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Abstract

We provide a treatment of transversality for J-holomorphic maps and the associated evaluation
maps and derivatives of arbitrary order from the generally overlooked viewpoint of Ivashkovich-
Shevchishin. In contrast to the usual approach, we establish these statements simultaneously
through a single application of a universal moduli space setup.
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1 Introduction

Gromov’s introduction [10] of J-holomorphic curves techniques into symplectic topology has rev-
olutionized this field and led to its numerous connections with algebraic geometry. The ideas put
forward in [10] have been further elucidated and developed in [16, 18, 22, 23, 15] and in many other
works. Chapters 2 and 4 of [18] concern two of the three fundamental building blocks of the subject
of J-holomorphic curves, the local structure of J-holomorphic maps and Gromov’s convergence for
sequences of J-holomorphic maps; an alternative systematic exposition of these two topics appears
in [33]. Chapter 3 and Sections 6.2 and 6.3 of [18], Section 4 of [22], and Section 3 of [23] deal with
the third fundamental building block of the subject, transversality issues for J-holomorphic maps
that are relevant to constructing pseudocycles out of moduli spaces of these maps. The present
paper provides a streamlined and more general treatment of these issues. We adapt this treatment
to moduli spaces of real J-holomorphic maps in [34], providing a geometric interpretation of the
positive-genera real Gromov-Witten invariants of [5] in semi-positive cases.

1.1 Preview of the main statements

We begin by formulating the main statements of this paper in the most basic case of J-holomorphic
maps from connected domains. The g = 0 case of Theorem 1.1 and the (g, m) = (0,0) case of
Theorem 1.2(2) below include the main conclusions of [18, Chapter 3]. The analogues of these
statements for J-holomorphic maps from disconnected domains, provided by Theorems 1.3 and 1.4
in Section 1.2, imply the main conclusions of [18, Sections 6.2,6.3]. We illustrate the general ap-
proach behind the proofs of the main statements in this paper on the special cases of Theorems 1.1
and 1.2 in Section 1.3.

We call a subset J of a topological space J ubiquitous if J contains a countable intersection of
open dense subsets of J (the term used in [18] is residual). We discuss the significance of this
notion in the contexts such as those of the main theorems of this paper in Section 3.1.

For a manifold X, denote by J(X) the space of almost complex structures J on X with the
C®-topology. If in addition w is a symplectic form on X, let

Juo(X) = T5(X) = T (X) (1.1)

be the subspaces of w-compatible and of w-tamed almost complex structures. For g¢,keZ>?,
AeHy(X;7Z), and Je J(X), denote by mz;k (A; J) the moduli space of equivalence classes of simple
degree A J-holomorphic maps u from smooth connected compact genus g Riemann surfaces (%, )
with k& (distinct) marked points to X. For each i=1,... k, let

evi: MY (A3 ) — X and Li — 95 . (A; )

be the evaluation map and the universal tangent line bundle, respectively, for the i-th marked point;
see Section 2.3.

Theorem 1.1. Let X be a 2n-manifold. There exists a ubiquitous subset jcj(X) such that the
moduli space sm; w(A; J) is a smooth oriented manifold of dimension

dimg M (45 J) = 2({c1(T'X), A)+(n—3)(1—g)+k) (1.2)



and ev; is a smooth map for all
g, k€70, i=1,...,k, AeHy(X;Z), JeJ. (1.3)

For every symplectic form w on X, the same statement holds with J(X) replaced by J,(X)
and J/(X).

Let V be a connection in TX and ¥ be a smooth surface. Given z € X and v e T,Y, choose a
smooth curve

ay: (—0,0) — X, T —> ay(7), st a,(0) =2, o (0)=nuv. (1.4)
For a smooth map f: ¥ — X, denote by D]Y’av the covariant derivative of sections of o f*T'X

with respect to 7 determined by V. For meZ™, let

Jv =D, f,avd (Foo)| _ € TpX.
;_\,_/

m—1

In particular, @}v = d,f(v) is independent of the choices of V and «, satisfying (1.4). If

@}v,...,@?”*lv vanish, then ®7'v is also independent of these choices. If in addition f is
(J,j)-holomorphic for some Je J(X) and je J(X), then

@?(c ) =c"y (@?v) VceC; (1.5)
this follows from [33, Corollary 3.6].
Let g,k€Z?°, Ae Hy(X;Z), and Je J(X). For a tuple m=(m;);=1__x in (ZZ°)¥, define
Zr (A ) = {lz1,. . 2w B— X€ML (A3 J): Dv=0 Y meZ*, m<m;,
veT, 3, i=1,...,k}.
By (1.5), the section
Ot e D(ZF (45 0); L™ ecevi (T X, J)), (1.7)
Ditly®m — @Z“Hv V [u,v]€eL;,
is well-defined for every i=1,..., k.
Theorem 1.2. Let X be a 2n-manifold.

(1) There exists a ubiquitous subset Jc J(X) such that the space Zj . (A;J) is a smooth oriented
submanifold of M7 . (A; J) of codimension n|m| and (1.7) is a smooth section transverse to the

zero set for all g, k,i, A, and J as in (1.3) and me (ZZ°)F.

(2) If ke ZZ° and h: Y — X* is a smooth map from a smooth manifold, then j can be chosen
in (1) so that in addition the restriction of the smooth map

ev=evy x...xevy: My (A;J) — X"

to Z;,m(A; J) is transverse to h for all g, A, J and m as in (1).



For every symplectic form w on X, the same statements hold with J(X) replaced by J,(X)
and J/(X).

Theorems 1.3 and 1.4 in Section 1.2 extend Theorems 1.1 and 1.2 to J-holomorphic maps from dis-
connected domains. They directly imply the same statements for J-holomorphic maps from nodal
domains, as well as for the more general GU domains introduced in [22]. Other special cases of
Theorems 1.3 and 1.4 of the closely related Theorems 2.5 and 2.6 include Lemma 7.5 in [11], Theo-
rems 1.1 and 1.2 in [20], Proposition A.1 in [26], Proposition 1.8 in [29], and Theorem 1.5(1) in [31].

The crucial new ingredient for the purposes of constructing pseudocycles out of moduli spaces of
stable J-holomorphic maps from positive-genus Riemann surfaces is the notion of inhomogeneous
perturbation v of the dj-operator introduced in [22]; see Section 2.4. It in particular leads to
extensions of Theorems 1.3 and 1.4 to degree A =0 maps; see Theorems 2.5 and 2.6 in Section 2.5.

1.2 Transversality for J-holomorphic maps

Let X be a manifold and B be a manifold, possibly with boundary. Denote by
x: BxX — X

the projection to the second component, by J(B; X) the space of fiberwise complex structures on
the vector bundle 7% 7' X with the C®-topology, and by Symp(B; X) the space of smooth fiberwise
symplectic structures on 737 X. For Je J(B;X), weSymp(B; X), and be B, let J,€ J(X) and
wp € Symp(X) be the associated almost complex and symplectic structures on X. For J,€ J(0B; X),
define

J1(B; X) ={JeJ(B;X): Jy=(Jo), VbeB}. (1.8)

For weSymp(B; X), denote by
Ju(B; X) < J4(B; X) < J(B; X)

the subspaces of w-compatible and of w-tamed almost complex structures. For J,€7,(0B; X) and
Jo€J/(0B; X), define

JusaB; X) = Ju(B; X)  and [ ,(B; X) = J(B; X),
respectively, similarly (1.8).

For x € Z, k € Z7°, Ae Hy(X;Z), and J € J(X), denote by M (A; J) the moduli space of
equivalence classes of simple degree A J-holomorphic maps u from smooth, possibly disconnected,
compact Riemann surfaces (X,j) of holomorphic Euler characteristic xy with &k (distinct) marked
points to X. For a manifold B, possibly with boundary, and Je J(B; X), let

vk(AsJ) = {(b, [u]): be B, [u] €M% (A; Jy) -

This space inherits a topology from spaces of smooth maps from smooth domains. For each i€ [k],
denote by
evi: ML (A ) =— X and Li — M (A; ) (1.9)



the natural evaluation map and the universal tangent line bundle, respectively, for the i-th marked
point; these are pullbacks from one of the factors. For a tuple m= (m;);e[x) in (Z2°)* | define

Z(A D) C MF(A; ) and DT e T(Z235,(4; ) LI Dgeei(TX, 1)) (1.10)

as in (1.6) and (1.7) with M$% (A4; J) in place of M7, (A; J).

Theorem 1.3. Let X be a 2n-manifold. For every manifold B, there exists a ubiquitous subset

~

J(Bo; X)cJ(Bo; X) (1.11)
with the following properties.
(0) If BL, B2, ... are the topological components of B, then
J(Bo; X) = J(BLX) x T(BEX) x ... .
(1) For all x€Z, ke Zt Ac Hy(X:7Z), and J€ T (Bo; X),
(1a) M* (A; J) is a smooth manifold of dimension
dimp MY, (A; J) = dimp Bo+2({c1(T'X), A)y+ (n—3)x +k),

(1b) 23%(A; J) is a smooth submanifold of 5% (A; J) of codimension 2n|m|, and the section

m
Dmitl in (1.10) is smooth and transverse to the zero set for all me (ZZ°)F and ie[k].

(2) For all Joef(Bo; X) and manifolds B with boundary 0B = B,, there ezists a ubiquitous subset
J1.(B; X)< J1,(B; X) (1.12)

satisfying the properties in (1) with B, and manifold replaced by B and manifold with boundary
so that
OMYL(A; ) = MY (A o),  0Z35(A3T) = Z5(A; T6) - (1.13)

(3) An orientation on B. determines orientations on all spaces in (1) so that (2) holds in the
category of oriented manifolds.
For every weSymp(B; X), the same statements hold with J replaced by J,, and T/,

Theorem 1.4. Let X and B, be as in Theorem 1.3. If ke ZZ° and h: Y — X* is a smooth map
from a manifold, there exists a ubiquitous subset as in (1.11) satisfying (1) in Theorem 1.3 and the
following properties.

(1) For all x, A, me(Z>%), and JeJ(Bo; X) as in Theorem 1.3(1), the properties (1a) and (1b)
in Theorem 1.3 are satisfied and the map

evzele...xevk:Z;’m(J)—>Xk (1.14)
is transverse to h.

(2) For all Jo and B as in Theorem 1.3(2), there exists a ubiquitous subset as in (1.12) satisfying
the conditions in Theorem 1.3(2) and the additional condition in (1) above.

For every weSymp(B; X), the same statements hold with J replaced by J,, and J,.

The ubiquitous subsets as in (1.11) and (1.12) provided by Theorem 1.4 depend on h. In typical
applications of Theorems 1.3 and 1.4, B, is either a one-point set or a two-point set and B =0, 1].



1.3 Preview of the proofs

Let X, g, k, and A be as in Theorem 1.1. Denote by %;‘ (A) the space of triples (2,j,u) consisting
of a smooth connected compact Riemann surface (X,j) and a simple degree A map ¥ — X with
the C®-topology. For g =0, we always take (3,) to be S? =P! with its standard complex structure.
For g =1, we allow (X,j) to vary in the space of pairs arising as the quotients C/A; with A, cC
denoting the lattice spanned by 1 and 7€ C such that Im7>0. For g=2, we fix 3 and allow j to
vary in the Teichmiiller space .7; determined by ¥. We denote by % and .77 the one-point space
and the open upper-half plane Hc C, respectively.

For (3,j,u) € B(A), let
D(w)=T(S;u*TX), T (w)=T(5(T*%,))" @cu*(TX, J)),

(du+J oduoj) € F&Hu) .

N | —

3J7ju =

The moduli space M7 (A; J) of Theorem 1.1 is a smooth manifold of the expected dimension (1.2)
if the linearization
~ 1
Dy T(JHU)SB; (A) = T;7,@T (u) — F?I,j (u) (1.15)

of the 0 -operator on the space %;‘(A) at (2,j,u) is surjective whenever 0;;u = 0; see Proposi-
tion 4.2.

The standard way of establishing Theorem 1.1 is to show that the linearization
D500 T (T x BE(A)) = Ty T DT, B (A) — T (u) (1.16)

of the d-operator on the space J x %Z (A) at (J;),u) is surjective for all elements of the universal
moduli space N R B
UM (A) = {(J;),u)e T x B (A): 075u=0}. (1.17)

The restriction of (1.16) to T(Lu)%;(A) is (1.15). The surjectivity of (1.16) for every element
of (1.17) implies that

(S1) this subspace is an infinite-dimensional manifold,

S2) the homomorphism (1.15) is onto for all (X%,),u)€ B*(A) with Oy5u =0 if and only if J is a
g 5
regular value of the projection

T 11971;(14) — J, w(J;j,u) = J, (1.18)

(S3) the subspace J of regular values of (1.18) is ubiquitous;

see Section 4.3.

The surjectivity of (1.16), established in the proof of [18, Proposition 3.2.1], is a consequence of the
ellipticity of the 0j-operator and is obtained by explicitly showing that D J;(LU)E(T 1J) covers the
cokernel of (1.15); see Lemma 3.1. The general principle behind the argument summarized in the
previous paragraph is captured by Proposition 4.2. This principle would have applied directly in



the present situation if 7 and %; (A) were Banach manifolds (they are instead infinite-dimensional
manifolds locally modeled on Fréchet vector spaces of smooth maps). The standard approach to
deal with this issue is to replace J and %2’; (A) with their C* and W/-analogues, respectively;
see Section 3.4. The desired conclusion in the C'*-category then follows via Taubes’s argument,
appearing in the proofs of [18, Theorems 3.1.6(ii),6.2.6(ii)] and captured by Proposition 4.5. An
alternative approach to dealing with the above issue, which stays in the C'®-category, is due to
Floer; it is outlined in [18, Remark 3.2.7] and in the last two pages of [18, Section 3.4], which are
not used for anything else in [18].

For the constructions of GW-pseudocycles in [18, Section 6.6], [22, Section 2], and [23, Section 2]
and for many other purposes in GW-theory, it is useful to establish that the spaces M*(J) of
equivalence classes of simple J-holomorphic maps from nodal domains of a fixed combinatorial
type v are also smooth manifolds of the expected dimensions. The possible combinatorial types
are the connected genus g graphs v whose vertices v are decorated by the elements g,€Z>" and A,
of Hyo(X;7Z); see Section 3.2. The vertices and edges of v correspond to the irreducible components
and the nodes of the domains of the elements of M%(J). Each space M3 (.J) is an open subset of
the preimage of a submanifold A, of a Cartesian product X, under a map

ev M o (A J) — X, 1.19
,Y 9v,Sv ol

where E)JIZU’ s, (Av; J) is the moduli space of equivalence classes of simple degree A, J-holomorphic
maps u, from smooth connected compact genus g, Riemann surfaces (X, j,) with (distinct) marked
points indexed by the set S, of the flags based at vertex v; see the beginning of Section 3.4. The
expected dimension of 903(J) is

dimg M7 (J) = dimg M7 ,(4; J) — 2|yl

where ¢ is the sum of the genus of the graph « and of all the numbers g, assigned to the vertices
of v, A is the sum of the homology classes A, assigned to these vertices, || is the number of nodes
of 7, and the first term on the right-hand side is as in (1.2).

For a generic J, the map ev, in (1.19) is smooth. It is thus sufficient to show that ev, is transverse
to A, for a still generic J. By the proof of Proposition 4.2, this is implied by the transversality of
the smooth map

evy: {(J, G, uo)o) € JxH%gv, s, (J; oy ) €O ¢ (Ay) Yo} — X, (1.20)

to A, where %’;U’ s, (A,) and ilﬁ)?;‘m s, (A,) are the degree A, genus g, S,-marked analogues of the

configurations space %z’; (A) and the universal moduli space ilg)v?;(A) in (1.17), respectively. This
in particular implies that the associated universal moduli space

4N = {(J, (o, w)o) € JxH‘BgU 6, (A0 [ 1) ] €00 ()} (1.21)

is a smooth manifold.



The transversality of (1.20) for the genus 0 nodal domains (thus, the genus of 7 is 0 and g, =0 for
all v) is [18, Proposition 6.2.8]. Its proof is specific to the genus 0 case (though it is also applicable
to maps that are constant on some irreducible components). It combines the reasoning as in the
proof of [18, Proposition 3.2.1], which establishes the surjectivity of (1.16) in the g =0 case, with
[18, Theorem 6.3.1], according to which the differential of the evaluation map

er ngﬁgu So (A ) — X

is a submersion for every fe€S,. The proof of the latter applies the technical conclusion of [18,
Lemma 3.4.3]. Less detailed versions of this approach in more general settings appear in Section 4
of [22] and in Section 3 of [23].

Theorem 1.2(1) is essentially [26, Proposition A.1]. The proof of the latter applies the approach
of [18] summarized above to the direct sum of the bundle sections ©]" with m<m; and i=1,...,k
over the domain of the map ev, in (1.20) instead of the map ev,. The analogues of Theorem 6.3.1
and Lemma 3.4.3 of [18] in this situation are Lemma A.3 in [26] and Theorem 2.100 in [27], respec-
tively.

Propositions 2.3 and 4.1 in [20] imply the m =0 case of Theorem 1.2 with & being the inclusion of
the diagonal A = X?2. Unlike the two-step proofs in [18, 22, 23, 26], the reasoning in [20] obtains
the relevant analogues of the universal moduli space (1.21) in one step as the preimages of Banach
submanifolds by transverse maps. However, this approach does not extend beyond the m=0 case
of Theorem 1.2, as the relevant maps would no longer be transverse.

We follow a completely different approach in showing that the analogues UZ J.m of the universal

moduli spaces (1.21) relevant to Theorems 1.1-1.4 are cut out transversely. For (3, j, u)e%;(A), a
finite tuple z=(z¢)feg of points on ¥, and a tuple m= (my)ses of nonnegative integers, let

Cn(u;z) = {feF(u): E(zf)=0, V"€, =0V m=1,...,my, feS},

Fg:im(u; z) = {neF%(u): V™ Il =0V m=1,...,my, feS}.

It is immediate that the C*-analogues B*_ of the moduli spaces LLZN,’;‘;m (i.e. before imposing

m
0 condition) are infinite-dimensional manlfglds, see Lemma 3.3. The smoothness of u:if;;m then
follows from the surjectivity of the analogue of (1.16) over UZ> . for each element (J; (ju, Uy)ves,)
of UZ7... The latter is in turn the case if the image under Dy;, )0 of the subspace of T;J
consisting of infinitesimal deformations of J supported in an arbitrarily small open subset of X
intersecting the image u,(X,) of each component w, of u covers the cokernel of the restriction

Do)t Doy (w0 20) — T3 0 (5 2) (1.22)

of the homomorphism D, ,,) as in (1.15) for every v, where z, is the tuple of marked points
carried by wu, (which includes the nodes of the domain ¥ of u carried by 3,) and m, is an associated
tuple of nonnegative integers; see the proof of Proposition 3.5.

In complex geometry, a restriction as in (1.22) corresponds to an operator on the sections of the
vector bundle

uiH(TX,J) @Cozv< > mfzf> (1.23)
fes



where the Oy, factor above is the holomorphic line bundle determined by the divisor —mez’f

fes
in ¥,; see [9, Section 1.1]. The twisting construction of [24, Lemma 2.4.1] extends this classical

correspondence to generalized Cauchy-Riemann operators over Riemann surfaces as in (1.15). By
Serre Duality [12, Lemma 2.3.2], the cokernel of a restriction as in (1.22) is then isomorphic to
the dual of the kernel of the formal adjoint operator Dj;(ju,uv) on the (1,0)-forms that may now
have poles at the points z¢; see Proposition 4.9. This is immaterial for pairing such forms with the
infinitesimal deformations of J, as done in the proof of Proposition 3.2.1 in [18], provided they are
supported away from u,(zf). Thus, the same argument applies to the restricted operator (1.15);
see Lemma 3.1.

In summary, our approach to Theorems 1.1-1.4 involves the appearance of only one universal moduli
space. Similarly to the arguments in [18, 20, 22, 23, 26], it runs off the “local universal transver-
sality” of Lemma 3.1. The proof of the “local universal transversality” (in all cases) depends on
the ellipticity of a generalized Cauchy-Riemann operator and on Serre Duality for such an oper-
ator. In contrast to [18, 20, 22, 23, 26], we obtain “local universal transversality” for generalized
Cauchy-Riemann operators on all twistings of ©*T'X as in (1.23), instead of just on w*T'X. This
results in no additional complications and avoids the delicate arguments on local deformations of
J-holomorphic maps that underpin the proofs of [18, Theorem 6.3.1] and [26, Lemma A.3].

The complications in constructing GW-pseudocycles in positive genera that arise from J-holomorphic
maps that are constant maps on some irreducible components of the domain are avoided in [22, 23]
by contracting such irreducible components and producing a so-called GU map. The domains
of these maps are Riemann surfaces whose singular points may contain more than two smooth
branches; see Sections 2.1 and 2.3. Our approach for establishing Theorems 1.1-1.4 readily extends
to spaces of GU maps of a fixed combinatorial type via the “local universal transversality” of
Lemma 3.2; see Theorems 2.5 and 2.6.

1.4 Outline and acknowledgments

The relevant notation for the moduli spaces of complex curves and for their covers is set up in
Section 2.2. Terminology concerning maps from singular Riemann surfaces is defined Section 2.3.
Section 2.4 introduces a version of Ruan-Tian perturbations. We define the spaces
mt:;'yo,w<']7 V) < mjyf’yg,m(ﬂ V) < m’ﬁ"{ofw(Jv V)

of basic and reduced GU maps of a fixed combinatorial type and state analogues of Theorems 1.3
and 1.4 for them in Section 2.5. These analogues are proved in Sections 3.3 and 3.4. The first of
these sections introduces suitable deformation-obstruction settings and then shows that the defor-
mations of Ruan-Tian pairs (J,v) suffice to cover the obstruction space in all relevant cases; see
Lemmas 3.1 and 3.2. By Section 3.4, Lemmas 3.1 and 3.2 ensure the smoothness of the universal
moduli space of basic (J,v)-maps of a fixed combinatorial type. The latter implies the smoothness
of the corresponding space of (J,v)-maps for a fixed pair (J,v); see Proposition 4.4. This then
concludes the proof of Theorems 2.5 and 2.6.

The proof of Theorems 1.3 and 1.4, which we omit, is a simplified version of the proof of Theo-
rems 2.5 and 2.6. In particular, it does not require Lemma 3.2. Theorems 1.3 and 1.4 are essentially



the Verg = ¢J case of Theorems 2.5 and 2.6 (this case is not formally admissible in the terminology
of the two theorems).

The present paper grew out of the author’s desire for a systematic treatment of transversality issues
arising in various settings in the theory of J-holomorphic curves, including the common ones as
in [18, 22, 23] and the more specialized one in [5, 11, 14, 20, 26, 29, 31]. He would like to thank
P. Georgieva, J. Starr, and C. Wendl for enlightening discussions that influenced the preparation
of the present paper.

2 Spaces of (J,v)-maps

The Ruan-Tian perturbations v used to regularize the Cauchy-Riemann equatlon 0y su=0 for maps
into an almost complex manifold (X, J) are sections of certain bundles over Z/{g k< X, where Z/{g k
is the universal curve (2.8) over a finite cover /\/197;€ of Mgy, as in Definition 2.1 with S = [k].

Unfortunately, the total space of L~{g7k in general has singularities around the nodal points of the
fibers of 7 of the from

{(t,z,y)e C}ray=t"} —C,  (t,z,y) — t;

see the proof of [1, Proposition 1.4]. This causes some difficulty in defining notions of smoothness
for bundle sections over Z:{gJC x X. The approach of [23, Section 2| to deal with this issue is to embed
the universal curve (2.8) into some PV . Following a suggestion of P. Georgieva, we bypass such an
embedding by using perturbations supported away from the nodes as in [15].

The notions of marked nodal and GU Riemann surfaces are introduced in Section 2.1. The topol-
ogy of the Deligne-Mumford moduli space ﬂg’s of stable genus g S-marked nodal curves and cov-

ers /(/lvgvk of Mg,k are described in Section 2.2. We introduce GU maps to a manifold in Section 2.3
and Ruan-Tian perturbations in the first half of Section 2.4. In the second half of Section 2.4, we
define notions of a GU (J, v)-map and moduli spaces of (J,v)-maps in the spirit of [23, Section 3].
In Section 2.5, we define spaces of GU (J,v)-maps of a fixed combinatorial type and relax the
degree restriction in the statements of Theorems 1.3 and 1.4; see Theorems 2.5 and 2.6.

2.1 GU Riemann surfaces

A (smooth) Riemann surface or complex curve is a pair (¥, j) consisting of a compact smooth two-
dimensional manifold ¥ (without boundary) and a complex structure j in the fibers of 7. A nodal
Riemann surface is a pair (3, ]) obtained from a Riemann surface (E j) by identifying pairs of dis-
tinct points in a finite subset Sg = (with each point of SE identified with precisely one other point
of S5,); see Figure 1. A GU Riemann surface i is a pair (X,]) obtained from a Riemann surface (,3)
by identifying each point in a finite subset Sg < 3 with at least one other point of Sg In both
cases, the pair (i,j) is called the normalization of (3,j).

An irreducible component of (X,j) is the image of a topological component of Y under the quotient

projection N
gL — X, (2.1)

10



Figure 1: Nodal Riemann surfaces of (arithmetic) genera 1 and 2, respectively

We call the images of the points of gg under this map the lumps of ¥. Each lump joins two or
more smooth branches. A lump in a nodal surface joins precisely two smooth branches and is thus
a node in the usual sense. We denote the set of lumps of a GU Riemann surface (X,j) by Sy and
its complement by ¥*. The (arithmetic) genus of a GU Riemann surface (3,j) is the number

27X 15 sy (2.2)

a(X) = 5

where X(i) is the Euler characteristic of 3.

An equivalence between GU Riemann surfaces (X,j) and (X',j’) is a homeomorphism h: ¥ — 3/
induced by a biholomorphic map h from (ZNI j) to (i’ j"). A GU map u between GU Riemann
surfaces (2,)) and (E’ i') is a holomorphic map % from (Zo, ), where Yo is a union of topological
components of E to (E/ j') such that the restriction of % to every topological component of EO is
not constant. We call the topological components of the closure of $— Eo the contracted components
of u. Such a map is of degree 1 if [~ 1(2')| =1 for every /€5’ and % !(Ssy) < Ss;. A GU morphism
between GU Riemann surfaces (X,j) and (¥',j’) is a continuous map w: ¥ — ¥’ such that the
restriction of w to the union ¥ of the irreducible components of ¥ on which u is not constant
is induced by a GU map. We say that such a morphism is of degree 1 if its restriction to X is
induced by a degree 1 GU map. We call it a contraction if in addition for every 2’ €Y’ the subset
u~!(2')c ¥ is either a point or a connected GU Riemann surface of genus 0.

Let S be a finite set. A genus g S-marked GU Riemann surface is a tuple
C= (Eaja (zi)iES)a (23)

where (X,j) is a GU Riemann surface of genus g and z; € . A genus g S-marked nodal Riemann
surface is a genus g S-marked GU Riemann surface as in (2.3) such that (%,j) is a nodal Riemann
surface and ZI¢SE are distinct points. Since the restriction of (2.1) to S-Sy is a homeomorphism
onto X*, it is customary to view the marked points z; of a nodal Riemann surface as distinct points
of 3*. It is also common to index the marked points by the sets

= {ieZ"* i<k}, kez?°,

but allowing arbitrary finite indexing sets is often more convenient.

11



An equivalence between a genus g S-marked GU Riemann surface C as in (2.3) and another genus g
S-marked GU Riemann surface
C'= (2§, (2))ies) (2.4)

is an equivalence h between the GU Riemann surfaces (X,j) and (¥',j") such that lNL(zi)zzz’- for
all i€ S. We denote by Aut(C) the group of automorphisms, i.e. self-equivalences, of a genus g
S-marked GU Riemann surface C. Such a Riemann surface is called stable if Aut(C) is a finite

group.

An S-marked GU map u between S-marked GU Riemann surfaces C and C’' as above (not nec-
essarily of the same genus) is a GU map u between the GU Riemann surfaces (X,j) and (¥',j)
so that u(z;) =z} for all i€ S such that z;€ Dom(u) and zéeﬁ(gngom(ﬂ)) for all i€ .S such that
zi¢ Dom(u). An S-marked GU morphism between C and €’ is a GU morphism u between (X, j) and
(X',1") such that u(gs(z)) =¢sr(2}) for all i€ S.

If $o,...,5x is a partition of ¥ into unions of topological components so that ¥, = qg(ir) is
disjoint from X for r, se [N] distinct, then

a(®) = YaE,) + Y <|q£1(20)miri—1). (2.5)

If u is a degree 1 GU morphism from a connected GU surface (2,) to (3,i), S S is the domain
of the holomorphic map @ as above,

Sy = {2€%0: |a5'(2) "] =2}
are the lumps of X, and X1,..., Xy cX are the topological components of qg(i—io), then

a(X') =a(So) + (|Sx,|—|u(Ss,)l)

N
+ 3 an o) nan ()~ Sy — [u(S1 0. oS —u(Ssy)| (2:6)

r=1
If for every 2z’ €Y’ the subset u~!(z’) =X is connected, then
’u(Elu. : .UZN)—U(SEO)| = |{TE [V]: QE(EO)QQE(ir)ﬁSEO ZQH'
If 3 is nodal (in addition to u being a morphism), then
[u(Ssy)| = |Ssos  Jas(Eo)ngs(Er)nSs,| <1 Vre[N].

Combining the observations in the last two sentences with (2.5) and (2.6), we conclude that
a(X)=a(X) if u is a contraction to a nodal Riemann surface (3',j’).

From the previous sentence, we obtain the following. If w is an S-marked contraction from a
connected S-marked nodal Riemann surface C to another S-marked nodal Riemann surface C’,
then a(C)=a(C’) and every contracted topological component 3, of u is a genus 0 Riemann surface
which shares one or two nodes with the non-contracted part ¥ of u and carries at most one marked
point z;. If 3, does carry a marked point, then it shares precisely one node with .
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Figure 2: A complex-geometric presentation of a flat family of deformations of Co, =7~1(0) and a
differential-geometric presentation of these Riemann surfaces.

2.2 Moduli spaces of nodal Riemann surfaces

Let C be a genus g S-marked nodal Riemann surface as in (2.3). A flat family of deformations
of C is a tuple (7, (s;)ies), where m: Y —> A is a holomorphic map from a complex manifold to a
neighborhood Ac C» of 0 and s;: A——{ are holomorphic sections of 7, such that

e Xy=7"1(}\) is a nodal Riemann surface and s;(A\)e X% are distinct points for each Ae CV,
e 7 10)=(%,j) and 5;(0) = 2; for each i€ S,
e 7 is a submersion outside of the nodes of the fibers of =,

o for every A* = (A},...,A%) € A and every node z* € ¥y, there exist ¢ € [N] with A\; = 0,
neighborhoods Ayx of A* in A and U+ of z* in U, and a holomorphic map

Ul —> {((M, -+, AN), 2, y) €Axx x C?r zy =\ }

such that ¥ is a homeomorphism onto a neighborhood of (A*,0,0) and the composition of ¥
with the projection to Ay« equals 7y, .

Figure 2 shows such a family from two perspectives.

A sequence of genus g S-marked nodal Riemann surfaces C, converges to a genus g S-marked
nodal Riemann surface C if there exist a flat family of deformations of C as above and A, e A for
all r sufficiently large such that A\,— 0 as r — 00 and the genus g S-marked nodal Riemann
surface (771(\,), (si(Ar))ies) is equivalent to C,. This in particular topologizes the set M, ¢ of
the equivalence classes of stable connected genus g S-marked nodal Riemann surfaces. By [13,

Theorem 2.7], Mgy g
e is compact and Hausdorff in the resulting topology,

e contains the subset M, s of equivalence classes of stable connected genus g S-marked smooth
Riemann surfaces as an open subspace, and

e carries a natural complex orbifold structure of dimension

dimcﬂgyg =39—3+|9|.
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If 2g+|S5| >3, there is a forgetful morphism
f.5: Ugs=Mg sy — Mg,s;

it drops the extra marked point and contracts the unstable irreducible component(s) of the result-
ing curve if necessary. This morphism determines the universal family over M, g. For keZ?°, we
denote by M x the moduli space M, ;) and by Uy k. its universal family U 1.

For a tuple 2 = (g1, 51;92,S2) consisting of g1,g2 € 770 with g=g1+¢2 and S1,S8, < S with
S = 511855, denote by

Mg = Mgs
the closure of the subspace of marked curves with two irreducible components 1 and Y9 of genera g;
and go, respectively, and carrying the marked points indexed by S; and So, respectively. Let

Ly Mg, siuq+y X Mg, syuq4) — Mgs

be the natural immersion with image Mg (it identifies the two extra marked points into a node).
We denote by Div, g the set of tuples & as above.

Definition 2.1. Suppose geZ>" and S is a finite set so that 2g+|S|>3. Let

~

p:Myg— M%s (2.7)
be a finite branched cover in the orbifold category. A universal curve over ./\79,5 is a tuple
(7 Uys—>Mys, (5i)ies) (2.8)

where L~{g75 is a projective variety and 7 is a projective morphism with disjoint sections s;, such that
for each Ce M, g the tuple (771(C), (si(C))ies) is a stable genus g S marked nodal Riemann surface

~

whose equivalence class is p(C).

Definition 2.2. Suppose geZ>" and S is a finite set so that 2g+|S|>3. A cover (2.7) is regular if
it admits a universal curve and for every element 2 = (g1, S1; g2,52) of Div,y g there exist covers

/\79“52.,_,{“ of My, g,.,(4+} such that

~ ~

(Mys100) % Mgy s00141) X(gm) Mas = Mg, s0(1) X My 55004} -

The moduli space My g is a complex manifold isomorphic to a blowup of (PH)IS1=3. Tt can be
embedded into (P)Y for N =N(|S|) sufficiently large; see [18, Appendix D]. The universal family
over My s satisfies the requirement of Definition 2.1. For g > 2, [1, Theorems 2.2,3.9] provide
covers (2.7) satisfying the last requirement of Definition 2.2 so that the orbifold fiber product

~ ~

T U, kEM%S@/Vg,sﬁgvs — M%S (2.9)

)

satisfies the requirement of Definition 2.1; see also [21, Section 2.2]. The same reasoning applies in
the g=1 case if S# .

14



2.3 Maps from GU domains

Let X be a manifold. If ¥ is a connected smooth orientable surface, a C'-map u: ¥ — X is
e somewhere injective if there exists ze ¥ such that v~ (u(z)) ={z} and d,u#0,

e multiply covered if u = u'oh for some connected smooth orientable surface X', branched cover
h:%— Y of degree different from +1, and a C'-map v': ¥’ — X,

e simple if it is not multiply covered.

By [33, Proposition 4.11], a simple J-holomorphic map is somewhere injective.

Let £ € Z" {0} and (X,j) be a GU Riemann surface (3,j). A continuous map u: ¥ — X is
a C’“map if the induced map % : ¥ — X is C¢. The degree of a C*-map u: ¥— X is the
homology class

~

A = uy[X] = Us[X] € Ho(X; Z). (2.10)
If in addition Je J(X), we define

_ 1 ~
Orju = 5(da + Joduoj): (TS, —j) — a*(TX,J).
A Cf-map u: ¥— X is J-holomorphic if EL],J'U:O.

Let S be a finite set. An S-marked GU C*-map is a tuple u= (C, u), where C is an S-marked GU
Riemann surface as in (2.3) and v is a C*-map from (,j). We call such a tuple

(1) reduced if the restriction of @ to every topological component of 3 is simple and the images of
any two such components under @ are distinct;

(2) basic if u is reduced, zeX— Sy for every i€ S, and these points are distinct.

If (%,j) is an S-marked nodal Riemann surface, then a reduced C*-map is basic. An S-marked
GU C%map u as above is equivalent to another S-marked C*map (C’,u') if there exists an equiv-
alence h between C and C’ such that u=u'oh. An S-marked GU C*-map u is stable if its group of
automorphisms is finite.

For Ae Hy(X;Z), geZ*, and Je J(X), let 93?; 5(A; J) be the space of equivalence classes of stable
J-holomorphic maps from connected smooth genus g S-marked GU Riemann surfaces. It inherits
a topology from the space of smooth maps into X. Denote by

ML (A3 T), My,5(A; T) < MY (4;.7)
the subspaces of reduced maps and of maps from domains with distinct marked points. Let
5 (ArT) = MG (A3 T) My 5(A; J) < M (A;])
the subspaces of basic maps. For each i€ .S, let

evi: MY (A )) — X, [5,, () jes, u] — ul=),
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be the evaluation map for the i-th marked point.

For A#0, the map

f: m;,Su{+}(A; J) - m;S(A7 J)? [Eaja(zi)iES\_l{-l-}:u] - [27j7(zi)i657u]7 (211)
is a well-defined continuous orbi-bundle. The fiber of f over [X,}, (2;)es, ] is the quotient of ¥ by
Aut(X,), (2i)ies,u). The tangent spaces to the fibers determine a complex line orbi-bundle

f .
T— (A5,

For each i€ S, let

.ot . f
St E)ﬁg’s(A, J) — 93?97Su{+}

(A; )
be the section such that
. . Zj, if jES;
Si([zvjv(zj)j657u]) = [27]7(29)]'651_1{-&-}7”]7 Z;‘ = {ZZ', 1f]=+
The complex line orbi-bundle
Li=s;T — M o(A;) (2.12)

is called the universal tangent line bundle for the ¢-th marked point.

The direct analogue of the line bundle (2.12) can be similarly defined over the space of equivalence
classes of stable C*-maps from connected smooth genus ¢ S-marked GU Riemann surfaces and for
A=0 (after suitably restricting the domain of § in (2.11)). The restriction of (2.12) to M, s(A4; J)
naturally extends over Gromov’s space of equivalence classes of stable nodal J-holomorphic maps
into X, but this is not relevant for the purposes of the present paper.

2.4 Ruan-Tian perturbations

Let g,k e 77° with 2g+k >3 and p as in (2.7) be a regular cover with S = [k]. We denote by
Z/Ig”:kCZ/lg,k the complement of the nodes of the fibers of 7 in (2.8) and by

Tp= kerd(ﬂ‘ﬁ;’fk) — U
the vertical tangent bundle. The latter is a complex line bundle; let j;; denote its complex structure.

Let X be a manifold and R R
T, o Ug"jk xX — L{;k, X

be the projection maps. For a section v of a bundle E over Z/N{g’fk x X, we denote by supp(v) the
closure of the set
{(z,x) el x X :v(z,2)#0} € Ugpx X

in Uy, ,x X. For Je J(X), let

~

Iy (X50) = {veT (@ x Xi w1 (To, —iu)* ®c 3 (TX, J)):

(2.13)

-

Im(s;)) xX}.

supp(v) < (Z:l;k —

i=1
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The condition that supp(v) be disjoint from the sections s; is needed to define analogues of the
bundle sections (1.7) in Section 2.5.

Define
Hy(X) = {(J,v): Je T(X), velp' (X;J)}. (2.14)

If in addition w is a symplectic form on X, let
Hp(X) < Hypo (X) < Hp(X) (2.15)
be the subspaces of pairs (J,v) so that Je€J,(X) and Je J/(X), respectively.

Definition 2.3. Suppose g, ¢, ke Z=" with 2g+k >3, p as in (2.7) is a regular cover, (X, J) is an
almost complex manifold, and ueI‘g’l(X; J). A genus ¢’ k-marked GU (J,v)-map is a tuple

uE(C,uM:E—H~g7k,u:2—>X), (2.16)

where C is a connected genus ¢’ k-marked GU Riemann surface as in (2.3), uprq is a degree 1
k-marked GU map onto a fiber C’ of (2.8), and u is a C'-map such that

224l v(tUpm(2), U(2) od.Ung, if z€Dom (T );
=
i 0, otherwise.

Definition 2.4. Suppose g¢,¢',k,p, (X,J), and v are as in Definition 2.3. A (J,v)-map u as
in (2.16) is

(1) reduced if the restriction of @ to every contracted component of w4 is somewhere injective and
the images of any two such components under u are distinct;

(2) basic if u is reduced and z; € £ —Sx are distinct points.
The degree of a GU (J, v)-map (2.16) is the degree of u as in (2.10). We call a GU (J,v)-map u as
in (2.16) a nodal (J,v)-morphism if C is a k-marked nodal Riemann surface and uu is an S-marked

contraction to a fiber C’ of (2.8); see Section 2.1. This implies that ¢’ = g and that @iy does not
contract any loops of spheres. A reduced nodal (J, v)-morphism is automatically basic.

A (J,v)-map u as in (2.16) is equivalent to another (J, v)-map
u' = (C W)y Z’——>L~lg,k,u/: ¥ —X)
if there exists an equivalence h between C and C’ such that
Up = ﬂlMoiNL‘Dom(ﬂM) and u=u'oh.

A (J,v)-map u is stable if its group of automorphisms is finite. This is the case if and only if the
degree of the restriction of @ to every contracted component of wa containing only one or two
special (nodal or marked) points is not zero.
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For Ae Hy(X;Z), let
dimg ;(A) = (c1(TX), Ay+(n—3)(1—g)+k, where 2n=dimpX . (2.17)

For (J,v) € Hy(X), we denote by 9, x(A; J,v) the moduli space of equivalences classes of stable
degree A genus g k-marked nodal (J, v)-morphisms and by

My x(A;J,v) ﬁg’k(A; J,v)

the subspace of maps from smooth domains; all of these maps are basic in the sense of Definition 2.4.
This subspace inherits a topology from the space of smooth maps into X. The map

stxev: My p(A4; J,v) — ﬂ%k X Xk, [C, UM, u] — (p(ﬂ(uM(E))), (u(zi))ie[k]), (2.18)

is continuous with respect to this topology.

Let B be a manifold, possibly with boundary. Denote by
TR, Ty, Tx: B xZ/N{;’k x X — B,Z/N{;k, X

the projection maps. For N

and be B, let N
vy € DUy x X;mi Tp*@rms TX)

be the associated bundle section. Define
Hp(B; X) = {(J,v)e T (B; X)x T (Bx U x Xy Tp*@r iy TX) ¢ (Jy, 1) €Hy(X) Vbe B}
For weSymp(B; X), denote by
Hpw(B; X) < Hy,(B; X) € Hy(B; X)

the subspaces of pairs (J,v) so that J € J,(X) and J € J/(X), respectively. For (Jo,vs) in
Hypw(0B; X), My, (0B; X), or Hy(0B; X), define

Moo v B; X) © Hpo(B; X), ;;JO,VO(B§X) c 'H;,;w(B;X), Hi,v(B; X) € Hp(B; X),

respectively, analogously to (1.8).

2.5 Transversality for (J,v)-maps

The general structure of GU Riemann surfaces and GU J-holomorphic maps are described by
graph-like combinatorial objects. An edge of a graph is an element of the two-fold symmetric
product of the set of vertices or equivalently a two-element subset of the set of flags (an edge either
joins two different vertices or goes from a vertex back to itself). However, the topological types
of GU Riemann surfaces correspond to more complicated objects, which we call GU graphs below.
An edge of a GU graph is an m-element subset of the set of flags for some m >2. All these objects
are defined below.
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Let S be a finite set. An S-marked GU graph is a tuple
v = (g:Ver—>Z>O,5: SuFl—»Ver,Edg), (2.19)

where Ver and F1 are finite sets (of vertices and flags, respectively) and Edg is a partition of FlI
into subsets e with |e] >2. An S-marked graph is an S-marked GU graph as in (2.19) such that
le| =2 for every ee Edg. An S-marked graph can be depicted as in the left and middle diagrams of
Figure 3 on page 21, where S'={1,2} and a line segment connects each label i€ S with £(i) € Ver.
An example of a GU graph which is not a graph is represented by the right diagram of Figure 3,
along with the specifications in the two lines above its caption. Let

a(y) =1+ > g(v) — [Ver|+|Fl|— |Edg] (2.20)

veVer

be the arithmetic genus of ~.

For feFl, we denote by eyeEdg the unique element of Edg containing f. For each ve Ver, let
Sy(7) = e L(v) ¢ SUFL (2.21)

A vertex ve Ver of v is trivalent if
0)+[Su (7)| = 3. (2.22)

The GU graph v is trivalent if all its vertices are trivalent. The GU graph - is connected if for all
v, v’ € Ver distinct there exist

meZr, fi i fms [ €FL s.t.
e(fr)=v, e(fm) =V, e(f;i") =e(fiz1) Vie[m—1], e Cp- = €t Vie[m].
An equivalence between an S-marked GU graph as in (2.19) and another S-marked GU graph
v = (g/:Ver' —Z7° ¢’ : SUFI'— Ver’, Edg’) (2.23)
is a pair of bijections hyer: Ver — Ver’ and hp;: F1— F1’ such that
g=00hver, hverocls =€ls, hverog|lpr = €' ohp,  hpi(e) € Edg’ VeeEdg.

For g,keZ>?, let A, ), denote the (finite) set of (equivalence classes of ) connected trivalent graphs
as in (2.19) with S=[k] and a(y)=g. This set is empty unless 2g+k > 3.

Let v be as in (2.19). An S-marked GU Riemann surface C as in (2.3) is of combinatorial type v
if the set of the topological components of 5 and the set Sg of the lump branches of > can be
identified with the sets Ver and F1, respectively, so that

e the genus of the topological component ¥, of & corresponding to ve Ver is g(v),

e 2 € ig(i) for each i€ S and zy e is(f) for each feFl, where z; € Sy, is the point corresponding

to f,
o for f, f'€Fl, gu(zy) =qx(zp) if and only if f, f'€e for some ecEdg.
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Let Ae Hy(X;Z). A degree A k-marked GU graph is a tuple
7= ((g,9): Ver — ZZ°@H»(X; Z), e : [k]uFl—> Ver, Edg)

such that the tuple
Ym = (g9:Ver—Z7°, e [k]uF1—> Ver, Edg)

is a k-marked GU graph and

Zb(v) =A, {w,0(v)) =0 V veVer.

veVer

Let a(y) denote the arithmetic genus a(yaq) of A as in (2.20) and

dim(y) = {e1(TX), Ay+(n—3)(1—a(y)) +k — 2|F1|+3|Edg|.

(2.24)

(2.25)

(2.26)

We say that a k-marked C'-map u=(C,u) is of combinatorial type « if the k-marked GU Riemann
surface C is combinatorial type v and for every v e Ver the degree of the restriction of u to the

irreducible component ¥, © ¥ corresponding to v is ?(v).

The general structure of a GU (J,v)-map u as in (2.16) is specified by triples (v;+/, @), with

e 7 as in (2.24) describing the X-component u of u,
e 7/ as in (2.23) describing the fiber C’ of (2.8) containing the image of uaq, and
e w describing the GU map from C to C’.

This is made precise below.
Let v be as in (2.19). Denote by A(y) the collection of pairs (7o, @), where
Yo = (go :Verg— 27, eq: [k‘]l_lFlo—>Vero,Edg0)
is a connected k-marked GU graph with Vergc Ver and Flyc Flne~!(Verg) and
w: [k]—e ' (Verg) —> Flne™!(Verg) —Flo
is an injective map, such that

80 = 9|vero> 50’([k]ma*1(Ver0))uF10 = 5’([k]m551(ver))uplo7
50|[k]75—1(Ver0) = Eow: [k‘]—«S_l(Vel"o) —_— Vel"o.
Thus, 7 is obtained from v by
e dropping every vertex ve Ver— Very,

e combining some of the flags in Flne~!(Very) into the elements of Edg,

e attaching each marked point i€ [k]—&~!(Verp) in place of one of the remaining flags f =w(i) in

Flne~!(Verp).
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1
1 2 Q 2
N N
1 1 1 1
Y0 " Yo = (g2, €2, Edgy)
e2(f3),e2(f5) =0, e2(f5),e2(fi7) =01, e2(fs),e2(fy ) =02, e2(fi),e2(f) =23
g2(v1), 92(v2) =1, g2(vo), 92(vs) =0, Edgy={{f§. f5, f§, f&3 ALV ALY

Figure 3: A graph 7 as in (2.27), a graph y=7; as in (2.19), and a GU graph y=+2 as in (2.19)
such that (v, w1) € A(y1) and (0, @2) € A(72) for some @ (1) and wa(1). The value of g on the
vertices with the number 1 next to them is 1; its value on the remaining vertices of vy and ~; is 0.

Examples of pairs (79, w)€.A() appear in Figure 3.

For g,k € Z*° and a k-marked GU graph v as in (2.19), let Ay(y) denote the subset of pairs
(70, w) € A(7) so that y9 € Agy. For A€ Hy(X;Z) and a degree A k-marked GU graph v as
in (2.24), denote by Ag(v) = Ag(ym) the subset of pairs (79, @) with g as in (2.27) so that d(v) #0
for all ve Ver— Very.

Suppose 7 is as in (2.19) with S =[k], 7o is as in (2.27), C is a k-marked GU Riemann surface of
type v as in (2.3), and C’ is an S-marked nodal Riemann surface of type vy as in (2.4). If upq is
a degree 1 k-marked map from C to C’, we can identify Verg and Fly with subsets of Ver and FlI,
respectively, so that

~

Uim(S,) =& Ve Ver, Upm(zp) = 27 YV feFl,

and the assumptions in (2.29) are satisfied; see Section 2.1. Since C’ is nodal, there also exists a
unique injective map w as in (2.28) satisfying (2.30); if C’ were not nodal, @ might not have been
injective and might have taken values in Fly. We define the combinatorial type of uaq to be the
pair (y0,@)€A(7).

Suppose 7 is as in (2.24), (70, @) €Ag(ym), and p as in (2.7) is a regular cover. For (J,v)eHy(X),
let QJILWO@(J, v) denote the space of equivalence classes of stable GU (J,v)-maps u as in (2.16) so
that the degree 1 S-marked map uaq is of combinatorial type (70, @) and the k-marked C!'-map
(C,u) is of combinatorial type 7. For a manifold B, possibly with boundary, and (J, v) e H,(B; X),
let

Mo (Lv) = {(b,[u]): be B, [u]eM]_ _(Jy,m)}.

These spaces inherit topologies from spaces of smooth maps from smooth domains.

For each ie[k], let

ev;: omt

V0, ™

(Jjv)— X and L — !

Y0, ™

(J,v) (2.31)
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be the natural evaluation map and the universal tangent line bundle, respectively, for the i-th
marked point; these are pullbacks from one of the factors. Denote by

st: Qﬁimoyw(J, v) —> ﬂg,k, [C,uM,u] — p(ﬂ(uM(E))), (2.32)

the stabilization map. Let
m:;vo,w<‘jﬂ V) < mjytyo,w(‘L V) < m’Y;"/wa(Jv V)
be the subspaces of basic and reduced maps, respectively.

For a tuple m= (m;);e[x) in (ZZ%)k, define

z (Jov)ycmz,  _(J,v) and

Yo, w;m Yo, w
DMt e D(Z5 (L) LI et (TX, J)) (2.33)

as in (1.6) and (1.7) with M5, _(J,v) in place of MG, (A; J). These are well-defined because the

X component u of a (J,v)-map u as in (2.16) is J-holomorphic on a neighborhood of every marked
point z; of C by (2.13).

Theorem 2.5. Let g, k,p be as in Definition 2.3. If B, and X are manifolds (without boundary),
then there exists a ubiquitous subset

~

Hp(BO,X)CHp(BO7X) (234)
with the following properties.

(1) If BL, B2, ... are the topological components of B, then

Hy(Bo; X) = Hy(BL X) x Hp(B2 X) x ...

(2) For all (J, I/)E?-A[p(BO;X), Ae Hy(X;Z), degree A k-marked GU graphs v, and (yo, )€ Ag(7),

(2a) fmi%o,w(t], v) is a smooth manifold of dimension dimgB,+2dim(vy), and the maps ev;
in (2.31) and st in (2.32) are smooth,

(2b) 2% wm(Jsv) is a smooth submanifold ofimjrff,yo,w(t], v) of codimension (dimg X)|m|, and
the section D™+ in (2.83) is smooth and transverse to the zero set for all me (Z=0)%
and i€[k].

3) For all (J,v) € H Bo; X) and manifolds B with boundary 0B = B,, there exists a ubiqui-
p
tous subset

0 (B; X) & Moo (B; X) (2.35)

satisfying the properties in (2) with B, and manifold replaced by B and manifold with boundary
so that

ot (Jv)=m* (), 0ZF (J,v) = 2* (Jos 05) . (2.36)

Y0, ™ viv0,w v57Y0,@m Y57Y0,@;m

(4) An orientation on B, determines orientations on all spaces in (2) so that (3) holds in the
category of oriented manifolds.
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For every weSymp(B; X), the same statements hold with H, replaced by Hy.., and H;;w.

Theorem 2.6. If B,, X, g, k€Z>°, and p are as in Theorem 2.5 and h: Y — X* is a smooth map
from a manifold, then there exists a ubiquitous subset as in (2.34) satisfying (1) in Theorem 2.5
and the following properties.

(1) For all (J, V)E?—A[p(BO;X), v, (70, @), and me (ZZ°) as Theorem 2.5(2), the properties (2a)
and (2b) in Theorem 2.5 are satisfied and the map
ev=evy x...xevg: Z* (J,v) — X* (2.37)

¥5Y0,70;m
1s transverse to h.

(2) For all (Js,vs) and B as in Theorem 2.5(3), there exists a ubiquitous subset as in (2.35)
satisfying the conditions in Theorem 2.5(3) and the additional condition in (1) above.

For every weSymp(B; X), the same statements hold with H, replaced by Hy.., and ’H;;w.

3 Proof of Theorems 1.3-2.6

In light of Propositions 4.4 and 4.5, Theorems 2.5 and 2.6 come down to Proposition 3.5. It is
in turn a consequence of Lemmas 3.1 and 3.2, which concern simple J-holomorphic maps from a
smooth connected domain and from components ¥, of (J,v)-maps u as in (2.16) not contracted
by waq, respectively. The substance of these lemmas is that the admissible deformations of J in the
first case and of v in the second supported in an open set W intersecting the image of a map cover
the cokernel of the linearization of the d;-operator, in the first case, and of the d;—v/|x,-operator
in the second.

For the remainder of Section 3, we fix g,k,p, X, B,, B, and h as in Theorems 2.5 and 2.6. We
denote by n half the real dimension of X, as before. Since the collection of tuples (A,~, 0, @) as
in the two theorems is countable, it is sufficient to find ubiquitous subsets satisfying the required
properties for each such tuple (4,~,70,w). We thus also fix A€ Hy(X;Z), a degree A k-marked
GU graphs « as in (2.24), and (79, w)€e Ay(y) with 7o as in (2.27) and w as in (2.28). Let

Ver = Ver — Very.

We denote by Aut(y) the group of automorphisms of v and by Aut(P!) the group of holomorphic
automorphisms of PL.

3.1 Baire spaces and ubiquitousness

We first discuss the significance of the ubiquitous property in the contexts such as those of Theo-
rems 1.1-1.4, 2.5, and 2.6. A Baire space is a topological space J such that every ubiquitous subset
J of J is dense in J. By Baire Category Theorem [19, Theorem 48.2], every complete metric is
a Baire space. Along with [19, Theorem 43.6], this implies that the three spaces in (1.1) and the
three spaces in (2.15) are Baire spaces. A less direct, but more structural geometric, reasoning for
this appears below.
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A Fréchet vector space is a vector space V with a topology induced by a complete translation-
invariant metric d, i.e.

d: T xJ — R, d(vl+w,vg+w) = d(vl,vg) Y1, v, weV.

For (e Z>°, a C* Fréchet manifold 7 is a Hausdorff topological space locally modeled on Fréchet vec-
tor spaces with C*-overlaps between the charts. In other words, J comes with an atlas (Un, o) aen
of charts, where each U, © J is an open subset and ¢, : Uy —> V,, is a homeomorphism onto an
open subset of Fréchet vector space, such that the overlap maps

Yap=pacpy + 05(UanlUs) — ¢a(UanlUs), @, f€A,

are C*-diffeomorphisms between open subspaces of Fréchet vector spaces. Since a C¢ Fréchet man-
ifold is locally modeled on Fréchet vector spaces, it is a Baire space.

Let (X,g,V) be a (smooth finite-dimensional) manifold with a metric and connection on 7X and
(E,|-|¥,V¥) be a (smooth finite-rank) vector bundle over X with a norm and a connection. For
each £ in Z>° {00}, the space TY(X; V) of C*-sections of E is a Fréchet vector space with respect
to the metric d@E given by

¢
dEE(sl, S2) = sup 22_mmin<\vE . VE(s1—59) |7, 1) V s1,80€T4(X;V);

zeX 70 m

this follows from [19, Theorem 43.6]. If X is compact, the topology induced by this norm is inde-
pendent of the choices of ¢, V, |- |¥, VE.

The space J*(X) of C* almost complex structures on X is a (smooth) Fréchet manifold with the
tangent bundle described by

T;7(X) = {AeT{(X;End(TX)): JA=—AJ} VJeJ'X). (3.1)
The charts (Uy, ¢n) are the inverses of the maps
T;T7X) — JUX), A— Je’4, (3.2)

restricted to sufficiently small neighborhoods of 0 in each 7;7. Since the space J/‘(X) of C*
almost complex structures on X tamed by a symplectic form w on X is an open subset of J¢(X),
J/¥(X) is also a Fréchet manifold with the tangent bundle described by (3.1) with J¢(X) replaced
by J(X). The space J(X) of C* w-compatible almost complex structures on X is a Fréchet
manifold as well. Its tangent bundle is described by

Ty TNX) = {AeTy T X): w(A, ) =—w(, A)} YV JeTHX). (3.3)
Local charts on J/(X) are obtained by restricting (3.2) to Ty J5(X).

Let B be a manifold, possibly with boundary, and X and ¢ be as above. Denote by

mx: BxX — X
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the projection to the second component, by J* (B; X) the space of C* fiberwise complex structures
on the vector bundle 7%7'X, and by Symp(B; X) the space of smooth fiberwise symplectic struc-
tures on 757 X. For Je JYB; X), weSymp(B; X), and be B, let J,e J*(X) and wye Symp(X)
be the associated almost complex and symplectic structures on X. For J,e J*(0B; X), define

Ji(B; X) c J(B; X)
as in (1.8).
For we Symp(B; X), denote by
Js(B; X) € JS(B; X) € T (B; X)

the subspaces of w-compatible and of w-tamed almost complex structures. For Joejf (0B; X) and
Joe J'*(0B; X), define

w

TLBiX) € JHBX)  and  J(BiX) € TUB:X),
respectively, as in (1.8). Let

Jo(B; X) = JX(B; X), TL(B; X) = JP(B; X),  JYUB;X)=J"(B; X),
Jurgo(B; X) = T55.(B; X), Ty (B; X) = T05.(B; X), J5.(B;X)=Jr (B X).

3.2 Configuration spaces

The set M., of equivalence classes of connected genus g k-marked nodal Riemann surfaces of
combinatorial type yo€.A, 1 is a subspace of M, ;. Let

M’YO;U = Mg(vLSU(»y()) VUEV.

The image of the immersion

byg - H M0 — mg,k’ (3.4)

veVerg

identifying the marked points z; with fe€e for each e€ Edg into a node is M,,. This immersion
descends to an isomorphism from the quotient of its domain by the natural Aut(~g) action to M. .

By the last requirement in Definition 2.2, there exist covers M., —> M., with ve Verg, universal
curves

(7T'yo;v Uy —> Moygio, (S'Y0§f)f€Sv (70)) )

and an immersion

Ly H Moo —> Mg, (3.5)
veVerg
lifting (3.4). For each ve Very, let
. v M T Y
Pl H Moo — My and Lyoso * PUygulhyow — Ugk

veVerg
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be the component projection map and the natural bundle lifting (3.5), respectively; the restriction
of the latter to each fiber is the normalization of an irreducible component of a fiber of .

For ve Verg, let
So(7) = Su(7) N (Su(ro) vImw) < [K]UFL,  Si(y) = Su(v)—S)(7) < FI.

If S5(v) # J, we define

~ ~

My = {(27) fese(n) € Unoi) ™ D: zp¢ Imsp ¥V feS5(7), feSI(),
Tooiw(2f) = g (2yp), 2p# 25 V f, f/esqf(’Y)a f?éf/}

and take

~

Tyt Uy = My X MWO;UMVO?“ > Moy

to be the projection to the first component. For feSS(y), define

~

Syif t My — Uniw, - S50 ((297) peser)) = ((27) presi ) 2f) -
For feS,(7)nSy(7) and f=w(i) with ieww *(v), we take
Svif Mv;v - LN[WJ
to be the pullback of s,,,r and s, respectively, by the natural projection /WV;U —>/\A/l/wv.
If S,(7) = S9(7), let
Ty0 = Tyov va Eavo;v - J\/lvvw Eﬂvo;va
Svif = Sqo;f VfesS, ('7) NSy ('70)3 Svyiw(i) = Svo3i ViGw_l(U).

In both cases,

~ ~

(Wv;v Uy — Moy, (Sv;f)fGSv (’Y)) (3.6)

is the universal curve.
For ve Ver§, define (3.6) by
M’Y%v = {(Zf)fGSv(’Y): Zf;ﬁzf’ Vf, f/ ESU('Y)QFL f#f,}y 1/7 o= M’y;vxply
Syt Mapp —> Uy, Sv;f((zf’)f’esv(v)) = ((Zf’)f’ESu(v)’ Zf)‘

There is a natural action of Aut(P!) on ﬁw that sends a fiber of 7., to a fiber holomorphically
and commutes with the sections.

In both cases, denote by

Pry,: My = HMW,/ — My and T Uy =pry, Uy —> M, (3.7)

v’eVer
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the component projection map and the induced bundle projection, respectively. For ve Verg, the
composition
My — H My —> Mg
veVerg
of the natural projection with the immersion 7, lifts to a bundle map
Uy Uy —> Ug e
which restricts to each fiber of 7, as the normalization of an irreducible component of a fiber
of w. It sends the marked points z; with feS5,(7)nSy(70) and zy(;) with iew ™! (v) of the former
to the marked and nodal points z; and z; of the latter. The marked points z;€ SG(7y) of the former
are disregarded by this map.

Fix ¢, peZ with £=2+|m| and p>2. We denote by Hf(X), Hf(Bo; X), and Hj(B; X) the C* com-
pletions of the corresponding spaces of smooth pairs (J, v) as in Section 2.4 and use the analogous
notation for the other H spaces appearing in Theorems 2.5 and 2.6. By the assumption p>2 and

the Sobolev Embedding Theorem [30, Corollary 4.3], every W%P-map from a Riemann surface ¥
to X is C~1.

For each ve Ver, denote by %U the space of tuples

Wy, = (B0, jus (27) fesy (v) o) (3.8)

so that (2, j, (Zf)fesv(,y)) is a fiber of 7, and u,: ¥y, — X is a W4 map. Analogously to
Section 1.2, let N N R
B* <« BI* < B,

be the entire spaces %U if ve Verg and the subspaces of basic and reduced, respectively, maps in
the sense of Section 2.3 if ve Verf. For feS,(y), let

evy: B, — X, evy(u,) = u(zy),

be the evaluation map at the marked point z; corresponding to f.

Denote by R
Ty = ker dTty — Uy
the vertical tangent bundle of the projection 7., in (3.7) and by j,;, its complex structure. For

each i€.S,(v)n[k], denote by L,.; — B, the tautological tangent line bundle for the i-th marked
point, i.e. the pullback of 7., by the map

%v - Z)’Y;Uﬂ (Ev’j”’ (Zf)fesv('Y)’ uv) i
Define

Fai= (—BlHomR(Symg“(Li),evaX) — %U, Dmyi = (—é@mi € F(%U;Fm;i) VieS,(v)n[k],

m=1 m=1

Fm;v = C—D Fm;i7 Qm;v = C—B @m;ia %v;m = Qniq,lv(o)a
€Sy (7)n[k] €Sy (v)n[k]

S & Se oMb e
By =DBom 0B, By = Bum N B
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3.3 Spaces of deformations and obstructions

Let ve Ver. For each u,eB, as in (3.8), define

[(uy) = LY (Sy;u), To(uy) = {€€T(uy): &(z) =0V f€S,(7)},

Lm(uy) = {¢eTo(uy): V™EL, =0V me[m], i€[k]nSy(7)}. (3.9)
If in addition Je J¢(X), let

F(}’l( )=L§ L (B0 (T*20, o) * @cug (T X, J)),

I () = {nely (u,): V" lnl., =0V me[m], ic[k]nSy(v)}. (3.10)
Suppose ve Ver§. For Je J¢(X), let

M) = B, My, () < By, and My (J) « B, (3.11)

be the subspaces of J-holomorphic maps. For u,eMti*(J) as in (3.8), let

Dy, : T(u,) — Iy (u,), DYy : To(u,) — I (wy), : T (uy) — rf}in(uv) (3.12)

m
Jiuy
be the linearization of the d-operator at u, and its restrictions; see Section 4.2.

Lemma 3.1. Suppose ve Ver§, Je JX), and uvei)fjvd*(J) is as in (3.8). If W< X is an open
subset intersecting u,(3y), then

1'% (w,) = Im DY, + {Aodu,oj,: ATy T*(X), supp(A) =W},
Y a(a) € Im DY, + {Aoduyojy: AT, T (X), supp(A)c W}, (3.13)

For every weSymp(X), the same statements hold with J replaced by J,, and \74.

Proof. The first claim is the m=0 case of the second claim. We can assume that u,(z¢)¢ W for all
f€Sy(7); this implies that the right-hand side of (3.13) is contained in the left-hand side (this is
also the case if u, ei)f\ﬁ;rn*v(J)) We can also assume that u, eif)\ﬁ:(J) and thus that zy # 2z for all
f, f'€Sy(7) distinct. Denote by S <X, the subset of the marked points and by D7, = the formal
adjoint of D j.y,. Let

r},?n(uv) L2 (8, =85 (T*Sy, j0)*@cul(T* X, J)) (3.14)

be the subspace of (1,0)-forms on (X,,j,) with values in u}(7T*X, J) that have poles of order at
most 1 at z; for feS,(y)nFl and at most max(1,m;) at z; for i€.S,(y) N[k]; see Section 4.5. Let

ker DT, = {uefjm(uv) DY, 1n=0}.

By Proposition 4.9, the homomorphism

L%, : cok DY — Homg (ker D5, ,R), {LS.w, ([n])} (1) = %(f ,u/\77>,
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is a well-defined isomorphism. Thus, it is sufficient to show that for every u € ker D7 = nonzero,
there exists

AeT;T4X) s.t. supp(A) c W, %(J A (Aoduvojv)> # 0. (3.15)

v

If we Symp(X) and Je J“(X), then T;7.4(X)=T;T4X). If Je J4(X), then A as above lies in
T;JL(X) if A satisfies the additional condition in (3.3).

Let peker D}Y - with 4 # 0 and wy, be an orientation form on ¥. By shrinking W if necessary,
we can assume that W is contained in a coordinate chart on X. Since u, is a somewhere injective
J-holomorphic map, there exists a non-empty open subset U cu; !(W)—S such that

douy # 0, uy ' (up(z)) = {2} V=zeU; (3.16)

see [33, Corollary 3.14]. Since p#0, there exists z€ U such that u, #0; see Lemma 4.8. Let weT,%
be a nonzero vector. Since

wx(w) #0€ T:v(z)X and duy(jow) # 0 € T,y ()X,
{/LZ(U))}(AUU(Z) (dzuv(]vw))) =1 and Juu(z)Auv(z) = _Auv(z)']uv(z)' (317)
Let AeT'(W;End(T'X)) be an extension of A, ,) such that J, A, =—A,J; for every zeW.

there exists A, (.)€ End(T,, () X) such that

Let k: U—C be the function defined by

k(2 ws = M A (Auv(zl)odz/uvojv) v 2 el.

By the first condition in (3.17), x(z) € RT. By the continuity of x an (3.16), there thus exists a
neighborhood of W/ c W of u,(z) such that

u ' (W eU,  R(s(2)) eRT Veu, (W). (3.18)
Let 3: X —R™* be a smooth function such that 3(u,(z))=1 and supp(8)cu; }(W’). By (3.18),

%(fzuu/\ (BAoduvojv)> = §R<Lv1(W/)MA (BAoduvojv)> = Lvl(W/) (BR(k))ws, > 0.

Along with the condition that J,A, = —A,J, for every z € X, this implies that BA e T;J%(X)
satisfies both requirements in (3.15) with A replaced by SA.

Suppose w € Symp(X) and J € J4(X). By shrinking W if necessary, we can assume that W is
contained in a Darboux coordinate chart on (X,w); see Theorem 3.15 in [18]. By Lemma 3.2.2
in [18], we can then choose A, (.)€ End(T),, (;)X) so that it satisfies

Wy () (Aus(2) ) = () (5 Aus(2) )
in addition (3.17) and extend it to AeI'(W;End(7'X)) so that
JoAy = — Ay, wWe(Ag,-)=—ws(, Ap) VaeW.
The last condition implies that the element 3AeT;J7*(X) constructed above satisfies the additional
condition in (3.3) and thus lies in T J%(X). O
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Suppose ve Very. For (J, y)eHﬁ(X), define
Vo = { Dy X idx } v € T (U x X375 (T, —iye) *®c 3 (TX, J)).
Denote by N N N N
Mi*(J;v) < BI* and ML (J;v) < Bl
the subspaces of tuples as in (3.8) so that
a]yjuv}z = Uy (2, uy(2)) Vzel,. (3.19)
For uvei)?ﬂ,*(!]; v), let

Djyu,: T(ay) — F?fl(uv)» DS

7V;u'U :

To(u,) — I (wy), DY, T(wy) — T ()

be the linearization of the {0—v.,,}-operator at u, and its restrictions; see Section 4.2.

Lemma 3.2. Suppose v e Very, (J, V)E’Hg(X), and uUEﬁEU(J, v) is as in (3.8). If WCZ/N[g,k is
an open subset intersecting 1., (2,), then

Fg’l(uv) = ImD‘(}MuU + {{Z\WJ XUy} V" y’ng’l(X; J), supp(z/)chX},

%! (u,) = Im DY, + {00 x uo} v/ V’GFg’l(X; J), supp(v/)c W x X }.

Jym
Proof. The first claim is the m =0 case of the second claim. We can assume that ©.,,(z¢) ¢ W for
all f€S,(v). Denote by D3 ., ~the formal adjoint of D, .u,. With F‘lj"gl(uv) as in (3.14), let

ker D75, = {uefb’;&(uv): DY o, =0}

Jviuay

By the same reasoning as in the proof of Lemma 3.1, it is sufficient to show that for every

mak :
peker D7, nonzero, there exists

V'efg’l(X; J) s.t. supp(v)) € Wx X, %(J A ({Ty xuv}*l/)) # 0. (3.20)

v

Let peker DY\, with y1#0 and wy; be an orientation form on X. By shrinking W if necessary, we

can assume that W is contained in a coordinate chart on Z/ngJg. Since p#0, there exists ZEZ;;%(W)
such that p, #0; see Lemma 4.8. Let weT,> be a nonzero vector. Since

pa(w) #0€e TJU(Z)X and dly(w) # 0 € To o (2)P5
there exists v, e Hom(Tz, , (z)P; To, ()X ) such that

{NZ(w)}(V,/z(dzz\v;v(w))) =1 and Juu(z)V; = *V;jlxtbw(z)- (3.21)

Let v/ el'(Uy ) x X; Hom(7{Tp, 73T X)) be an extension of v such that

eVl o = =V jul V(2 z)€e ﬁ;k x X. (3.22)
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By the continuity of the function

k:U—R, (2 ws|, = w2 A (V;,’UU(Z,) (deTywls,)),

the first condition in (3.21), and the injectivity of Z,.,, there exists a neighborhood of W' < W
of 75y (%) such that
R(k(z)) e RT VZ'ET%}](W'). (3.23)

Let 3: Z/NI‘(,,R—JR+ be a smooth function such that 3(7y.,(z))=1 and supp(8)cW’. By (3.23),

R [ (i (30)) = 2( |

1
Ly (

,)“ A ({Ty0 ¢ “v}*(ﬁyl)»

= J (BR(k))ws, > 0.

L)

Along with (3.22), this implies that Sv/ ng’l(X; J) satisfies both requirements in (3.20) with v/
replaced by Bv'. O

3.4 Universal moduli spaces

For ecEdg, let
Xpe=[1X.  Aye={(zp)pec: zp=ap V[ f'ce}.
fee
Define

A= [[Ave e Xy = [ [Xe (3.24)
ecEdg ecEdg

The evaluation maps evy induce maps

ev, = H Hevf: H%L* — X, ev= Hevi : H%L* — X", (3.25)
i€[k]

ecEdg fee veVer veVer

Let B* = ev;1 (A,Y), B = B* be the subspace of tuples (uy)yever, with u, as in (3.8), so that
Im w,, #Imu,, for all vy, ve€ Verg distinct, and

B* = B* H%Z‘

veVer
A tuple in B* (resp. in B*) corresponds to a reduced (resp. basic) k-marked GU map as in (2.16).

With R N
Ty - H’BLT — 9B,

v'eVer
denoting the projection map, let
Fo= @7 Faws On= D Dnw, B =D:1(0) nB*, (3.26)
veVer veVer

N:uh = {(u,y)e%;xY: ev(u)zh(y)}.
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By the reasoning at the top of [18, p47], the spaces %U are separable smooth Banach manifolds.
By the next lemma, the subspaces

B H%”’ B < B and %;;h c BEXY
veVer
are smooth Banach submanifolds of codimensions
codimg B = 2n(|F1| - |Edg|), (3.27)

codimp (%;"1, %T*) =n Z mi(m;+3), codimR(%:’;;h, %;’;XY) = 2nk,
i€[k]

respectively.

Lemma 3.3. The subspace B is a smooth Banach submanifold of HveVer%U of codimension (3.27).
The restriction of the bundle section Dy to B* is transverse to the zero set. The restriction of the
map ev to Bl is transverse to h.

Proof. For cach veVer, f€S,(v), and u,eB, as in (3.8), define

Lf: F(uv) - Ter(uv)X7 Lf(‘sv) = §U(2f>'

Since zy # zp for all f, f’€S,(v) nF1 distinct, the homomorphism

Ly: F(u’U) - @ Ter(uU)Xa Ly(&;) = (Lf(gv))fegv(,y)ﬁpl ) (328)
f€Sy(y)nFI1

is surjective for every u, €B,,.

Since ’%;ﬂ* c %U is an open subset, %L* is a separable smooth Banach manifold of codimension 0.
Furthermore, the maps in (3.25) and the bundle section in (3.26) are smooth. The restriction of
the differential of ev,, at u=(uy)yever to

Iu) = Pr(u,)c @l B = Tu< H%L*)
veVer veVer eVer

is given by
duery ((gv)ve\/er) = (LW (60))116\/& '

By the surjectivity of (3.28), this restriction is surjective. Thus, the map ev, is transverse to A,.
In light of the Implicit Function Theorem for Banach manifolds, it follows that

B* H%L*

eVer

is a smooth Banach submanifold of codimension (3.27). Since B c B* is an open subset, this
implies the first claim of the lemma.

For each veVer, i€ S,(y)n[k], and uve%m;v as in (3.8), define

Lm;i : F(uy) — Fm;i; Lm;i (fv) = (vm&)|zl)me[mz] .
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Since D7 |, =0 for all me [m;], this homomorphism is independent of the choice of V. If u, e %;;U,
then z;#zp for all f, f'€S,(v) distinct. Thus, the homomorphism

Li® DLi®Lny:T(w) — D Tevyu)X @ Fno, (3.29)
i€Sy(y)n[k] fesu(v)

Lm;v(&)) = (Lv (gv)v (Li(gv))iesv(’y)m[k]a (Lm;i(&)))iegv(’y)m[k]) )
is surjective for every uve%;‘w.

The restriction of the linearization of Dy, at an element u=(u,)yever of %; to

To(u) = @Fg(uv) = {(fv)ve\/eri Li(&)=0V feS,(y)nFl, veVer} c Ty B*

veVer

is given by
dugm((&;)veVer) = (Lm;v (fv))ve\/er :

By the surjectivity of (3.29), this restriction is surjective. This implies the second claim of
the lemma.

The restriction of the differential of ev at an element u= (u,)yever of %;‘; to
{(&)vever €T0(0) : Lini(€,) =0 Vi€ Sy (v) n[k], veVer} ¢ TyB

is given by
duev ( (év)ve\/er) = (L’ (év ) ) 1€Sy (7)n[k],veVer *

By the surjectivity of (3.29), this restriction is surjective. This establishes the last claim of
the lemma. O

For B'=B,, B and ve Ver, let
SB'W - /Hg(B,;X)XB,X%v and SB/;m;v = SB’;U

be the bundle with the fibers §(;,u,) =L (u,) and its subbundle with the fibers Iy’ (u,). We
define a section of §pr., by

V’YEU(Z7U’U(’Z))7 if'UEVeI'(];

) YV zedl,.
0, if ve Verg;

aBl;v(Ja v; b, uv)|z - aI’jvu0|z - {

The restriction of dpr., to ’Hg(B’; X)x B'x %\Tn*v takes values in §p/.m,. Let

%ot Hy(B'1 X)x B'x [ [By — HY(B';X)xB'xB, and

v’eVer
7 HE (B X)x B x | [BuxY — Hy(B X)xB'x | [B.
veVer veVer

denote the projection maps.
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Define

Spr = @%:;SB/W — Hﬁ(B/; X)xB'x H%U’ SB/m = @%:3B’;m;v < §pr, (3.30)
veVer veVer veVer
Sy = 758 pim — H(B'; X)x B'x H%v, <Y,
v’'eVer

The restriction of the bundle section

éB’ = (%353’;11)1}6\/& : /Hﬁ(B,§ X) % B’ x H%v — B (3.31)

veVer

of the first bundle in (3.30) to ”Hf;(B’; X)xB'x %;“1 takes values in §pr.m. Thus, the restriction of
the section B B N
Opry =750 Hy(B X)x B'x [ [BuxY — #Fp

v’eVer
to Hg (B'; X)x B’ x %;;h takes values in §p/.y. Let
UM™(B') = 05 (0) (Hp(B'; X)x B’ B), UZE(B') = 050)n (Hi(B'; X)x B' BE),
UZ2 3 (B)) = 055 (0) 0 (Hy(B's X) x B' xB%,) -

These are the universal moduli spaces associated with the moduli spaces appearing with Theo-
rems 2.5 and 2.6.

By the reasoning at the bottom of [18, p49], the space Hg(B’ ; X) is a separable smooth Banach
manifold. By the reasoning at the bottom of [18, p50], (3.31) is a C* section of the C* Banach
bundle (3.30). Along with Lemma 3.3, this implies that the restrictions

oL HE(B', X)x B'x B — Fpr, Oprm: Hy(B'; X)x B x B —> Fprim,
93’;Y;m: ’Hf;(B/; X) x B’ x %;;h —_— 33/;)/
of dp in the first two cases and of éB/;y in the last case are also Cf sections of C* Banach bundles.
Lemma 3.4. For every (J, V)GH";(B’; X), the restrictions
3;,: {(J,v)} x B'x B — Fp, Opim: {(J,v)} x B'x BE — Fprm,
and Opym: {(J,v)} x B' x %;;h — 3By
are Fredholm sections of indices

ind§, 3, = dimg B, +2dim(v) +6|Ver§|, indgdl, . = dim§ Bo+2(dim(y)—n|m|) +6|Ver§),
and  indrOpy,m = dim§ Bs+2(dim(y) —n|m|) — (2nk—dimgY’) +6| Verg|,

respectively.
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Proof. For veVer§, be B, and u,€B, such that
éB’;v(Ja v;b, uv) =0¢ 'SB/;U 5 (3'32)

denote by D ., the operator D ., in (3.12). For all ve Ver, be B’, and u, € %U, the operator
D ., is then the restriction of the vertical differential Dop,, of the section dp/, of §pr, at
(J,v;b,uy) to the subspace

I'(u,) Tuv%v < T gwibuy) (Hf;(B';X) x B’ x%v)
consisting of the infinitesimal deformations of the map component u, of u, as in (3.8).

Since D ., is an elliptic operator and 3, is a compact manifold, D, is a Fredholm operator.
By Riemann-Roch,

indr Dy, = 2((c1(TX),0(v))+n(1—g(v)))  VwveVer.
Thus, the restriction B N
OB {(J, V)} x{b} x By, — Fprw
is a Fredholm section of index
indf{éB/w = indRDJ,l,;uv + dimp //\ZJW;U
0, if veVerp; (3.33)
6, if veVerg.

= 2({c1(TX),0(v))+(n—=3)(1-a(v)) +[Su(7)]) + {

By (3.31), the first statement of Lemma 3.3, and (3.33), the restriction of (_?L, in the statement of
the present lemma is a Fredholm section of index

ind§df, = dimp B+ Y. ind§dpr, — codimpB™*
veVer

= dimp B, +2((c1 (TX), Ay+ > (n—3)(1—g(v)) +k+|[F[) +6|Ver| — 2n(|F]|—|Edg]).

veVer

Combining this with (2.20) and (2.26), we obtain the first index statement.

The corank of the subbundle §p/.;m of §p is n Zie[k] m;(m;+1). Along with the previous paragraph

and the second statement of Lemma 3.3, this implies that the restriction of ng;m in the statement
of the present lemma is a Fredholm section of index

indﬂ@g,;m = indﬁ@jg, — codimp (%:;, %T*) +n Z mi(m;+1) = indf@jrg, — 2n|m|.
i€[k]

This gives the second index statement.

By the previous paragraph and the third statement of Lemma 3.3, the restriction of éB/;y;m in the
statement of the present lemma is a Fredholm section of index

indrdpry m = indRég,,m + dimp Y — codimpg (%;’;;h, %:’; X Y) = indRég/Am — (2nk—dimRY).

This completes the proof. ]
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Proposition 3.5. The bundle sections

(T}TBO : %ﬁ(Bo, X) ><-BO X %T* E— ‘SBcn éBo%"‘l: Hg(BO7 X) X BO X%:; - gBo;mv
and  Op,ym: Hy(Bo; X)X Box By, — Fposy

are transverse to the zero set. If (Jo, I/O)E’Hg(Bo; X) is regular value of one of the projections
U™ (Bo), U235 (Bo) M2 (Bo) — My (Bo: X), (3:34)
then the corresponding bundle section

b MY, (B;X)xBxB™ — Fp,  Opm: HY . (B; X)x Bx Bl —> Fpm,
and OB:Ym: Hf}o,yo(B;X)xBx%;;h — By

is also transverse to the zero set. For every we Symp(Bo; X) (resp. in we Symp(B; X)), the first
(resp. second) statement holds with Hg replaced by He., and H{f,w

piw
Proof. For veVery, (J, V)e’Hg(BO;X), be B., and u,eB,, as in (3.8) satisfying (3.32), define
= 0,1
D?f,zz;b,uva: T(J,ZI)H]J (Bo; X)@P0<uv) - FJb (uv>7
= 1
Dg,u;b,uva(Av V&) = ngﬂ/b;uufv + §Aboduvojv — {lyw X o} v

For ve Ver(, we define Dg,u;b,uvg in the same way dropping {iy;, X u, }*1; above. Note that

Apoduy,0j, =0 if  uy(X,)Nsupp(Ap) = I,

3.35
{Tyo xup} =0 if weVer§ or (Ty;(3y) x X) nsupp(v;) = &. (3:35)

The homomorphism Dg',u;b,uvé is the restriction of the linearization of dp, ., at (J,v;b,u,) to

T(J,V)HP(BO; X)@®lo(uy) = T(Jy,,)/Hp(Bo; X)G')Tuv%v < T gubu,) (Hp(BO; X)x B x %U)

Let (J, V)e%ﬁ(Bo;X), be Bo, and u= (1, )yever € B1* be such that

_ 10,1 _ 0,1
(Jysbu) — FJb (U_) = @PJb (U-y)-

veVer

ELO(J,V;ILu) =0€eFpe

We show that the homomorphism

DY a0 Ty Hp(Bo; X)@Lo(w) — DTG (u,),
veVer (336)

Dg,u;b,ué<Av V/; (gv)ve\/er) = (Dg,u;b,uvé(A’ V,; &’))ve\/er ’

is surjective. Since I'p(u) < TuB'*, this implies that the bundle section ;9;0 is transverse to the
zero set.
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Since ue B*, w,, (Sy,) # Uy, (So, ) for all v1, vy € Ver§ distinet. It follows that Uy (X — Uy (B0)) 18
a dense open subset of ¥, whenever vy, vy € Verf are distinct; see [33, Corollary 3.9]. Thus, there
exist open subsets W, c X with ve Verg such that

Uy (Xy) "Wy # I Y ve Verg, (3.37)
Uy, (B ) "Wy, = &, Wy nWy, = V1, va € Verg, v1 #va. (3.38)

The subsets 7., (Xy) cﬁgvk with ve Verg are also distinct. Thus, there exist open subsets W, CZ;{;L]C
with ve Verg such that

Ly (Ep) "Wy # & YV ve Verg, (3.39)
Ty (B ) "Wy = &, Wy "Wy, = & Y v1, v9 € Verg, vy # vs. (3.40)

Define
T {{(A, 0)€ T sy Hp(Bo; X): supp(Ay) c W}, if ve Ver§,
{(0,v) €T, Hp(Bo; X): supp(vj) c Wy x X} if veVerp.
By the first statements of Lemmas 3.1 and 3.2, (3.37), and (3.39),
DY, (TyH®o (1)) = 1M (w,) < TG (u) ¥ veVer.
By (3.35) and the first statement in (3.38),
DJVbuU o(TyH) = {0} V ve Ver§, v’ € Ver—{v}.
By the second statement in (3.35) and the first statement in (3.40),
DJl,buv o(TyH) = {0} V veVery, v’ €Verg—{v}.
By the last statements in (3.38) and (3.40),

D (THSTo(uy)) < T( ) Hp(Bo; X)BTo(u).

veVer
By the last four statements, the homomorphism (3.36) is surjective. This establishes the transver-

sality of the bundle section ETBO

Suppose in addition that ue%;‘;. Let

= @Fm(uv).

veVer

By the second statements of Lemmas 3.1 and 3.2, (3.37), and (3.39),

DY, (LHOTw(w,)) = T () e TS (W) = @TY (wy) ¥ veVer.

v’eVer

By the reasoning in the previous paragraph, this implies that the restriction

DY Ty (Bo: X)@Tun(w) — T5L (@) =Fm| (3.41)
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the homomorphism (3.36) is surjective. Since I'y(u)c Tu%;, it follows that the bundle section dp,_m

is transverse to the zero set. If in addition (u,y)eB* | then

m;h
Tw(u) € TuBi,, € TuBE@T,Y = Tiu, (BhxY).
The surjectivity of (3.41) then implies that the bundle section gBo;y;m is transverse to the zero set.

Suppose (Jo, o) € ’Hﬁ(BO;X) is a regular value of a projection in (3.34). Denote by B the last

component of the domain of the corresponding bundle section ¢. Suppose (.J, v; b, u)=0. In
particular, (J,v)|p, = (Jo,vs). If be B,, then the restriction of the linearization of ¢ at (J,v;b,u)
to

T(b,u) (B X %) e T(J,V;b,u) (Hem,/o (B, X) x B x %)

is surjective; see Lemma 4.3. If b¢ B,, then the argument above with B, and H,(B.; X) replaced
by B and Hf}OWO(B;X ), respectively, shows that the linearization of 0 at (J,v;b,u) is surjective.
We conclude that the bundle section ¢ in question is transverse to the zero set.

The proof for Hﬁ;w and ’H;f;w in place of Hﬁ is the same. O

Let 7’-25 (Bo; X) Hﬁ(Bo; X)) be the intersection of the sets of regular values for the three projections

in (3.34). By Sard-Smale Theorem (Proposition 4.1), ’;Qf;(Bo; X) is a ubiquitous subset of Hg (Bs; X)
if feZ" is sufficiently large.

4 Analytic preliminaries

4.1 Classical statements

Banach vector space, manifold, separable

Sard-Smale theorem, elliptic bootstrapping, elliptic implies Fredholm over compact domains

Proposition 4.1.

4.2 Fredholm bundle sections

Banach bundle, Fredholm section

Proposition 4.2. if D is onto, then the moduli space is smooth

4.3 Ubiquitous regularity

Lemma 4.3. map to a manifold, transverse to a submanifold; reqular value of projections v.s
restricted to a fiber

Proposition 4.4. if universal section is surjective, then so is a generic restriction and each moduli
space s smooth
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4.4 Taubes’s argument

Taubes’s argument moving from the ubiquitousness of a subset of the space C‘-parameters to
the ubiquitousness of its C'“-analogue is applied explicitly in the proofs of Theorems 3.1.6(ii)
and 6.2.6(ii) in [18] and implicitly in many other settings of similar nature. Proposition 4.5 below
formalizes Taubes’s argument in order to capture its substance and make it easier to apply.

If 9 is a topological space, a map f: 91— R is upper semi-continuous if the set f~1((—o0,a)) is
an open subset of M for every aeR. For example, the map

1197(6‘,0(14) — 77 R, (J,u) — dim cok Dy,

is upper semi-continuous. If 7 is another topological space, a continuous map 7: 9t — 7 is proper
if 771(K) is a compact subset of 9 for every compact subset K of 7. For example, the map

/
T E)ITZTE{(J,U)EL@JTE?O(A): |du|co<r, 3zeP' s.t.  sup dx(u(z), u(z))
7 2'ePl—{z} dpt (Za Z/)

w(J,u) = J,

21/r}—>\77

is proper for every r € R*. This follows from elliptic bootstrapping for J-holomorphic maps; see
[18, Theorem B.4.2].

Let (J,7T) be a topological space as in [19, §12], i.e. a set J together with a collection T of
subsets of J satisfying certain properties. We call a sequence (J, T%)sez+ of topological spaces
an expansion of (J,7) if

T oTJM og veezt,  {U~AJ"UeT'} < TH! vieez®,

and T is the topology on J generated by the collections {UnJ: UeT*} with £eZ*; see [19, §13].
This in particular implies that the inclusions

(T T — (5 TY, (7.T) — (T5TY) (4.1)
are continuous for every (e Z*.

We call an expansion as above proper (resp. tight) if all inclusions in (4.1) are proper (resp. T
is dense in (J¢, T) for all e ZT). We call it first countable if every topological space (J¢,T%)
is first countable. The existence of a first countable expansion implies that (7, 7) itself is first
countable. For example, the spaces (J*(X), T¢(X)) of C* almost complex structures on a compact
manifold X form a proper tight first countable expansion of the space (J(X), T (X)) of smooth
almost complex structures on X. The spaces Wf (P'; X) of ng -maps f:P!'— X form a proper
tight first countable expansion of the space C*(P!; X) of smooth maps f: P! — X.

For topological spaces JJ and 8, M c J xB, and an upper semi-continuous function f: 9t —> Z>0,

we define

J(f)={JeT: f(J,u)=0V (J,u)eM}.
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Proposition 4.5. Suppose (J*, Tz)gez+ is a proper tight first countable expansion of a topological
space (T, T), (B, T) g+ is a proper expansion of a topological space (B,%), M < T x B, and
f: M — 720 is an upper semi-continuous function such that

TN =T (FIm n (T xB") < I*

is a dense subset for every £ € Z*t. If the spaces (J',T') and (B',T') are Hausdorff and there
exists a sequence (ML),cz+ of subspaces of M such that

0
MMy, Yrezt, b= )om},
r=1

and the restriction of the projection J*x Bt — J1 to ML is proper for every reZ™, then
T =T (fIM (T xB)) =T
s a ubiquitous subset.

Proof. For each reZ™, let
JHE) = THImEA (T xBY) € J° veezr,  F.(f) =T (fIMin(IxB)) c J.

We show below that each J,(f) is open and dense in (7, 7). This implies that

T =)
r=1

is a countable intersection of open dense subsets of (7, 7) and is thus ubiquitous.

Since the spaces (J!,71) and (B!, T') are Hausdorff, so are the spaces (je, 7'5), (‘Be, ‘Ze), (I, 7T),
and (B,%T). By Lemma 4.6 below, all the inclusions
(JZ—H, Tf-i—l) ~ (%4-"—17 (If-i-l) _ (jE’ TZ) ~ (%67 16)7
(T, T)x(B,T) — (‘75’ TZ) % (’BE,TE)

are thus proper. Since the restriction of the projection J!x B! — J1 to M! is proper for every
reZ*, it follows that the restrictions of the projections

TJxB— 7Y and IxB—T

to ML (T x %Z)Aand ML (T x ‘BA) are proper as well. From Lemma 4.7 below, we then conclude
that the subsets J/(f)cJ¢ and J,(f) < J are open.

Let JeJ and U’e T* be a sequence such that U > U*! for all e Z* and {U*n T} is a basis
for T at J (i.e. every open neighborhood UeT of J contains some U’ 7). Since je(f) ij(f)
is dense in J¢, there exists JgeUgmjf(f). Since jf(f) is open in JY and J is dense in J¥¢, there
also exists R R

Jy € Ugﬂjf(f)mj cUnT-(f).

The sequence JéejT( f) then converges to J. We conclude that each J,.(f)< J is dense. O
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Lemma 4.6. Let f: J—> T and g: B—>B' be proper maps. If J' and B’ are Hausdorff, then
fxg: IxB — T xB
is also a proper map.

Proof. Let K < J'x®B’ be a compact subset. Since the projections J'xB — J’, B’ are continuous,
they map K to compact subsets K1 < J’ and Ko< ’. Since the maps f and g are proper, the subset

{fxg}_l (K1XK2) = f_l(Kl) Xg_l(KQ) c JxB

is compact. Since K is a compact subset of a Hausdorff space, it is closed. Since f x g is a
continuous map, the subspace

{Fxg} 1K) c {fxg} (KixK>)
is closed and thus compact. O

Lemma 4.7. Suppose J and B are topological spaces, M T xB, and f: M — 77 is an upper
semi-continuous function. If J is first countable and Hausdorff and the restriction of the projection
T xB—> T to M is proper, then the set J(f) is open in J.

Proof. We show that the complement jczj—j(f) of j(f) in J is closed. Suppose JeJ, J; eJe
is a sequence converging to J such that J; # J for all i€ Z", and (J;,u;) € M is a sequence such
that f(J;,u;) =1 for all ieZ™. Since the set

K={J}u{Ji:ieZ T} cJ
is compact and the restriction of the projection J x98— 7 to 9 is proper, the infinite set
{(Jisui): i€Z*} < M (K xB)

has a limit point (J',u). Since J is Hausdorff, J' = J. Since f is upper semi-continuous and
f(Ji,u;) =1 for all ie Z*, f(J,u)>1. Thus, JeJ°. O

4.5 Generalized Cauchy-Riemann operators

Lemma 4.8 (Unique Continuation). Let (X,j) be a connected, but possibly non-compact, Riemann
surface D be a generalized Cauchy-Riemann operator over (X,j), and peker D. If there exists an
non-empty open subset U X such that p|y =0, then u=0.

Proof. [33, Proposition 3.1]. O
Ivashkovich-Shevchishin twisting construction

Proposition 4.9. Serre Duality

Department of Mathematics, Stony Brook University, Stony Brook, NY 11794
azinger@math. stonybrook. edu
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