Ver|`|Fl|´|Edg| (2.20)

be the arithmetic genus of γ.

For f PFl, we denote by ef PEdg the unique element of Edg containing f . For each vPVer, let

Svpγq “ ε´1pvq Ă S\Fl. (2.21)

A vertex vPVer of γ is trivalent if
2gpvq`

ˇ̌
Svpγq

ˇ̌
ě 3. (2.22)

The GU graph γ is trivalent if all its vertices are trivalent. The GU graph γ is connected if for all
v, v1 PVer distinct there exist

mPZ`, f´
1 , f`

1 , . . . , f´
m, f`

m PFl s.t.

ε
`
f´
1

˘
“v, ε

`
f`
m

˘
“v1, ε

`
f`
i

˘
“ε

`
f´
i`1

˘
@ iPrm´1s, ef´

i
“ ef`

i
@ iPrms.

An equivalence between an S-marked GU graph as in (2.19) and another S-marked GU graph

γ1 ”
`
g1 :Ver1 ÝÑZ

ě0, ε1 : S\Fl1 ÝÑVer1,Edg1
˘

(2.23)

is a pair of bijections hVer : VerÝÑVer1 and hFl : FlÝÑFl1 such that

g “ g1˝hVer, hVer˝ε|S “ ε1|S , hVer˝ε|Fl “ ε1˝hFl, hFlpeq P Edg1 @ ePEdg.

For g, kPZě0, let Ag,k denote the (finite) set of (equivalence classes of) connected trivalent graphs γ
as in (2.19) with S“rks and apγq“g. This set is empty unless 2g`kě3.

Let γ be as in (2.19). An S-marked GU Riemann surface C as in (2.3) is of combinatorial type γ

if the set of the topological components of rΣ and the set rSΣ of the lump branches of Σ can be
identified with the sets Ver and Fl, respectively, so that

‚ the genus of the topological component rΣv of rΣ corresponding to vPVer is gpvq,

‚ zi P rΣεpiq for each i P S and zf P rΣεpfq for each f P Fl, where zf P rSΣ is the point corresponding
to f ,

‚ for f, f 1 PFl, qΣpzf q“qΣpzf 1q if and only if f, f 1 Pe for some ePEdg.
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Let APH2pX;Zq. A degree A k-marked GU graph is a tuple

γ ”
`
pg, dq :VerÝÑZ

ě0‘H2pX;Zq, ε : rks\FlÝÑVer,Edg
˘

(2.24)

such that the tuple
γM ”

`
g :VerÝÑZ

ě0, ε : rks\FlÝÑVer,Edg
˘

is a k-marked GU graph and

ÿ

vPVer

dpvq “ A,
@
ω, dpvq

D
ě 0 @ vPVer . (2.25)

Let apγq denote the arithmetic genus apγMq of γM as in (2.20) and

dimpγq “
@
c1pTXq, A

D
`pn´3qp1´apγq

˘
`k ´ 2|Fl|`3|Edg|. (2.26)

We say that a k-marked C1-map u”pC, uq is of combinatorial type γ if the k-marked GU Riemann
surface C is combinatorial type γM and for every v PVer the degree of the restriction of u to the
irreducible component Σv ĂΣ corresponding to v is dpvq.

The general structure of a GU pJ, νq-map u as in (2.16) is specified by triples pγ; γ1, ̟q, with

‚ γ as in (2.24) describing the X-component u of u,

‚ γ1 as in (2.23) describing the fiber C1 of (2.8) containing the image of uM, and

‚ ̟ describing the GU map from C to C1.

This is made precise below.

Let γ be as in (2.19). Denote by Apγq the collection of pairs pγ0, ̟q, where

γ0 ”
`
g0 :Ver0 ÝÑZ

ě0, ε0 : rks\Fl0 ÝÑVer0,Edg0
˘

(2.27)

is a connected k-marked GU graph with Ver0 ĂVer and Fl0 ĂFlXε´1pVer0q and

̟ : rks´ε´1
`
Ver0

˘
ÝÑ FlXε´1pVer0q´Fl0 (2.28)

is an injective map, such that

g0 “ g|Ver0 , ε0|prksXε´1pVer0qq\Fl0 “ ε|prksXε´1
0 pVerqq\Fl0

, (2.29)

ε0|rks´ε´1pVer0q “ ε˝̟ : rks´ε´1pVer0q ÝÑ Ver0. (2.30)

Thus, γ0 is obtained from γ by

‚ dropping every vertex vPVer´Ver0,

‚ combining some of the flags in FlXε´1pVer0q into the elements of Edg0,

‚ attaching each marked point iPrks´ε´1pVer0q in place of one of the remaining flags f “̟piq in
FlXε´1pVer0q.
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f c
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1

f`
2
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q“v1, ε2pfd
0
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q“v2, ε2pf`
1

q, ε2pf`
2

q“v3
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2

“
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0
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0
, f c

0
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0
u, tf˘

1
u, tf˘

2
u
(

Figure 3: A graph γ0 as in (2.27), a graph γ“γ1 as in (2.19), and a GU graph γ“γ2 as in (2.19)
such that pγ0, ̟1q PApγ1q and pγ0, ̟2q PApγ2q for some ̟1p1q and ̟2p1q. The value of g on the
vertices with the number 1 next to them is 1; its value on the remaining vertices of γ0 and γ1 is 0.

Examples of pairs pγ0, ̟qPApγq appear in Figure 3.

For g, k P Z
ě0 and a k-marked GU graph γ as in (2.19), let Agpγq denote the subset of pairs

pγ0, ̟q P Apγq so that γ0 P Ag,k. For A P H2pX;Zq and a degree A k-marked GU graph γ as
in (2.24), denote by AgpγqĂAgpγMq the subset of pairs pγ0, ̟q with γ0 as in (2.27) so that dpvq‰0
for all vPVer´Ver0.

Suppose γ is as in (2.19) with S “ rks, γ0 is as in (2.27), C is a k-marked GU Riemann surface of
type γ as in (2.3), and C1 is an S-marked nodal Riemann surface of type γ0 as in (2.4). If uM is
a degree 1 k-marked map from C to C1, we can identify Ver0 and Fl0 with subsets of Ver and Fl,
respectively, so that

ruMprΣvq “ rΣ1
v @ vPVer0, ruMpzf q “ z1

f @ f PFl0 ,

and the assumptions in (2.29) are satisfied; see Section 2.1. Since C1 is nodal, there also exists a
unique injective map ̟ as in (2.28) satisfying (2.30); if C1 were not nodal, ̟ might not have been
injective and might have taken values in Fl0. We define the combinatorial type of uM to be the
pair pγ0, ̟qPApγq.

Suppose γ is as in (2.24), pγ0, ̟qPAgpγMq, and p as in (2.7) is a regular cover. For pJ, νqPHppXq,

let M:
γ;γ0,̟pJ, νq denote the space of equivalence classes of stable GU pJ, νq-maps u as in (2.16) so

that the degree 1 S-marked map uM is of combinatorial type pγ0, ̟q and the k-marked C1-map
pC,uq is of combinatorial type γ. For a manifold B, possibly with boundary, and pJ, νqPHppB;Xq,
let

M:
γ;γ0,̟

pJ, νq “
 

pb, rusq : bPB, rusPM:
γ;γ0,̟

pJb, νbq
(
.

These spaces inherit topologies from spaces of smooth maps from smooth domains.

For each iPrks, let

evi : M
:
γ;γ0,̟

pJ, νq ÝÑ X and Li ÝÑ M:
γ;γ0,̟

pJ, νq (2.31)
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be the natural evaluation map and the universal tangent line bundle, respectively, for the i-th
marked point; these are pullbacks from one of the factors. Denote by

st : M:
γ;γ0,̟

pJ, νq ÝÑ Mg,k,
“
C, uM, u

‰
ÝÑ p

`
πpuMpΣqq

˘
, (2.32)

the stabilization map. Let

M˚
γ;γ0,̟

pJ, νq Ă M:˚
γ;γ0,̟

pJ, νq Ă Mγ;γ0,̟pJ, νq

be the subspaces of basic and reduced maps, respectively.

For a tuple m”pmiqiPrks in pZě0qk, define

Z˚
γ;γ0,̟;mpJ, νq Ă M˚

γ;γ0,̟
pJ, νq and

Dmi`1 P Γ
`
Z˚
γ;γ0,̟;mpJ, νq;L

˚ bCpmi`1q
i bCev

˚
i pTX, Jq

˘
(2.33)

as in (1.6) and (1.7) with M˚
γ;γ0,̟

pJ, νq in place of M˚
0,kpA; Jq. These are well-defined because the

X component u of a pJ, νq-map u as in (2.16) is J-holomorphic on a neighborhood of every marked
point zi of C by (2.13).

Theorem 2.5. Let g, k, p be as in Definition 2.3. If B˝ and X are manifolds (without boundary),
then there exists a ubiquitous subset

pHppB˝;XqĂHppB˝;Xq (2.34)

with the following properties.

(1) If B1
˝ , B

2
˝ , . . . are the topological components of B˝, then

pHppB˝;Xq “ pHppB1
˝ ;Xq ˆ pHppB2

˝ ;Xq ˆ . . . .

(2) For all pJ, νqP pHppB˝;Xq, APH2pX;Zq, degree A k-marked GU graphs γ, and pγ0, ̟qPAgpγq,

(2a) M
:˚
γ;γ0,̟pJ, νq is a smooth manifold of dimension dimRB˝ `2 dimpγq, and the maps evi

in (2.31) and st in (2.32) are smooth,

(2b) Z˚
γ;γ0,̟;mpJ, νq is a smooth submanifold of M:˚

γ;γ0,̟pJ, νq of codimension pdimRXq|m|, and

the section Dmi`1 in (2.33) is smooth and transverse to the zero set for all m P pZě0qk

and iPrks.

(3) For all pJ, νq P pHppB˝;Xq and manifolds B with boundary BB “ B˝, there exists a ubiqui-
tous subset

pHJ˝,ν˝pB;Xq Ă HJ˝,ν˝pB;Xq (2.35)

satisfying the properties in (2) with B˝ and manifold replaced by B and manifold with boundary
so that

B M:˚
γ;γ0,̟

pJ, νq “ M:˚
γ;γ0,̟

pJ˝, ν˝q, BZ˚
γ;γ0,̟;mpJ, νq “ Z˚

γ;γ0,̟;mpJ˝, ν˝q . (2.36)

(4) An orientation on B˝ determines orientations on all spaces in (2) so that (3) holds in the
category of oriented manifolds.
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For every ωPSymppB;Xq, the same statements hold with Hp replaced by Hp;ω and H1
p;ω.

Theorem 2.6. If B˝, X, g, kPZě0, and p are as in Theorem 2.5 and h : Y ÝÑXk is a smooth map
from a manifold, then there exists a ubiquitous subset as in (2.34) satisfying (1) in Theorem 2.5
and the following properties.

(1) For all pJ, νq P pHppB˝;Xq, γ, pγ0, ̟q, and m P pZě0qk as Theorem 2.5(2), the properties (2a)
and (2b) in Theorem 2.5 are satisfied and the map

ev”ev1ˆ. . .ˆevk : Z
˚
γ;γ0,̟;mpJ, νq ÝÑ Xk (2.37)

is transverse to h.

(2) For all pJ˝, ν˝q and B as in Theorem 2.5(3), there exists a ubiquitous subset as in (2.35)
satisfying the conditions in Theorem 2.5(3) and the additional condition in (1) above.

For every ωPSymppB;Xq, the same statements hold with Hp replaced by Hp;ω and H1
p;ω.

3 Proof of Theorems 1.3-2.6

In light of Propositions 4.4 and 4.5, Theorems 2.5 and 2.6 come down to Proposition 3.5. It is
in turn a consequence of Lemmas 3.1 and 3.2, which concern simple J-holomorphic maps from a
smooth connected domain and from components Σv of pJ, νq-maps u as in (2.16) not contracted
by uM, respectively. The substance of these lemmas is that the admissible deformations of J in the
first case and of ν in the second supported in an open set W intersecting the image of a map cover
the cokernel of the linearization of the B̄J -operator, in the first case, and of the B̄J ´ν|Σv -operator
in the second.

For the remainder of Section 3, we fix g, k, p, X, B˝, B, and h as in Theorems 2.5 and 2.6. We
denote by n half the real dimension of X, as before. Since the collection of tuples pA, γ, γ0, ̟q as
in the two theorems is countable, it is sufficient to find ubiquitous subsets satisfying the required
properties for each such tuple pA, γ, γ0, ̟q. We thus also fix A PH2pX;Zq, a degree A k-marked
GU graphs γ as in (2.24), and pγ0, ̟qPAgpγq with γ0 as in (2.27) and ̟ as in (2.28). Let

Verc0 “ Ver´Ver0.

We denote by Autpγq the group of automorphisms of γ and by AutpP1q the group of holomorphic
automorphisms of P1.

3.1 Baire spaces and ubiquitousness

We first discuss the significance of the ubiquitous property in the contexts such as those of Theo-
rems 1.1-1.4, 2.5, and 2.6. A Baire space is a topological space J such that every ubiquitous subset
pJ of J is dense in J . By Baire Category Theorem [19, Theorem 48.2], every complete metric is
a Baire space. Along with [19, Theorem 43.6], this implies that the three spaces in (1.1) and the
three spaces in (2.15) are Baire spaces. A less direct, but more structural geometric, reasoning for
this appears below.
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A Fréchet vector space is a vector space V with a topology induced by a complete translation-
invariant metric d, i.e.

d : J ˆJ ÝÑ R, d
`
v1`w, v2`w

˘
“ d

`
v1, v2

˘
@ v1, v2, wPV.

For ℓPZě0, a Cℓ Fréchet manifold J is a Hausdorff topological space locally modeled on Fréchet vec-
tor spaces with Cℓ-overlaps between the charts. In other words, J comes with an atlas pUα, ϕαqαPA

of charts, where each Uα Ă J is an open subset and ϕα : Uα ÝÑVα is a homeomorphism onto an
open subset of Fréchet vector space, such that the overlap maps

ϕαβ ”ϕα˝ϕ´1
β : ϕβ

`
UαXUβ

˘
ÝÑ ϕα

`
UαXUβ

˘
, α, β P A,

are Cℓ-diffeomorphisms between open subspaces of Fréchet vector spaces. Since a Cℓ Fréchet man-
ifold is locally modeled on Fréchet vector spaces, it is a Baire space.

Let pX, g,∇q be a (smooth finite-dimensional) manifold with a metric and connection on TX and
pE, | ¨ |E ,∇Eq be a (smooth finite-rank) vector bundle over X with a norm and a connection. For
each ℓ in Z

ě0\t8u, the space ΓℓpX;V q of Cℓ-sections of E is a Fréchet vector space with respect
to the metric dℓE given by

dℓEps1, s2q “ sup
xPX

ℓÿ

m“0

2´mmin
´

|∇E . . .∇Elooooomooooon
m

ps1´s2q|E , 1
¯

@ s1, s2 PΓℓpX;V q;

this follows from [19, Theorem 43.6]. If X is compact, the topology induced by this norm is inde-
pendent of the choices of g,∇, | ¨ |E ,∇E .

The space J ℓpXq of Cℓ almost complex structures on X is a (smooth) Fréchet manifold with the
tangent bundle described by

TJJ
ℓpXq “

 
APΓℓ̀ X; EndpTXq

˘
: JA“´AJ

(
@ J PJ ℓpXq. (3.1)

The charts pUα, ϕαq are the inverses of the maps

TJJ
ℓpXq ÝÑ J ℓpXq, A ÝÑ JeJA , (3.2)

restricted to sufficiently small neighborhoods of 0 in each TJJ . Since the space J 1ℓ
ω pXq of Cℓ

almost complex structures on X tamed by a symplectic form ω on X is an open subset of J ℓpXq,
J 1ℓ
ω pXq is also a Fréchet manifold with the tangent bundle described by (3.1) with J ℓpXq replaced

by J 1ℓ
ω pXq. The space J ℓ

ωpXq of Cℓ ω-compatible almost complex structures on X is a Fréchet
manifold as well. Its tangent bundle is described by

TJJ
ℓ
ωpXq “

 
APTJJ

ℓpXq : ωpA¨, ¨q“´ωp¨, A¨q
(

@ J PJ ℓ
ωpXq. (3.3)

Local charts on J ℓ
ωpXq are obtained by restricting (3.2) to TJJ

ℓ
ωpXq.

Let B be a manifold, possibly with boundary, and X and ℓ be as above. Denote by

πX : BˆX ÝÑ X
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the projection to the second component, by J ℓpB;Xq the space of Cℓ fiberwise complex structures
on the vector bundle π˚

XTX, and by SymppB;Xq the space of smooth fiberwise symplectic struc-
tures on π˚

XTX. For J PJ ℓpB;Xq, ω P SymppB;Xq, and b PB, let Jb PJ ℓpXq and ωb P SymppXq
be the associated almost complex and symplectic structures on X. For J˝ PJ ℓpBB;Xq, define

J ℓ
J p̋B;Xq Ă J ℓpB;Xq

as in (1.8).

For ωPSymppB;Xq, denote by

J ℓ
ωpB;Xq Ă J 1ℓ

ω pB;Xq Ă J ℓpB;Xq

the subspaces of ω-compatible and of ω-tamed almost complex structures. For J˝ PJ ℓ
ωpBB;Xq and

J˝ PJ 1ℓ
ω pBB;Xq, define

J ℓ
ω;J p̋B;Xq Ă J ℓ

ωpB;Xq and J 1ℓ
ω;J p̋B;Xq Ă J 1ℓ

ωpB;Xq,

respectively, as in (1.8). Let

JωpB;Xq “ J 8
ω pB;Xq, J 1

ωpB;Xq “ J 18
ω pB;Xq, J ℓpB;Xq “ J 8pB;Xq,

Jω;J˝pB;Xq “ J 8
ω;J˝

pB;Xq, J 1
ω;J˝

pB;Xq “ J 18
ω;J˝

pB;Xq, J ℓ
J˝

pB;Xq “ J 8
J˝

pB;Xq .

3.2 Configuration spaces

The set Mγ0 of equivalence classes of connected genus g k-marked nodal Riemann surfaces of
combinatorial type γ0 PAg,k is a subspace of Mg,k. Let

Mγ0;v “ Mgpvq,Svpγ0q @ vPV .

The image of the immersion
ιγ0 :

ź

vPVer0

Mγ0;v ÝÑ Mg,k (3.4)

identifying the marked points zf with f P e for each e PEdg into a node is Mγ0 . This immersion
descends to an isomorphism from the quotient of its domain by the natural Autpγ0q action to Mγ0 .

By the last requirement in Definition 2.2, there exist covers ĂMγ0;v ÝÑMγ0;v with vPVer0, universal
curves `

πγ0;v :
rUγ0;v ÝÑ ĂMγ0;v, psγ0;f qfPSvpγ0q

˘
,

and an immersion
rιγ0 :

ź

vPVer0

ĂMγ0;v ÝÑ ĂMg,k (3.5)

lifting (3.4). For each vPVer0, let

prγ0;v :
ź

vPVer0

ĂMγ0;v ÝÑ ĂMγ0;v and rιγ0;v : pr˚
γ0;v

rUγ0;v ÝÑ rUg,k
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be the component projection map and the natural bundle lifting (3.5), respectively; the restriction
of the latter to each fiber is the normalization of an irreducible component of a fiber of π.

For vPVer0, let

S0
vpγq “ Svpγq X

`
Svpγ0qYIm̟

˘
Ă rks\Fl, Sc

vpγq “ Svpγq´S0
vpγq Ă Fl .

If Sc
vpγq‰H, we define

ĂMγ;v “
 

pzf qfPSc
vpγq Pp rUγ0;vqS

c
vpγq : zf R Im sf 1 @ f PSc

vpγq, f 1 PS0
vpγq,

πγ0;vpzf q“πγ0;vpzf 1q, zf ‰zf 1 @ f, f 1 PSc
vpγq, f ‰f 1

(

and take
πγ;v : rUγ;v ” ĂMγ;vˆ ĂMγ0;v

rUγ0;v ÝÑ ĂMγ;v

to be the projection to the first component. For f PSc
vpγq, define

sγ;f : ĂMγ;v ÝÑ rUγ;v, sγ;f
`
pzf 1qf 1PSc

vpγq

˘
“
`
pzf 1qf 1PSc

vpγq, zf
˘
.

For f PSvpγqXSvpγ0q and f “̟piq with iP̟´1pvq, we take

sγ;f : ĂMγ;v ÝÑ rUγ;v

to be the pullback of sγ0;f and sγ0;i, respectively, by the natural projection ĂMγ;v ÝÑ ĂMγ0;v.

If Svpγq“S0
vpγq, let

πγ;v “πγ0;v :
rUγ;v ” rUγ0;v ÝÑ ĂMγ;v ” ĂMγ0;v,

sγ;f “sγ0;f @ f PSvpγqXSvpγ0q, sγ;̟piq “sγ0;i @ iP̟´1pvq.

In both cases, `
πγ;v : rUγ;v ÝÑ ĂMγ;v, psγ;f qfPSvpγq

˘
(3.6)

is the universal curve.

For vPVerc0, define (3.6) by

ĂMγ;v “
 

pzf qfPSvpγq : zf ‰zf 1 @ f, f 1 PSvpγqXFl, f ‰f 1
(
, rUγ;v “ ĂMγ;vˆP

1,

sγ;f : ĂMγ;v ÝÑ rUγ;v, sγ;f
`
pzf 1qf 1PSvpγq

˘
“
`
pzf 1qf 1PSvpγq, zf

˘
.

There is a natural action of AutpP1q on rUγ;v that sends a fiber of πγ;v to a fiber holomorphically
and commutes with the sections.

In both cases, denote by

prγ;v : ĂMγ ”
ź

v1PVer

ĂMγ;v1 ÝÑ ĂMγ;v and rπγ;v : pUγ;v ”pr˚
γ;v

rUγ;v ÝÑ ĂMγ (3.7)
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the component projection map and the induced bundle projection, respectively. For v PVer0, the
composition

ĂMγ ÝÑ
ź

vPVer0

ĂMγ0;v ÝÑ ĂMg,k

of the natural projection with the immersion rιγ0 lifts to a bundle map

pιγ;v : pUγ;v ÝÑ rUg,k

which restricts to each fiber of rπγ;v as the normalization of an irreducible component of a fiber
of π. It sends the marked points zf with f PSvpγqXSvpγ0q and z̟piq with iP̟´1pvq of the former
to the marked and nodal points zf and zi of the latter. The marked points zf PSc

0pγq of the former
are disregarded by this map.

Fix ℓ, pPZ with ℓě2`|m| and pą2. We denote by Hℓ
ppXq, Hℓ

ppB˝;Xq, and Hℓ
ppB;Xq the C2ℓ com-

pletions of the corresponding spaces of smooth pairs pJ, νq as in Section 2.4 and use the analogous
notation for the other H spaces appearing in Theorems 2.5 and 2.6. By the assumption pą2 and
the Sobolev Embedding Theorem [30, Corollary 4.3], every W ℓ,p-map from a Riemann surface Σ
to X is Cℓ´1.

For each vPVer, denote by rBv the space of tuples

uv ”
`
Σv, jv, pzf qfPSvpγq, uv

˘
(3.8)

so that pΣv, jv, pzf qfPSvpγqq is a fiber of rπγ;v and uv : Σv ÝÑ X is a W ℓ,p map. Analogously to
Section 1.2, let

rB˚
v Ă rB:˚

v Ă rBv

be the entire spaces rBv if v PVer0 and the subspaces of basic and reduced, respectively, maps in
the sense of Section 2.3 if vPVerc0. For f PSvpγq, let

evf : rBv ÝÑ X, evf puvq “ upzf q,

be the evaluation map at the marked point zf corresponding to f .

Denote by
Tγ;v ” ker drπγ;v ÝÑ pUγ;v

the vertical tangent bundle of the projection rπγ;v in (3.7) and by jγ;v its complex structure. For

each iPSvpγqXrks, denote by Lv;i ÝÑ rBv the tautological tangent line bundle for the i-th marked
point, i.e. the pullback of Tγ;v by the map

rBv ÝÑ pUγ;v,
`
Σv, jv, pzf qfPSvpγq, uv

˘
ÝÑ zi .

Define

Fm;i “
mià
m“1

HomR

`
Symmi

R
pLiq, ev

˚
i TX

˘
ÝÑ rBv, Dm;i “

mià
m“1

Dmi P Γ
` rBv;Fm;i

˘
@ iPSvpγqXrks,

Fm;v “
à

iPSvpγqXrks

Fm;i, Dm;v “
à

iPSvpγqXrks

Dm;i, rBv;m “ D´1
m;vp0q,

rB˚
m;v “ rBv;m X rB˚

v ,
rB:˚
m;v “ rBv;m X rB:˚

v .
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3.3 Spaces of deformations and obstructions

Let vPVer. For each uv P rBv as in (3.8), define

Γpuvq “ L
p
ℓ pΣv;uvq, Γ0puvq “

 
ξPΓpuvq : ξpzf q“0 @ f PSvpγq

(
,

Γmpuvq “
 
ξPΓ0puvq : ∇mξ|zi “0 @ mPrmis, iPrksXSvpγq

(
.

(3.9)

If in addition J PJ ℓpXq, let

Γ0,1
J puvq “ L

p
ℓ´1

`
Σv; pT ˚Σv,´jvq˚bCu

˚
vpTX, Jq

˘
,

Γ0,1
J ;mpuvq “

 
ηPΓ0,1

J puvq : ∇m´1η|zi “0 @ mPrmis, iPrksXSvpγq
(
.

(3.10)

Suppose vPVerc0. For J PJ ℓpXq, let

ĂM:˚
v pJq Ă rB:˚

v , ĂM˚
m;vpJq Ă rB˚

m;v, and ĂM:˚
m;vpJq Ă rB:˚

m;v (3.11)

be the subspaces of J-holomorphic maps. For uv PĂM:˚
v pJq as in (3.8), let

DJ ;uv : Γpuvq ÝÑ Γ0,1
J puvq, D0

J ;uv
: Γ0puvq ÝÑ Γ0,1

J puvq, Dm
J ;uv

: Γmpuvq ÝÑ Γ0,1
J ;mpuvq (3.12)

be the linearization of the B̄-operator at uv and its restrictions; see Section 4.2.

Lemma 3.1. Suppose v PVerc0, J PJ ℓpXq, and uv PĂM:˚
v pJq is as in (3.8). If W ĂX is an open

subset intersecting uvpΣvq, then

Γ0,1
J puvq “ ImD0

J ;uv
`
 
A˝duv˝jv : APTJJ

ℓpXq, supppAqĂW
(
,

Γ0,1
J ;mpuvq Ă ImDm

J ;uv
`
 
A˝duv˝jv : APTJJ

ℓpXq, supppAqĂW
(
. (3.13)

For every ωPSymppXq, the same statements hold with J replaced by Jω and J 1
ω.

Proof. The first claim is the m“0 case of the second claim. We can assume that uvpzf qRW for all
f PSvpγq; this implies that the right-hand side of (3.13) is contained in the left-hand side (this is

also the case if uv PĂM:˚
m;vpJq). We can also assume that uv PĂM˚

vpJq and thus that zf ‰ zf 1 for all
f, f 1 PSvpγq distinct. Denote by S ĂΣv the subset of the marked points and by D˚

J ;uv
the formal

adjoint of DJ ;uv . Let

Γ1,0
J ;mpuvq Ă L

p
1

`
Σv´S; pT ˚Σv, jvq˚bCu

˚
vpT ˚X, Jq

˘
(3.14)

be the subspace of p1, 0q-forms on pΣv, jvq with values in u˚
vpT ˚X, Jq that have poles of order at

most 1 at zf for f PSvpγqXFl and at most maxp1,miq at zi for iPSvpγqXrks; see Section 4.5. Let

ker Dm˚
J ;uv

“
 
µPΓ1,0

J ;mpuvq : D˚
J ;uv

µ“0
(
.

By Proposition 4.9, the homomorphism

Lm
J ;uv

: cokDm
J ;uv

ÝÑ HomR

`
kerDm˚

J ;uv
,R

˘
,

 
Lm
J ;uv

`
rηs

(̆
pµq “ ℜ

´ ż

Σv

µ^η
¯
,
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is a well-defined isomorphism. Thus, it is sufficient to show that for every µ P kerDm˚
J ;uv

nonzero,
there exists

A P TJJ
ℓpXq s.t. supppAq Ă W, ℜ

´ ż

Σv

µ^
`
A˝duv˝jv

˘¯
‰ 0. (3.15)

If ω PSymppXq and J PJ 1ℓ
ω pXq, then TJJ

1ℓ
ω pXq “TJJ

ℓpXq. If J PJ ℓ
ωpXq, then A as above lies in

TJJ
ℓ
ωpXq if A satisfies the additional condition in (3.3).

Let µ P kerDm˚
J ;uv

with µ ‰ 0 and ωΣ be an orientation form on Σ. By shrinking W if necessary,
we can assume that W is contained in a coordinate chart on X. Since uv is a somewhere injective
J-holomorphic map, there exists a non-empty open subset U Ău´1

v pW q´S such that

dzuv ‰ 0, u´1
v

`
uvpzq

˘
“ tzu @ zPU ; (3.16)

see [33, Corollary 3.14]. Since µ‰0, there exists zPU such that µz ‰0; see Lemma 4.8. Let wPTzΣ
be a nonzero vector. Since

µzpwq ‰ 0 P T ˚
uvpzqX and dzuvpjvwq ‰ 0 P TuvpzqX,

there exists Auvpzq PEndpTuvpzqXq such that
 
µzpwq

(`
Auvpzq

`
dzuvpjvwq

˘˘
“ 1 and JuvpzqAuvpzq “ ´AuvpzqJuvpzq. (3.17)

Let APΓpW ; EndpTXqq be an extension of Auvpzq such that JxAx “´AxJx for every xPW .

Let κ : U ÝÑC be the function defined by

κpz1qωΣ

ˇ̌
z1 “ µz1 ^

`
Auvpz1q˝dz1uv˝jv

˘
@ z1 PU.

By the first condition in (3.17), κpzq P R
`. By the continuity of κ an (3.16), there thus exists a

neighborhood of W 1 ĂW of uvpzq such that

u´1
v pW 1q Ă U, ℜ

`
κpz1q

˘
P R

` @ z1 Pu´1
v pW 1q. (3.18)

Let β : X ÝÑR
` be a smooth function such that βpuvpzqq“1 and supppβqĂu´1

v pW 1q. By (3.18),

ℜ
´ ż

Σv

µ^
`
βA˝duv˝jv

˘¯
“ ℜ

´ ż

u´1
v pW 1q

µ^
`
βA˝duv˝jv

˘¯
“

ż

u´1
v pW 1q

`
βℜpκq

˘
ωΣ ą 0.

Along with the condition that JxAx “ ´AxJx for every x P X, this implies that βA P TJJ
ℓpXq

satisfies both requirements in (3.15) with A replaced by βA.

Suppose ω P SymppXq and J P J ℓ
ωpXq. By shrinking W if necessary, we can assume that W is

contained in a Darboux coordinate chart on pX,ωq; see Theorem 3.15 in [18]. By Lemma 3.2.2
in [18], we can then choose Auvpzq PEndpTuvpzqXq so that it satisfies

ωuvpzq

`
Auvpzq¨, ¨

˘
“ ´ωuvpzq

`
¨, Auvpzq ¨

˘

in addition (3.17) and extend it to APΓpW ; EndpTXqq so that

JxAx “ ´AxJx, ωxpAx¨, ¨q“´ωxp¨, Ax¨q @xPW.

The last condition implies that the element βAPTJJ
ℓpXq constructed above satisfies the additional

condition in (3.3) and thus lies in TJJ
ℓ
ωpXq.
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Suppose vPVer0. For pJ, νqPHℓ
ppXq, define

νγ;v “
 
pιγ;vˆidX

(˚
ν P Γ

` rUγ;vˆX;π˚
1 pTγ;v,´jγ;vq˚bCπ

˚
2 pTX, Jq

˘
.

Denote by
ĂM:˚

v pJ ; νq Ă rB:˚
v and ĂM:˚

m;vpJ ; νq Ă rB:˚
m;v

the subspaces of tuples as in (3.8) so that

B̄J,juv
ˇ̌
z

“ νγ;v
`
z, uvpzq

˘
@ zPΣv . (3.19)

For uv PĂM:˚
v pJ ; νq, let

DJ,ν;uv : Γpuvq ÝÑ Γ0,1
J puvq, D0

J,ν;uv
: Γ0puvq ÝÑ Γ0,1

J puvq, Dm
J,ν;uv

: Γmpuvq ÝÑ Γ0,1
J ;mpuvq

be the linearization of the tB̄´νγ;vu-operator at uv and its restrictions; see Section 4.2.

Lemma 3.2. Suppose v P Ver0, pJ, νq P Hℓ
ppXq, and uv PĂM:˚

m;vpJ, νq is as in (3.8). If W Ă rUg,k is
an open subset intersecting pιγ;vpΣvq, then

Γ0,1
J puvq “ ImD0

J,ν;uv
`
 

tpιγ;vˆuvu˚ν 1 : ν 1 PΓ0,1
p pX; Jq, supppν 1qĂW ˆX

(
,

Γ0,1
J ;mpuvq “ ImDm

J,ν;uv
`
 

tpιγ;vˆuvu˚ν 1 : ν 1 PΓ0,1
p pX; Jq, supppν 1qĂW ˆX

(
.

Proof. The first claim is the m“0 case of the second claim. We can assume that pιγ;vpzf q RW for

all f PSvpγq. Denote by D˚
J,ν;uv

the formal adjoint of DJ,ν;uv . With Γ1,0
J ;mpuvq as in (3.14), let

ker Dm˚
J,ν;uv

“
 
µPΓ1,0

J ;mpuvq : D˚
J,ν;uv

µ“0
(
.

By the same reasoning as in the proof of Lemma 3.1, it is sufficient to show that for every
µPkerDm˚

J,ν;uv
nonzero, there exists

ν 1 PΓ0,1
p pX; Jq s.t. supppν 1q Ă W ˆX, ℜ

´ ż

Σv

µ^
`
tpιγ;vˆuvu˚ν 1

˘¯
‰ 0. (3.20)

Let µPkerDm˚
J,ν;uv

with µ‰0 and ωΣ be an orientation form on Σ. By shrinking W if necessary, we

can assume that W is contained in a coordinate chart on rUg,k. Since µ‰0, there exists zPpι´1
γ;vpW q

such that µz ‰0; see Lemma 4.8. Let wPTzΣ be a nonzero vector. Since

µzpwq ‰ 0 P T ˚
uvpzqX and dzpιγ;vpwq ‰ 0 P Tpιγ;vpzqp,

there exists ν 1
z PHompTpιγ;vpzqp;TuvpzqXq such that

 
µzpwq

(`
ν 1
zpdzpιγ;vpwqq

˘
“ 1 and Juvpzqν

1
z “ ´ν 1

zjU |pιγ;vpzq. (3.21)

Let ν 1 PΓpU˚
g,kˆX; Hompπ˚

1T p, π˚
2TXqq be an extension of ν 1

z such that

Jxν
1
z1,x “ ´ν 1

z1,xjU |z1 @ pz1, xq P rU˚
g,kˆX. (3.22)
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By the continuity of the function

κ : U ÝÑ R, κpz1qωΣ

ˇ̌
z1 “ µz1 ^

`
ν 1
z1,uvpz1qpdz1pιγ;v|Σvq

˘
,

the first condition in (3.21), and the injectivity of pιγ;v, there exists a neighborhood of W 1 Ă W

of pιγ;vpzq such that
ℜ
`
κpz1q

˘
P R

` @ z1 Ppι´1
γ;vpW 1q. (3.23)

Let β : rUg,k ÝÑR
` be a smooth function such that βppιγ;vpzqq“1 and supppβqĂW 1. By (3.23),

ℜ
´ ż

Σv

µ^
`
tpιγ;vˆuvu˚pβν 1q

˘¯
“ ℜ

´ ż

pι´1
γ;vpW 1q

µ^
`
tpιγ;vˆuvu˚pβν 1q

˘¯

“

ż

pι´1
γ;vpW 1q

`
βℜpκq

˘
ωΣ ą 0.

Along with (3.22), this implies that βν 1 P Γ0,1
p pX; Jq satisfies both requirements in (3.20) with ν 1

replaced by βν 1.

3.4 Universal moduli spaces

For ePEdg, let
Xγ;e ”

ź

fPe

X, ∆γ;e “
 

pxf qfPe : xf “xf 1 @ f, f 1 Pe
(
.

Define
∆γ ”

ź

ePEdg

∆γ;e Ă Xγ ”
ź

ePEdg

Xγ;e. (3.24)

The evaluation maps evf induce maps

evγ ”
ź

ePEdg

ź

fPe

evf :
ź

vPVer

rB:˚
v ÝÑ Xγ , ev”

ź

iPrks

evi :
ź

vPVer

rB:˚
v ÝÑ Xk . (3.25)

Let rB‹ “ ev´1
γ

`
∆γq, rB:˚ Ă rB‹ be the subspace of tuples puvqvPVer, with uv as in (3.8), so that

Imuv1 ‰ Imuv2 for all v1, v2 PVerc0 distinct, and

rB˚ “ rB:˚ X
ź

vPVer

rB˚
v .

A tuple in rB:˚ (resp. in rB˚) corresponds to a reduced (resp. basic) k-marked GU map as in (2.16).
With

πv :
ź

v1PVer

rB:˚
v1 ÝÑ rBv

denoting the projection map, let

Fm “
à

vPVer

π˚
vFm;v, Dm “

à

vPVer

π˚
vDm;v, rB˚

m “ D´1
m p0q X rB˚, (3.26)

rB˚
m;h “

 
pu, yqP rB˚

mˆY : evpuq“hpyq
(
.
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By the reasoning at the top of [18, p47], the spaces rBv are separable smooth Banach manifolds.
By the next lemma, the subspaces

rB:˚ Ă
ź

vPVer

rBv, rB˚
m Ă rB:˚, and rB˚

m;h Ă rB˚
mˆY

are smooth Banach submanifolds of codimensions

codimR
rB:˚ “ 2n

`
|Fl|´|Edg|

˘
, (3.27)

codimR

` rB˚
m,

rB:˚
˘

“ n
ÿ

iPrks

mipmi`3q, codimR

` rB˚
m;h,

rB˚
mˆY

˘
“ 2nk,

respectively.

Lemma 3.3. The subspace rB:˚ is a smooth Banach submanifold of
ś

vPVer
rBv of codimension (3.27).

The restriction of the bundle section Dm to rB˚ is transverse to the zero set. The restriction of the
map ev to rB˚

m is transverse to h.

Proof. For each vPVer, f PSvpγq, and uv P rBv as in (3.8), define

Lf : Γpuvq ÝÑ T
evf puvqX, Lf pξvq “ ξvpzf q.

Since zf ‰zf 1 for all f, f 1 PSvpγqXFl distinct, the homomorphism

Lv : Γpuvq ÝÑ
à

fPSvpγqXFl

T
evf puvqX, Lvpξvq “

`
Lf pξvq

˘
fPSvpγqXFl

, (3.28)

is surjective for every uv P rBv.

Since rB:˚
v Ă rBv is an open subset, rB:˚

v is a separable smooth Banach manifold of codimension 0.
Furthermore, the maps in (3.25) and the bundle section in (3.26) are smooth. The restriction of
the differential of evγ at u”puvqvPVer to

Γpuq ”
à

vPVer

Γpuvq Ă
à

vPVer

Tuv
rB:˚
v “ Tu

ˆ ź

PVer

rB:˚
v

˙

is given by
duevγ

`
pξvqvPVer

˘
“
`
Lvpξvq

˘
vPVer

.

By the surjectivity of (3.28), this restriction is surjective. Thus, the map evγ is transverse to ∆γ .
In light of the Implicit Function Theorem for Banach manifolds, it follows that

rB‹ Ă
ź

PVer

rB:˚
v

is a smooth Banach submanifold of codimension (3.27). Since rB:˚ Ă rB‹ is an open subset, this
implies the first claim of the lemma.

For each vPVer, iPSvpγqXrks, and uv P rBm;v as in (3.8), define

Lm;i : Γpuvq ÝÑ Fm;i, Lm;ipξvq “
`
∇mξv|zi

˘
mPrmis

.
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Since Dm
uv

|zi “0 for all mPrmis, this homomorphism is independent of the choice of ∇. If uv P rB˚
m;v,

then zf ‰zf 1 for all f, f 1 PSvpγq distinct. Thus, the homomorphism

Lv ‘
à

iPSvpγqXrks

Li ‘ Lm;v : Γpuvq ÝÑ
à

fPSvpγq

T
evf puvqX ‘ Fm;v, (3.29)

Lm;vpξvq “
`
Lvpξvq, pLipξvqqiPSvpγqXrks,

`
Lm;ipξvq

˘
iPSvpγqXrks

˘
,

is surjective for every uv P rB˚
m;v.

The restriction of the linearization of Dm at an element u”puvqvPVer of rB˚
m to

Γ0puq ”
à

vPVer

Γ0puvq ”
 

pξvqvPVer : Lf pξvq“0 @ f PSvpγqXFl, vPVer
(

Ă Tu
rB˚

is given by
duDm

`
pξvqvPVer

˘
“
`
Lm;vpξvq

˘
vPVer

.

By the surjectivity of (3.29), this restriction is surjective. This implies the second claim of
the lemma.

The restriction of the differential of ev at an element u”puvqvPVer of rB˚
m to

 
pξvqvPVer PΓ0puq : Lm;ipξvq“0 @ iPSvpγqXrks, vPVer

(
Ă Tu

rB˚
m

is given by
duev

`
pξvqvPVer

˘
“
`
Lipξvq

˘
iPSvpγqXrks,vPVer

.

By the surjectivity of (3.29), this restriction is surjective. This establishes the last claim of
the lemma.

For B1 “B˝, B and vPVer, let

FB1;v ÝÑ Hℓ
ppB1;XqˆB1ˆ rBv and FB1;m;v Ă FB1;v

be the bundle with the fibers FpJ,ν;b,uvq “Γ0,1
Jb

puvq and its subbundle with the fibers Γ0,1
Jb;m

puvq. We
define a section of FB1;v by

B̄B1;vpJ, ν; b,uvq
ˇ̌
z

“ B̄J,jvuv
ˇ̌
z

´

#
νγ;vpz, uvpzqq, if vPVer0;

0, if vPVerc0;
@ zPΣv.

The restriction of B̄B1;v to Hℓ
ppB1;XqˆB1ˆ rB:˚

m;v takes values in FB1;m;v. Let

rπv : Hℓ
ppB1;XqˆB1ˆ

ź

v1PVer

rBv1 ÝÑ Hℓ
ppB1;XqˆB1ˆ rBv and

rπc
Y : Hℓ

ppB1;XqˆB1ˆ
ź

vPVer

rBvˆY ÝÑ Hℓ
ppB1;XqˆB1ˆ

ź

vPVer

rBv

denote the projection maps.
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Define

FB1 “
à

vPVer

rπ˚
vFB1;v ÝÑ Hℓ

ppB1;XqˆB1ˆ
ź

vPVer

rBv , FB1;m “
à

vPVer

rπ˚
vFB1;m;v Ă FB1 , (3.30)

FB1;Y “ rπc˚
Y FB1;m ÝÑ Hℓ

ppB1;XqˆB1ˆ
ź

v1PVer

rBv1 ˆY.

The restriction of the bundle section

B̄B1 ”prπ˚
v B̄B1;vqvPVer : H

ℓ
ppB1;XqˆB1ˆ

ź

vPVer

rBv ÝÑ FB1 (3.31)

of the first bundle in (3.30) to Hℓ
ppB1;XqˆB1 ˆ rB˚

m takes values in FB1;m. Thus, the restriction of
the section

B̄B1;Y ”rπc˚
Y B̄B1 : Hℓ

ppB1;XqˆB1ˆ
ź

v1PVer

rBv1 ˆY ÝÑ rπc˚
Y FB1

to Hℓ
ppB1;XqˆB1ˆ rB˚

m;h takes values in FB1;Y . Let

UĂM:˚pB1q “ B̄´1
B1 p0qX

`
Hℓ

ppB1;XqˆB1ˆ rB:˚
˘
, U rZ˚

mpB1q “ B̄´1
B1 p0qX

`
Hℓ

ppB1;XqˆB1ˆ rB˚
m

˘
,

U rZ˚
m;hpB1q “ B̄´1

B1;Y p0qX
`
Hℓ

ppB1;XqˆB1ˆ rB˚
m;h

˘
.

These are the universal moduli spaces associated with the moduli spaces appearing with Theo-
rems 2.5 and 2.6.

By the reasoning at the bottom of [18, p49], the space Hℓ
ppB1;Xq is a separable smooth Banach

manifold. By the reasoning at the bottom of [18, p50], (3.31) is a Cℓ section of the Cℓ Banach
bundle (3.30). Along with Lemma 3.3, this implies that the restrictions

B̄:
B1 : H

ℓ
ppB1;XqˆB1ˆ rB:˚ ÝÑ FB1 , B̄B1;m : Hℓ

ppB1;XqˆB1ˆ rB˚
m ÝÑ FB1;m,

B̄B1;Y ;m : Hℓ
ppB1;XqˆB1ˆ rB˚

m;h ÝÑ FB1;Y

of B̄B1 in the first two cases and of B̄B1;Y in the last case are also Cℓ sections of Cℓ Banach bundles.

Lemma 3.4. For every pJ, νqPHℓ
ppB1;Xq, the restrictions

B̄:
B1 :

 
pJ, νq

(
ˆB1ˆ rB:˚ ÝÑ FB1 , B̄B1;m :

 
pJ, νq

(
ˆB1ˆ rB˚

m ÝÑ FB1;m,

and B̄B1;Y ;m :
 
pJ, νq

(
ˆB1ˆ rB˚

m;h ÝÑ FB1;Y

are Fredholm sections of indices

indcRB̄:
B1 “ dimRB˝`2 dimpγq`6|Verc0|, indRB̄:

B1;m “ dimc
RB˝`2

`
dimpγq´n|m|

˘
`6|Verc0|,

and indRB̄B1;Y ;m “ dimc
RB˝`2

`
dimpγq´n|m|

˘
´
`
2nk´dimRY

˘
`6|Verc0|,

respectively.
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Proof. For vPVerc0, bPB1, and uv P rBv such that

B̄B1;vpJ, ν; b,uvq “ 0 P FB1;v , (3.32)

denote by DJ,ν;uv the operator DJ ;uv in (3.12). For all v PVer, b PB1, and uv P rBv, the operator
DJ ;uv is then the restriction of the vertical differential DB̄B1;v of the section B̄B1;v of FB1;v at
pJ, ν; b,uvq to the subspace

Γpuvq Ă Tuv
rBv Ă TpJ,ν;b,uvq

`
Hℓ

ppB1;XqˆB1ˆ rBv

˘

consisting of the infinitesimal deformations of the map component uv of uv as in (3.8).

Since DJ ;uv is an elliptic operator and Σv is a compact manifold, DJ ;uv is a Fredholm operator.
By Riemann-Roch,

indRDJ,ν;uv “ 2
`
xc1pTXq, dpvqy`n

`
1´gpvq

˘˘
@ vPVer.

Thus, the restriction
B̄B1;v :

 
pJ, νq

(
ˆtbuˆ rBv ÝÑ FB1;v

is a Fredholm section of index

indccR B̄B1;v “ indRDJ,ν;uv ` dimR
ĂMγ;v

“ 2
`
xc1pTXq, dpvqy`pn´3q

`
1´gpvq

˘
`|Svpγq|

˘
`

#
0, if vPVer0;

6, if vPVerc0.

(3.33)

By (3.31), the first statement of Lemma 3.3, and (3.33), the restriction of B̄:
B1 in the statement of

the present lemma is a Fredholm section of index

indccR B̄:
B1 “ dimRB˝`

ÿ

vPVer

indcRB̄B1;v ´ codimR
rB:˚

“ dimRB˝`2
`
xc1pTXq, Ay`

ÿ

vPVer

pn´3q
`
1´gpvq

˘
`k`|Fl|

˘
`6|Verc0| ´ 2n

`
|Fl|´|Edg|

˘
.

Combining this with (2.20) and (2.26), we obtain the first index statement.

The corank of the subbundle FB1;m of FB1 is n
ř

iPrks mipmi`1q. Along with the previous paragraph

and the second statement of Lemma 3.3, this implies that the restriction of B̄B1;m in the statement
of the present lemma is a Fredholm section of index

indRB̄:
B1;m “ indcRB̄:

B1 ´ codimR

` rB˚
m,

rB:˚
˘

` n
ÿ

iPrks

mipmi`1q “ indcRB̄:
B1 ´ 2n|m|.

This gives the second index statement.

By the previous paragraph and the third statement of Lemma 3.3, the restriction of B̄B1;Y ;m in the
statement of the present lemma is a Fredholm section of index

indRB̄B1;Y ;m “ indRB̄:
B1;m ` dimR Y ´ codimR

` rB˚
m;h,

rB˚
mˆY

˘
“ indRB̄:

B1;m ´
`
2nk´dimRY

˘
.

This completes the proof.
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Proposition 3.5. The bundle sections

B̄:
B˝

: Hℓ
ppB˝;XqˆB˝ˆ rB:˚ ÝÑ FB˝ , B̄B˝;m : Hℓ

ppB˝;XqˆB˝ˆ rB˚
m ÝÑ FB˝;m,

and B̄B˝;Y ;m : Hℓ
ppB˝;XqˆB˝ˆ rB˚

m;h ÝÑ FB˝;Y

are transverse to the zero set. If pJ˝, ν˝qPHℓ
ppB˝;Xq is regular value of one of the projections

UĂM:˚pB˝q,U rZ˚
mpB˝q,U rZ˚

m;hpB˝q ÝÑ Hℓ
ppB˝;Xq, (3.34)

then the corresponding bundle section

B̄:
B : Hℓ

J˝,ν˝
pB;XqˆBˆ rB:˚ ÝÑ FB, B̄B;m : Hℓ

J˝,ν˝
pB;XqˆBˆ rB˚

m ÝÑ FB;m,

and B̄B;Y ;m : Hℓ
J˝,ν˝

pB;XqˆBˆ rB˚
m;h ÝÑ FB;Y

is also transverse to the zero set. For every ω PSymppB˝;Xq (resp. in ω PSymppB;Xq), the first
(resp. second) statement holds with Hℓ

p replaced by Hℓ
p;ω and H1ℓ

p;ω.

Proof. For vPVer0, pJ, νqPHℓ
ppB˝;Xq, bPB˝, and uv P rBv as in (3.8) satisfying (3.32), define

D0
J,ν;b,uv

B̄ : TpJ,νqHppB˝;Xq‘Γ0puvq ÝÑ Γ0,1
Jb

puvq,

D0
J,ν;b,uv

B̄pA, ν 1; ξvq “ D0
Jb,νb;uv

ξv `
1

2
Ab˝duv˝jv ´ tpιγ;vˆuvu˚ν 1

b.

For vPVerc0, we define D0
J,ν;b,uv

B̄ in the same way dropping tpιγ;vˆuvu˚ν 1
b above. Note that

Ab˝duv˝jv “ 0 if uvpΣvqXsupppAbq “ H,

tpιγ;vˆuvu˚ν 1
b “ 0 if vPVerc0 or

`
pιγ;vpΣvqˆX

˘
Xsupppν 1

bq “ H.
(3.35)

The homomorphism D0
J,ν;b,uv

B̄ is the restriction of the linearization of B̄B˝;v at pJ, ν; b,uvq to

T
pJ,νq

HppB˝;Xq‘Γ0puvq Ă T
pJ,νq

HppB˝;Xq‘Tuv
rBv Ă TpJ,ν;b,uvq

`
HppB˝;XqˆB˝ˆ rBv

˘
.

Let pJ, νqPHℓ
ppB˝;Xq, bPB˝, and u”puvqvPVer P rB:˚ be such that

B̄:
B˝

`
J, ν; b,u

˘
“ 0 P FB˝

ˇ̌
pJ,ν;b,uq

” Γ0,1
Jb

puq ”
à

vPVer

Γ0,1
Jb

puvq.

We show that the homomorphism

D0
J,ν;b,uB̄ : TpJ,νqHppB˝;Xq‘Γ0puq ÝÑ

à

vPVer

Γ0,1
Jb

puvq,

D0
J,ν;b,uB̄

`
A, ν 1; pξvqvPVer

˘
“
`
D0

J,ν;b,uv
B̄pA, ν 1; ξvq

˘
vPVer

,

(3.36)

is surjective. Since Γ0puq Ă Tu
rB:˚, this implies that the bundle section B̄:

B˝
is transverse to the

zero set.
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Since uP rB:˚, uv1pΣv1q‰uv2pΣv2q for all v1, v2 PVerc0 distinct. It follows that u´1
v1

pX´uv2pΣv2qq is
a dense open subset of Σv1 whenever v1, v2 PVerc0 are distinct; see [33, Corollary 3.9]. Thus, there
exist open subsets Wv ĂX with vPVerc0 such that

uvpΣvqXWv ‰ H @ vPVerc0, (3.37)

uv1pΣv1qXWv2 “ H, Wv1 XWv2 “ H @ v1, v2 PVerc0, v1 ‰v2. (3.38)

The subsets pιγ;vpΣvqĂ rUg,k with vPVer0 are also distinct. Thus, there exist open subsets Wv Ă rUg,k

with vPVer0 such that

pιγ;vpΣvqXWv ‰ H @ vPVer0, (3.39)

pιγ;vpΣv1qXWv2 “ H, Wv1 XWv2 “ H @ v1, v2 PVer0, v1 ‰v2. (3.40)

Define

TvH “

# 
pA, 0qPTpJ,νqHppB˝;Xq : supppAbqĂWv

(
, if vPVerc0, 

p0, ν 1qPTpJ,νqHppB˝;Xq : supppν 1
bqĂWvˆX

(
if vPVer0 .

By the first statements of Lemmas 3.1 and 3.2, (3.37), and (3.39),

D0
J,ν;b,uv

B̄
`
TvH‘Γ0puvq

˘
“ Γ0,1

Jb
puvq Ă Γ0,1

Jb
puq @ vPVer.

By (3.35) and the first statement in (3.38),

D0
J,ν;b,uv

B̄
`
Tv1H

˘
“ t0u @ vPVerc0, v1 PVer´tvu.

By the second statement in (3.35) and the first statement in (3.40),

D0
J,ν;b,uv

B̄
`
Tv1H

˘
“ t0u @ vPVer0, v1 PVer0´tvu.

By the last statements in (3.38) and (3.40),

à

vPVer

`
TvH‘Γ0puvq

˘
Ă TpJ,νqHppB˝;Xq‘Γ0puq.

By the last four statements, the homomorphism (3.36) is surjective. This establishes the transver-
sality of the bundle section B̄:

B˝
.

Suppose in addition that uP rB˚
m. Let

Γmpuq “
à

vPVer

Γmpuvq.

By the second statements of Lemmas 3.1 and 3.2, (3.37), and (3.39),

D0
J,ν;b,uv

B̄
`
TvH‘Γmpuvq

˘
“ Γ0,1

Jb;m
puvq Ă Γ0,1

Jb;m
puq ”

à

v1PVer

Γ0,1
Jb;m

puv1q @ vPVer.

By the reasoning in the previous paragraph, this implies that the restriction

D0
J,ν;b,uB̄ : TpJ,νqHppB˝;Xq‘Γmpuq ÝÑ Γ0,1

Jb;m
puq”FB˝;m

ˇ̌
pJ,ν;b,uq

(3.41)
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the homomorphism (3.36) is surjective. Since ΓmpuqĂTu
rB˚
m, it follows that the bundle section B̄B˝;m

is transverse to the zero set. If in addition pu, yqP rB˚
m;h, then

Γmpuq Ă Tu
rB˚
m;h Ă Tu

rB˚
m‘TyY “ Tpu,yq

` rB˚
mˆY

˘
.

The surjectivity of (3.41) then implies that the bundle section B̄B˝;Y ;m is transverse to the zero set.

Suppose pJ˝, ν˝q P Hℓ
ppB˝;Xq is a regular value of a projection in (3.34). Denote by rB the last

component of the domain of the corresponding bundle section B̄. Suppose B̄pJ, ν; b,uq“0. In
particular, pJ, νq|B˝ “ pJ˝, ν˝q. If bPB˝, then the restriction of the linearization of B̄ at pJ, ν; b,uq
to

Tpb,uq

`
Bˆ rB

˘
Ă TpJ,ν;b,uq

`
Hℓ

J˝,ν˝
pB;XqˆBˆ rB

˘

is surjective; see Lemma 4.3. If bRB˝, then the argument above with B˝ and HppB˝;Xq replaced
by B and Hℓ

J˝,ν˝
pB;Xq, respectively, shows that the linearization of B̄ at pJ, ν; b,uq is surjective.

We conclude that the bundle section B̄ in question is transverse to the zero set.

The proof for Hℓ
p;ω and H1ℓ

p;ω in place of Hℓ
p is the same.

Let pHℓ
ppB˝;XqĂHℓ

ppB˝;Xq be the intersection of the sets of regular values for the three projections

in (3.34). By Sard-Smale Theorem (Proposition 4.1), pHℓ
ppB˝;Xq is a ubiquitous subset ofHℓ

ppB˝;Xq
if ℓPZ` is sufficiently large.

4 Analytic preliminaries

4.1 Classical statements

Banach vector space, manifold, separable

Sard-Smale theorem, elliptic bootstrapping, elliptic implies Fredholm over compact domains

Proposition 4.1.

4.2 Fredholm bundle sections

Banach bundle, Fredholm section

Proposition 4.2. if D is onto, then the moduli space is smooth

4.3 Ubiquitous regularity

Lemma 4.3. map to a manifold, transverse to a submanifold; regular value of projections v.s
restricted to a fiber

Proposition 4.4. if universal section is surjective, then so is a generic restriction and each moduli
space is smooth
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4.4 Taubes’s argument

Taubes’s argument moving from the ubiquitousness of a subset of the space Cℓ-parameters to
the ubiquitousness of its C8-analogue is applied explicitly in the proofs of Theorems 3.1.6(ii)
and 6.2.6(ii) in [18] and implicitly in many other settings of similar nature. Proposition 4.5 below
formalizes Taubes’s argument in order to capture its substance and make it easier to apply.

If M is a topological space, a map f : MÝÑR is upper semi-continuous if the set f´1pp´8, aqq is
an open subset of M for every aPR. For example, the map

UĂM˚
0,0pAq ÝÑ Z

ě0 Ă R, pJ, uq ÝÑ dim cokDJ ;u,

is upper semi-continuous. If J is another topological space, a continuous map π : MÝÑJ is proper
if π´1pKq is a compact subset of M for every compact subset K of J . For example, the map

π : Mr ”
!

pJ, uqPUĂM˚
0,0pAq : }du}C0 ďr, D zPP1 s.t. sup

z1PP1´tzu

dXpupzq, upz1qq

dP1pz, z1q
ě 1{r

)
ÝÑ J ,

πpJ, uq “ J,

is proper for every r P R
`. This follows from elliptic bootstrapping for J-holomorphic maps; see

[18, Theorem B.4.2].

Let pJ , T q be a topological space as in [19, §12], i.e. a set J together with a collection T of
subsets of J satisfying certain properties. We call a sequence pJ ℓ, T ℓqℓPZ` of topological spaces
an expansion of pJ , T q if

J ℓ Ą J ℓ`1 Ą J @ ℓPZ`,
 
UXJ ℓ`1 : U PT ℓ

(
Ă T ℓ`1 @ ℓPZ`,

and T is the topology on J generated by the collections tUXJ : U PT ℓu with ℓPZ`; see [19, §13].
This in particular implies that the inclusions

`
J ℓ`1, T ℓ`1

˘
ÝÑ

`
J ℓ, T ℓ

˘
,

`
J , T

˘
ÝÑ

`
J ℓ, T ℓ

˘
(4.1)

are continuous for every ℓPZ`.

We call an expansion as above proper (resp. tight) if all inclusions in (4.1) are proper (resp. T
is dense in pJ ℓ, T ℓq for all ℓ P Z

`). We call it first countable if every topological space pJ ℓ, T ℓq
is first countable. The existence of a first countable expansion implies that pJ , T q itself is first
countable. For example, the spaces pJ ℓpXq, T ℓpXqq of Cℓ almost complex structures on a compact
manifold X form a proper tight first countable expansion of the space pJ pXq, T pXqq of smooth
almost complex structures on X. The spaces W

p
ℓ pP1;Xq of W p

ℓ -maps f : P1 ÝÑX form a proper
tight first countable expansion of the space C8pP1;Xq of smooth maps f : P1 ÝÑX.

For topological spaces J and B, MĂJˆB, and an upper semi-continuous function f : MÝÑZ
ě0,

we define
pJ pfq “

 
J PJ : fpJ, uq“0 @ pJ, uqPM

(
.
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Proposition 4.5. Suppose pJ ℓ, T ℓqℓPZ` is a proper tight first countable expansion of a topological
space pJ , T q, pBℓ,TℓqℓPZ` is a proper expansion of a topological space pB,Tq, M1 ĂJ 1ˆB1, and
f : M1 ÝÑZ

ě0 is an upper semi-continuous function such that

pJ ℓpfq ” pJ ℓ
`
f |M1XpJ ℓˆBℓq

˘
Ă J ℓ

is a dense subset for every ℓ P Z
`. If the spaces pJ 1, T 1q and pB1,T1q are Hausdorff and there

exists a sequence pM1
rqrPZ` of subspaces of M1 such that

M1
r Ă M1

r`1 @ rPZ`, M1 “
8ď

r“1

M1
r ,

and the restriction of the projection J 1ˆB1 ÝÑJ 1 to M1
r is proper for every rPZ`, then

pJ pfq ” pJ
`
f |M1XpJ ˆBq

˘
Ă J

is a ubiquitous subset.

Proof. For each rPZ`, let

pJ ℓ
r pfq “ pJ ℓ

`
f |M1

rXpJ ℓˆBℓq
˘

Ă J ℓ @ ℓPZ`, pJrpfq ” pJ
`
f |M1

rXpJ ˆBq
˘

Ă J .

We show below that each pJrpfq is open and dense in pJ , T q. This implies that

pJ pfq ”
8č

r“1

pJrpfq

is a countable intersection of open dense subsets of pJ , T q and is thus ubiquitous.

Since the spaces pJ 1, T 1q and pB1,T1q are Hausdorff, so are the spaces pJ ℓ, T ℓq, pBℓ,Tℓq, pJ , T q,
and pB,Tq. By Lemma 4.6 below, all the inclusions

`
J ℓ`1, T ℓ`1

˘
ˆ
`
Bℓ`1,Tℓ`1

˘
ÝÑ

`
J ℓ, T ℓ

˘
ˆ
`
Bℓ,Tℓ

˘
,

pJ , T qˆpB,Tq ÝÑ
`
J ℓ, T ℓ

˘
ˆ
`
Bℓ,Tℓ

˘

are thus proper. Since the restriction of the projection J 1ˆB1 ÝÑJ 1 to M1
r is proper for every

rPZ`, it follows that the restrictions of the projections

J ℓˆBℓ ÝÑJ ℓ and J ˆBÝÑJ

to M1
rXpJ ℓˆBℓq and M1

rXpJ ˆBq are proper as well. From Lemma 4.7 below, we then conclude
that the subsets pJ ℓ

r pfqĂJ ℓ and pJrpfqĂJ are open.

Let J P J and U ℓ P T ℓ be a sequence such that U ℓ Ą U ℓ`1 for all ℓ P Z
` and tU ℓXJ u is a basis

for T at J (i.e. every open neighborhood U PT of J contains some U ℓXJ ). Since pJ ℓpfq Ă pJ ℓ
r pfq

is dense in J ℓ, there exists Jℓ PUℓX pJ ℓ
r pfq. Since pJ ℓ

r pfq is open in J ℓ and J is dense in J ℓ, there
also exists

J 1
ℓ P UℓX pJ ℓ

r pfqXJ Ă UℓX pJrpfq .

The sequence J 1
ℓ P pJrpfq then converges to J . We conclude that each JrpfqĂJ is dense.
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Lemma 4.6. Let f : J ÝÑJ 1 and g : BÝÑB1 be proper maps. If J 1 and B1 are Hausdorff, then

fˆg : J ˆB ÝÑ J 1ˆB1

is also a proper map.

Proof. Let KĂJ 1ˆB1 be a compact subset. Since the projections J 1ˆBÝÑJ 1,B1 are continuous,
they mapK to compact subsetsK1 ĂJ 1 andK2 ĂB1. Since the maps f and g are proper, the subset

 
fˆg

(´1`
K1ˆK2

˘
“ f´1pK1qˆg´1pK2q Ă J ˆB

is compact. Since K is a compact subset of a Hausdorff space, it is closed. Since f ˆ g is a
continuous map, the subspace

 
fˆg

(´1
pKq Ă

 
fˆg

(´1`
K1ˆK2

˘

is closed and thus compact.

Lemma 4.7. Suppose J and B are topological spaces, MĂJ ˆB, and f : MÝÑZ
ě0 is an upper

semi-continuous function. If J is first countable and Hausdorff and the restriction of the projection
J ˆBÝÑJ to M is proper, then the set pJ pfq is open in J .

Proof. We show that the complement pJ c ”J´ pJ pfq of pJ pfq in J is closed. Suppose J PJ , Ji P pJ c

is a sequence converging to J such that Ji ‰ J for all i P Z
`, and pJi, uiq P M is a sequence such

that fpJi, uiqě1 for all iPZ`. Since the set

K ” tJu Y tJi : iPZ`u Ă J

is compact and the restriction of the projection J ˆBÝÑJ to M is proper, the infinite set

 
pJi, uiq : iPZ`

(
Ă MXpKˆBq

has a limit point pJ 1, uq. Since J is Hausdorff, J 1 “ J . Since f is upper semi-continuous and
fpJi, uiqě1 for all iPZ`, fpJ, uqě1. Thus, J P pJ c.

4.5 Generalized Cauchy-Riemann operators

Lemma 4.8 (Unique Continuation). Let pΣ, jq be a connected, but possibly non-compact, Riemann
surface D be a generalized Cauchy-Riemann operator over pΣ, jq, and µPkerD. If there exists an
non-empty open subset U ĂΣ such that µ|U “0, then µ“0.

Proof. [33, Proposition 3.1].

Ivashkovich-Shevchishin twisting construction

Proposition 4.9. Serre Duality
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