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Abstract

These notes present a systematic treatment of local properties of J-holomorphic maps and
of Gromov’s convergence for sequences of such maps, specifying the assumptions needed for
all statements. In particular, only one auxiliary statement depends on the manifold being
symplectic. The content of these notes roughly corresponds to Chapters 2 and 4 of McDuff-
Salamon’s book on the subject.
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1 Introduction

Gromov’s introduction [17] of pseudoholomorphic curves techniques into symplectic topology has
revolutionized this field and led to its numerous connections with algebraic geometry. The ideas
put forward in [17] have been further elucidated and developed in [36, 44, 28, 38, 39, 26, 12] and
in many other works. The most comprehensive introduction to the subject of pseudoholomorphic
curves is without a doubt the monumental book [29]. Chapters 2 and 4 of this book concern two of
the three fundamental building blocks of this subject, the local structure of J-holomorphic maps
and Gromov’s convergence for sequences of J-holomorphic maps. The present notes contain an
alternative systematic exposition of these two topics with generally sharper specification of the
assumptions needed for each statement. Chapter 3 and Sections 6.2 and 6.3 in [29] concern the
third fundamental building block of the subject, transversality for J-holomorphic maps. A more
streamlined and general treatment of this topic is the concern of [45].

The present notes build on the lecture notes on J-holomorphic maps written for the class the author
taught at Stony Brook University in Spring 2014. The lectures themselves were based on the hand-
written notes he made while studying [28] back in graduate school and were also influenced by the



more thorough exposition of the same topics in [29]. The author would like to thank D. McDuff
and D. Salamon for the time and care taken in preparing and updating these books, the students
in the Spring 2014 class for their participation that guided the preparation of the original version
of the present notes, and M. Albanese, S. Cattalani, and X. Chen for thoughtful comments during
the revision process.

1.1 Stable maps

A (smooth) Riemann surface (without boundary) is a pair (X,j) consisting of a smooth two-
dimensional manifold ¥ (without boundary) and a complex structure j in the fibers of 7. A nodal
Riemann surface is a pair (X,j) obtained from a Riemann surface (f], j) by identifying pairs of dis-
tinct points in a discrete subset Sy C ¥ (with no point identified with more than one other point);
see the left-hand sides of Figures 1 and 2. The pair (i,j) is called the normalization of (X,j); the
images of the points of Sy, in ¥ are called the nodes of ¥. We denote their complement in > by X*.
An irreducible component of (3,j) is the image of a topological component of Y in . Let

2 x(®) + ISg]

a(X) 5

where x(X) is the Euler characteristic of 3, be the (arithmetic) genus of X. An equivalence be-
tween nodal Riemann surfaces (¥,j) and (X,j’) is a homeomorphism A : ¥ — ¥’ induced by a
biholomorphic map A from (3,j) to (3',j’). We denote by Aut(3,j) the group of automorphisms,
i.e. self-equivalences, of a Riemann surface (¥,j). A nodal Riemann surface (3,j) is called stable if
(3,j) is compact and Aut(X,j) is a finite group.

Let (X, J) be an almost complex manifold. If (¥,j) is a Riemann surface, a smooth map u: ¥ — X
is called J-holomorphic map if
duoj = Jodu: TY — w*TX.

A J-holomorphic map from a nodal Riemann surface (3, j) is a tuple (,j, u), where u: ¥ — X is a
continuous map induced by a J-holomorphic map uw: ¥ — X; see Figures 1 and 2. An equivalence
between J-holomorphic maps (X,j,u) and (¥',j’,u’) is an equivalence

he (8,5) — (27)

between the underlying Riemann surfaces such that u=u'oh. We denote by Aut(X,j, u) the group
of automorphisms of a J-holomorphic map (X,j,u). A J-holomorphic map (%, j,u) is called stable
if (3,j) is compact and Aut(X,j,u) is a finite group.

Example 1.1. The Riemann surface (X,j) on the left-hand side of Figure 1 is obtained by iden-
tifying the marked points of two copies of a smooth elliptic curve (2o, jo, 27), i.e. a torus with a
complex structure and a marked point. The Riemann surface (Xo,jo) with the marked point 27 is
biholomorphic to C/A with the marked point 0 for some lattice A C C and thus has an automor-
phism of order 2 that preserves 2] (it is induced by the map z — —z on C); see [18, Prp 1.4].
This is the only non-trivial automorphism of (X, jo) preserving z7 if jo is generic; in special cases,
the group of such automorphisms is either Z4 or Zg. Each automorphism of (3, jo) preserving 2]
gives rise to an automorphism of (3,j) fixing one of the irreducible components. There is also an
automorphism of (X,j) which interchanges the two irreducible components of ¥. Since it does not
commute with the automorphisms preserving one of the components, Aut(X,j)~ D4 in most cases
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Figure 1: A stable J-holomorphic map

and contains Dy in the special cases. If u: ¥ — 3 is the identity on each irreducible component,
(3,j,u) is a stable J-holomorphic map; the interchange of the two irreducible components is then
the only non-trivial automorphism of (X,j,u). The J-holomorphic maps u: ¥ — ¥y obtained by
sending either or both irreducible components of ¥ to 2] instead are also stable, but have different
automorphism groups. If (Xg,jo) were taken to be the Riemann sphere P!, the J-holomorphic map
u: X — X restricting to the identity on each copy of ¥y would still be stable. However, a map
u: ¥ — Yo sending either copy of ¥y to 2] would not be stable, since the group of automorphisms
of P! fixing a point is a complex two-dimensional submanifold of PSLs.

Let (X,j) be a compact connected Riemann surface of genus g. If g >2, then Aut(%,j) is a finite
group. If g=1, then Aut(X,j) is an infinite group, but its subgroup fixing any point is finite. If
¢g=0, then the subgroup of Aut(%,j) fixing any pair of points is infinite, but the subgroup fixing any
triple of points is trivial. If in addition (X, J) is an almost complex manifold and u: ¥ — X is a
non-constant J-holomorphic map, then the subgroup of Aut(%,;j) consisting of the automorphisms
such that uw=woh is finite; this is an immediate consequence of Corollary 3.4. If (3,j) is a compact
nodal Riemann surface, a J-holomorphic map (X,j,u) is thus stable if and only if

e every genus 1 topological component of the normalization Y of ¥ such that u restricts to a
constant map on its image in 3 contains at least 1 element of Sy, and

e every genus 0 topological component of 3 such that u restricts to a constant map on its image
in X contains at least 3 elements of Sy.

1.2 Gromov’s topology

Given a Riemann surface (X,j), a Riemannian metric g on a smooth manifold X determines
the energy E4(f) for every smooth map f: ¥ — X; see (2.16) and (2.17). The fundamental
insight in [17] that laid the foundations for the pseudoholomorphic curves techniques in symplectic
topology and for the moduli spaces of stable maps and related curve-parametrizing objects in
algebraic geometry is that a sequence of stable J-holomorphic maps (X;,j;,u;) into a compact
almost complex manifold (X, J) with

liminf(‘ﬁo(Zi)‘+a(2i)+Eg(ui)) < (1.1)

1—00

has a subsequence converging in a suitable sense to another stable J-holomorphic map.

The notion of Gromov's convergence of a sequence of stable J-holomorphic maps (3;,j;, u;) to
another stable J-holomorphic map (Yo, joc, Ueo) comes down to
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Figure 2: Gromov’s limit of a sequence of J-holomorphic maps u;: ¥ — X

|0 ()] = |7m0(Xe0)| and a(X;) =a(Xwo) for all i large,

(oo, )oo) 18 at least as singular as (%;,;) for all ¢ large,

GC3) the energy is preserved, i.e. E,(u;) — Eg(us) as i — 00, and

)
)
)
)

GC4) u; converges to us uniformly in the C*°-topology on compact subsets of 7.

Most applications of the pseudoholomorphic curves techniques in symplectic topology involve
J-holomorphic maps from the Riemann sphere P'. This is a special case of the situation when
the complex structures j; on the domains ¥; of w; are fixed. The condition (GC4) can then be
formally stated in a way clearly indicative of the rescaling procedure of [17]. We call a triple
(X, J,g) an almost complex Riemannian manifold if J is an almost complex structure on X and g is
a Riemannian metric on X, not necessarily compatible with J.

Definition 1.2 (Gromov’s Convergence I). Let (X, .J,g) be an almost complex Riemannian man-
ifold and (X,j) be a compact Riemann surface. A sequence (3, j, u;) of stable J-holomorphic maps
converges to a stable J-holomorphic map (Yoo, joo, Uco) if

(1)

(Yoo, jo0) is obtained from (X, j) by identifying a point on each of # trees of Riemann spheres P,
for some £ € Z=°, with distinct points 2150, 2, €Y,
Eg(uso) = lim Eg(u;),

11— 00
there exist h; € Aut(%,j) with i € ZT such that u;oh; converges to us uniformly in the
C>°-topology on compact subsets of X —{z},..., 2/},

for each zf,...,2; €XCXu and all i € Z™ sufficiently large, there exist a neighborhood U; C X
of z;, an open subset U;.; CC, and a biholomorphic map 1;.;: Uj,; — U; such that

(4&) Uj;i C Uj;i+1 and C = Uf; Uj;i for every j=1,...,¢,
(4b) wjohjo)j,; converges to us uniformly in the C°°-topology on compact subsets of the

complement of the nodes oo, w;‘f;l, e w;‘f;kj in the sphere IP’]l attached at z;f €l

(4c) condition (4) applies with X, (27, ..., z}), and u;oh; replaced by P!, (w*

ST .,w;.‘;kj), and
u;oh;01)j.;, respectively, for each j=1,... 4.

An example of a possible limiting map with £=2 trees of spheres is shown in Figure 2. The recursive
condition (4) in Definition 1.2 is equivalent to the Rescaling axiom in [29, Definition 5.2.1] on



sequences of automorphisms ¢, of P!; they correspond to compositions of the maps 1j.; associated
with different irreducible components of ¥,,. The single energy condition (2) in Definition 1.2
is replaced in [29, Definition 5.2.1] by multiple conditions of the Energy axiom. These multiple
conditions are equivalent to (2) if the other three axioms in [29, Definition 5.2.1] are satisfied.

Theorem 1.3 (Gromov’s Compactness I). Let (X, J,g) be a compact almost complex Riemannian
manifold, (X,j) be a compact Riemann surface, and u;: ¥ — X be a sequence of non-constant
J-holomorphic maps. If liminf E,(u;) < oo, then the sequence (X,j,u;) contains a subsequence
converging to some stable J-holomorphic map (Yoo, oo, Uso) in the sense of Definition 1.2.

This theorem is established in Section 5.3 by assembling together a number of geometric statements
obtained earlier in these notes. In Section 5.4, we relate the convergence notion of Definition 1.2 in
the case of holomorphic maps from CP! to CP", which can always be represented by (n+1)-tuples
of homogeneous polynomials in two variables, to the behavior of the linear factors of the associated
polynomials.

The convergence notion of Definition 1.2 can be equivalently reformulated in terms of deformations
of the limiting domain (X, js) so that it readily extends to sequences of stable .J-holomorphic
maps with varying complex structures j; on the domains 33;. This was formally done in the algebraic
geometry category by [13], several years after this perspective had been introduced into the field
informally, and adapted to the almost complex category by [26]. We summarize this perspective
below.

Let (X,j) be a nodal Riemann surface. A flat family of deformations of (X,j) is a holomorphic map
7: U — A, where U is a complex manifold and A CC¥ is a neighborhood of 0, such that

e 771()\) is a nodal Riemann surface for each A€ A and 7—1(0)= (%, ),
e 7 is a submersion outside of the nodes of the fibers of ,

e for every \* = (A\},...,\%) € A and every node z* € 7 1(\*), there exist i € {1,..., N} with
Af =0, neighborhoods Ay« of A* in A and U« of z* in U, and a holomorphic map

U: Uy — {((Al,...,)\N),:v,y)EAA*><C2: xy:/\i}

such that ¥ is a homeomorphism onto a neighborhood of (A*,0,0) and the composition of ¥
with the projection to Ay« equals 7[y.. .

If 7: Ud — A is a flat family of deformations of (¥,j) and ¥ is compact, there exists a neighborhood
U* CU of X* Cn~1(0) such that

Ty U — Ao=m(U*) C A
is a trivializable >*-fiber bundle in the smooth category. For each A€ Ay, let
Yy: ¥ — m ) NU*

be the corresponding smooth identification. If A\; € A is a sequence converging to 0 € A and
u;: mH(\) — X is a sequence of continuous maps that are smooth on the complements of the
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Figure 3: A complex-geometric presentation of a flat family of deformations of (X4, j00) =7 1(0)
and a differential-geometric presentation of the domains of the maps u; in Definition 1.4.

nodes of 771()\;), we say that the sequence u; converges to a smooth map u : ¥* — X u.c.s.
(uniformly on compact subsets) if the sequence of maps

oy, : ¥ — X

converges to u uniformly in the C*°-topology on compact subsets of >*. This notion is independent
of the choices of U* and trivialization of 7|y.

Definition 1.4 (Gromov’s Convergence II). Let (X, J, g) be an almost complex Riemannian mani-
fold. A sequence (X;,j;, u;) of stable J-holomorphic maps converges to a stable J-holomorphic map
(XoosJoos Uso) if Eg(uij) — Eg(us) as i —> 00 and there exist

(a) a flat family of deformations m: U — A of (X, joo)s
(b) a sequence \; €A converging to 0€ A, and

(c) equivalences h;: = (\;) — (34, 7s)

such that u;oh; converges to uso|x: u.c.8.

By the compactness of ¥, the notion of convergence of Definition 1.4 is independent of the choice
of metric g on X. It is illustrated in Figure 3. If the Riemann surfaces (¥;,j;) are smooth, the
limiting Riemann surface (X, joo) is obtained by pinching some disjoint embedded circles in the
smooth two-dimensional manifold ¥ underlying these Riemann surfaces.

If (X;,3;)=(%,)) for all 7 as in Definition 1.2, only contractible circles are pinched to produce X o;
it then consists of ¥ with trees of spheres attached. The family 7: &/ — A is obtained by starting
with the family

mo: Up=Cx X — (C,

then blowing up Uy at a point of {0} x X to obtain a family 7 : 4 — C with the central fiber
lewl_l(O) consisting of ¥ with P! attached, then blowing up a smooth point of ¥, and so on.
The number of blowups involved is precisely the number of nodes of ¥, i.e. four in the case of
Figure 2 and two in the case of Figure 3. The pinched annuli on the right-hand side of Figure 3
correspond to ¢ (Bs(2a3))U0s(Bs(28)) in the notation of [29, Chapters 4,5].



With the setup of Definition 1.4, let Bs(z*) CU denote the ball of radius § € R* around a point
z* €U with respect to some metric on . Then,
lim lim diamg (u; (hi(m " (A)NBs(2*)))) =0 V2" €u. (1.2)
§—0i—00
This is immediate from the last condition in Definition 1.4 if z* € X% . If 2* € ¥ — X% is a node
of ¥, (1.2) is a consequence of both convergence conditions of Definition 1.4 and the maps u;
being J-holomorphic. It is a reflection of the fact that bubbling or any other kind of erratic C°-
behavior of a sequence of J-holomorphic maps requires a nonzero amount of energy in the limit,
but the two convergence conditions of Definition 1.4 ensure that all limiting energy is absorbed

by u|s: and thus none is left for bubbling around the nodes of ¥o.. An immediate implication
of (1.2) is that u;(h;(m~1(\;)NBs(z*))) is contained in a geodesic ball around u.(z*) in X. Thus,

Uix [5i] = Uoor[Zoo) € Ha(X;Z)

for all 4 € Z" sufficiently large. If ¥ is a tree of spheres (and thus so is each 3;), then u; with 4
sufficiently large lies in the equivalence class in 72(X) determined by us for the same reason.

Theorem 1.5 (Gromov’s Compactness II). Let (X, J, g) be a compact almost complex Riemannian
manifold and (3;,j;,u;) be a sequence of stable J-holomorphic maps. If it satisfies (1.1), then it
contains a subsequence converging to some stable J-holomorphic map (Lo, jco, Uso) in the sense of
Definition 1.4.

This theorem is obtained by combining the compactness of the Deligne-Mumford moduli spaces
Mj 1 of stable (possibly) nodal elliptic curves and M, of stable nodal genus g>2 curves with the
proof of Theorem 1.3 in Section 5.3. One first establishes Theorem 1.5 under the assumption that
each (%;,j;) is a smooth connected Riemann surface of genus g > 1 (the g =0 case is treated by
Theorem 1.3). If g =1, we add a marked point to each domain (¥;,j;) and take a subsequence
converging in M 1 to the equivalence class of some stable nodal elliptic curve (34, i’ , 22.). If g>2,
we take a subsequence of (3;,j;) converging in ﬂg to the equivalence class of some stable nodal
genus g curve (X/_,j..). This ensures the existence of a flat family of deformations 7': U’ — A’ of
(X,i%), of a sequence X; € A’ converging to 0 € A, and of equivalences h; : 7'~ 1(\)) — (4, 7;).
The associated neighborhood U"* of X% in U’ can be chosen so that 7/~1(\)—U"* consists of finitely
many circles for every A € A’ sufficiently small. The complement of the image of the associated
identifications
Yh S — 7Oy NU

in 7/71()\) has the same property.

One then applies the construction in the proof of Theorem 1.3 to the sequence of J-holomorphic
maps
ujohl: ¥ — X

to obtain a J-holomorphic map @ from the normalization i/oo of Y and finitely J-holomorphic
maps from trees of P'. Each of these trees will have one or two special points that are asso-
ciated with points of i’oo (the latter happens if bubbling occurs at a preimage of a node of X/
in f]f)o) Identifying these trees with the corresponding points of igo as in the proof of Theorem 1.3,
we obtain a J-holomorphic map (X, joo, Uso) satisfying the requirements of Definition 1.4. It is
necessarily stable if g > 2, or ¥/ is smooth, or ¥, contains a separating node. Otherwise, the
identifications h; may first need to be reparametrized to ensure that either the limiting map ul is



not constant or the sequence u;oh; produces a bubble at least one smooth point of ii}o

A k-marked Riemann surface is a tuple (X%,j, 21,...,2;) such that (3,j) is a Riemann surface
and z1,...,2; € ¥* are distinct points. If (X,J) is an almost complex manifold, a k-marked
J-holomorphic map into X is a tuple (3,j, z1,..., 2k, u), where (X,j,21,...,2;) is k-marked Rie-

mann surface and (X,j,u) is a J-holomorphic map into X. The degree of such a map is the
homology class
A=u,[¥] € Hy(X;Z).

The notions of equivalence, stability, and convergence as in Definition 1.4 and the above convergence
argument for smooth domains (3;, j;) readily extend to k-marked J-holomorphic maps. The general
case of Theorem 1.5, including its extension to stable marked maps, is then obtained by

e passing to a subsequence of (3;,j;, u;) with the same topological structure of the domain,

e viewing it as a sequence of tuples of J-holomorphic maps with smooth domains with an additional
marked point for each preimage of the nodes in the normalization, and

e applying the conclusion of the above argument to each component of the tuple.

1.3 Moduli spaces

The natural extension of Definition 1.4 to marked J-holomorphic maps topologizes the moduli
space ﬁgvk(X ,A; J) of equivalence classes of stable degree A k-marked genus g J-holomorphic
maps into X for each A€ Ho(X;Z). The evaluation maps

evi: My p(X, A T) — X, (8,5, 21,000 2, u) — u(2i),
are continuous with respect to this topology. If 2g+k >3, there is a continuous map

frMyp (X, A5 J) — Mgy

to the Deligne-Mumford moduli space of stable k-marked genus g nodal curves obtained by forget-
ting the map u and then contracting the unstable components of the domain.

There is a continuous map
fk+l: ﬁg,kJrl(X:A; J) Hﬁg,k(Xa Aa J) (13)

obtained by forgetting the last marked point zx1q and then contracting the components of the
domain to stabilize the resulting k-marked J-holomorphic map. For each ¢=1, ... k, this fibration
has a natural continuous section

S; ﬁgk(X, A; J) — ﬁg,k+1(X, A; J)

described as follows. For a k-marked nodal Riemann surface (3,3, 21, ..., 2x), let (X',i, 21, ..., 2p+1)
be the (k+1)-marked nodal Riemann surface so that (¥’,j’) consists of (X,j) with P! attached at z;,
2h, 2l ePl, and zj =z;€X for all j=1,..., k different from k; see Figure 4. We define

si([zajazla e 'azkauu = [Zlvjlazia e '7zllg+17ul]7
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Figure 4: Section sy of the fibration (1.3) with k=3

with (3,7, 21,...,2,,,) as described and v extending u over the extra P! by the constant map
with value u(z;). The pullback B
L — mg,k(Xv A; J)

of the vertical tangent line bundle of (1.3) by s; is called the universal tangent line bundle at the
i-th marked point. Let ¢;=c;(L}) be the i-th descendant class.

A remarkable property of Gromov’s topology which lies behind most of its applications is that
the moduli space ﬁg,k (X, A; J) is Hausdorff and has a particularly nice deformation-obstruction
theory. In the algebraic-geometry category, the latter is known as a perfect two-term deformation-
obstruction theory. In the almost complex category, this is reflected in the existence of an atlas of
finite-dimensional approximations in the terminology of [26] or of an atlas of Kuranishi charts in the
terminology of [26].

If (X, J) is an almost complex manifold and J is tamed by a symplectic form w, then the energy
E4(u) of degree A J-holomorphic map u with respect to the metric g determined by J and w is
w(A); see (2.18). In particular, it is the same for all elements of the moduli space M, (X, 4; J).
If in addition X is compact, then Theorem 1.5 implies that this moduli space is also compact.
Combining this with the remarkable property of the previous paragraph, the constructions of
[4, 25, 26, 12] endow 9M, (X, A;J) with a virtual fundamental class. It depends only on w, in a
suitable sense, and not an almost complex structure J tamed by w. This class in turn gives rise to
Gromov-Witten invariants of (X, w):

(Tas1, - - 7Takak>ZA = ((¢fevion) ... (Yprevion), [y k(X, 4; J)]Vir> €Q

for all a; €Z2° and o; € H*(X; Q).

2 Preliminaries

An outline of these notes with an informal description of the key statements appears in Section 2.1;
Figure 5 indicates primary connections between these statements. Sections 2.3 introduces the most
frequently used notation and terminology and makes some basic observations.

2.1 Overview of the main statements

The main technical statement of Section 3 of these notes and of Chapter 2 in [29] is the Carleman
Similarity Principle; see Proposition 3.1. It yields a number of geometric conclusions about the local
behavior of a J-holomorphic map u: ¥ — X from a smooth Riemann surface (3,j) into an almost

10



complex manifold (X, J). For example, it implies that for every point z of a topological component
of ¥ on which u is not constant, the ¢-th derivative of u at z in a chart around u(z) does not vanish
for some ¢ € Z™*; see Corollary 3.3. We denote by ord,u € Z* the minimum of such integers ¢ and
call it the order of u at z; it is independent of the choice of a chart around u(z). If u is constant
on the component of ¥ containing z, we set ord,u=0; this convention (rather than ord,u=o0) fits
nicely with Corollary 3.11 and Proposition 3.13. A point z € X is a singular point of u, i.e. d,u=0,
if and only if ord,u#1.

If w is not constant on every connected component of ¥, the singular points of u and the preimages
of a point z € X are discrete subsets of ¥; see Corollary 3.4. In the case ¥ is compact, the second
statement of Corollary 3.4 implies that

ord;u= Zordzu e 720 VreeX; (2.1)

zeu1(z)

we call this number the order of u at z. If x ¢Im(u), ord,u=0. By Corollary 3.11, the number (2.1)
is seen by the behavior of the energy (2.16) of u and its restrictions to open subsets of X. This
observation underpins the Monotonicity Lemma for J-holomorphic maps, which bounds below the
energy required to “escape” from a small ball in X; see Proposition 3.13.

The main technical statement of Section 4 of these notes and of Chapter 4 in [29] is the Mean Value
Inequality. It bounds the pointwise differentials d,u of a J-holomorphic map w from (X, j) into (X, J)
of sufficiently small energy E,(u) by E,(u), i.e. by the L:-norm of du, from above and immediately
yields a bound on the energy of non-constant .J-holomorphic maps from S2 into (X, .J) from below;
see Proposition 4.1 and Corollary 4.2, respectively. The Mean Value Inequality also implies that
the energy of a J-holomorphic map u from a cylinder [~ R, R] x S carried by [-R+T, R—T]x S*
and the diameter of the image of this middle segment decay at least exponentially with T, provided
the overall energy of u is sufficiently small. As shown in the proof of Proposition 5.5, this techni-
cal implication ensures that the energy is preserved under Gromov’s convergence and the resulting
bubbles connect.

Another important implication of Proposition 4.1 is that a continuous map from a Riemann surface
(2,)) into an almost complex manifold (X, .J) which is holomorphic outside of a discrete collection
of points and has bounded energy is in fact holomorphic on all of X; see Proposition 4.8. This
conclusion plays a central role in the proof of Lemma 5.4. Theorem 1.3 is deduced from Lemma 5.4
and Proposition 5.5 in Section 5.3.

Combined with Proposition 3.1 and some of its corollaries, Proposition 4.1 implies that every non-
constant J-holomorphic map from a compact Riemann surface (X,j) factors through a somewhere
injective J-holomorphic map from a compact Riemann surface (X',j’); see Proposition 4.11. The
proof of this statement with X compact appears in Chapter 2 of [29], but uses the Removal
Singularities Theorem proved in Chapter 4 of [29]. Proposition 4.1 is the key technical step in
establishing transversality for the moduli spaces of simple J-holomorphic maps and constructing
pseudocycles out of these spaces; see [45].
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5.2-5.4 Bubbling 5.5 Gromov’s convergence

Figure 5: Connections between the main statements leading to Theorem 1.3 and Proposition 4.11

2.2 Almost complex structures

An almost complex structure J on a smooth manifold X is a complex structure on (the fibers of)
the real vector bundle T'X over X, i.e.

J € I(X;Endp(TX)) and J?=-Idrx.

An almost complex manifold is a pair (X,.J) consisting of a smooth manifold X and an almost
complex structure J on X. Since there is a canonical identification

TC" = C"xC" — C"

of real vector bundles over C", the scalar multiplication by i on the vector space C™ determines
an almost complex structure Jen on C™. A complex structure on a manifold X, i.e. an atlas of
coordinate charts that overlap holomorphically, determines an almost complex structure J on X:
if

Ya: Uy — o(Uy)CC"

is a chart in the chosen atlas, then
-1
Jlru, = {dgoa} oJernodpy: TU, — TU,, . (2.2)
Such an almost complex structure J is called integrable or simply a complex structure on X.

Exercise 2.1. Let X a complex manifold with a holomorphic atlas {(Uy, ¢a)}a of coordinate
charts as above. Show that the definitions of the almost complex structure J in (2.2) agree on the
overlaps U,NUg.
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Let (X, J) be an almost complex manifold. We call a k-tensor g on X J-invariant if
g(Jvl, .. .,Jvk) =g(vy,...,05) Yor,...,0.€T, X, x€X.

We call such a tensor J-anti-invariant
g(Jvl, e ,Jvk) =—g(vi,...,vx) Vour,...,0.€T, X, zeX.

The Nijenhuis tensor A of (X, J) is defined by

A6 &) = § (6146, I+ TG, &l -6, J8l) ¥ a.& ePOGTX).  (23)

Exercise 2.2. Let (X, J) be an almost complex manifold. Show that

(1) equation (2.3) determines a J-anti-invariant alternating 2-tensor

Ay € T(X;Home (AZ(TX, ))@c(TX, —J))) € I'(X; Homp(TX @rTX, TX));
(2) if J is integrable, then N;=0.

The converse of Exercise 2.2(2) is [34, Theorem 1.1]. Since the Nijenhuis tensor Nj of any two-
dimensional almost complex manifold (X,j) vanishes, it follows that every almost complex struc-
ture j on a two-dimensional manifold is integrable. We call such a pair (X,j) a Riemann surface.

Let (X, J) be an almost complex manifold. For a 2-form w on a manifold X, we define a J-invariant
symmetric 2-tensor and a J-anti-invariant 2-form on X by
(w(v, Jv') — w(Jv, v’)),

goj(vj Ul) =
Vo, o' €T, X, x€X, (2.4)

N — DN~

wy(v,v") = = (w(Jv, Jv') — w(v,0"))
respectively. We note that
g5 (v,v) + g4 (v, v") = 2w(v,v") + g5 (v+JV v+ JV) + 2wy (v,0") Voo €T, X, zeX. (2.5)

A 2-form w on X tames J if g4 (v,v) >0 for all v€T X nonzero; in such a case, w is nondegenerate
and g% is a metric. Conversely, if g4 is a metric, then w tames J and is thus nondegenerate. The
almost complex structure J is w-compatible if w tames J and w;=0. If ¢ is a J-invariant metric g,
then J is compatible with the 2-form on X defined by

w9 (v,0") = g(Ju,v") Vo' el X, z€X.
g w
We note that ng =g and wi‘] =w for any 2-form w on X compatible with J.
A symplectic form on a smooth manifold X is a nondegenerate 2-form w on X which is closed,

i.e. dw=0. If w is any nondegenerate 2-form on X and the dimension of X is 2n, then w” is a
volume form on X. If X is compact, then (w™, [X])#0. If in addition w is closed, this implies that

W] # 0 € Higp(X). (2.6)
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We call a triple (X, w, J) an almost Kahler manifold (resp. Kahler manifold) if w is a symplectic form
and J is an almost complex structure (resp. a complex structure) on X compatible with w. If X
is a compact manifold admitting a Kéhler structure, then

rky H*Y(X;7) €22 VYV keZ (2.7)

by the Hodge Decomposition Theorem; see [15, p116].

The prototypical example of a compact Kéahler manifold is the n-dimensional complex projective
space P with its standard complex structure Jpr and the Fubini-Study symplectic form wrg; see
[15, p30]. A degree a homogeneous polynomial P on C"*! determines a complex hypersurface

Xo={120,21,..., Zy)€P": P(Z0, Z1,..., Zn)=0}

in P". This hypersurface is smooth if and only if the partial derivatives 0P/9Z; do not have a
common point of vanishing on C"**—{0}. In such a case, (X,,wrs|rx,, Jpn|Tx,) is also a Kihler
manifold. Below we provide more exotic examples of almost complex and symplectic manifolds.

By [6, Proposition 2.3|, any almost complex structure J on a smooth manifold X of (real) dimension
at least 4 can be deformed inside a non-empty open subset to an almost complex structure not
tamed by any symplectic form; see Example 2.14 for more details. Below we give other examples
of almost complex structures that are not compatible with any symplectic form and of symplectic
forms that are not compatible with any integrable almost complex structure. On the other hand,
the spaces of almost complex structure compatible and tamed by a fixed symplectic form w are
nonempty and contractible; see Proposition 2.6.

Example 2.3. The action of the group Z on the complex manifold C2—{0} given by
Zx(C*—{0}) — C*—{0}, k-z =2z,

is properly discountinuous (every point z € C>—{0} has a neighborhood U disjoint from k-U for
every k€Z—{0}). Thus, the quotient

X = (C*—{0})/z ~ S*x5*

inherits a complex structure from C%—{0}. Since H?(X;Z) = {0}, the sentence containing (2.6)
implies that X admits no symplectic form. Since H'(X;Z)~Z, the sentence containing (2.7) also
implies that X admits no Kdhler structure.

Example 2.4. We denote by H and O = H@ He the R-algebras of quaternions and octonions
(or Cayley numbers), respectively. The conjugation, (non-associative) multiplication, and the
Euclidean inner-product on O~R? are given by

a+be =a—be, (a+be)(c+de)=(ac—db)+(da+be)e,
1 _ Y a,b,c,deH.
(a+be, c+de) = 5(aé+c&+bd+db)

These operations satisfy

14T € RCO Yze0, zr=rzx VzeO,reR, z5=77, (zy)y =zy*> Vz,ycO,

L 5 (2.8)
(z,y) = §(xy+yw) Vr,yeO,  (zu,yu) = (z,y)|ul” Vo,y,ucO.
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Let

ImO = {z€0:T=-2} = {2€0: (z,1)=0} = (ImH)®He
and X:{azelm@:\:U|:1}%S6

be the subspaces of purely imaginary octonions and of purely imaginary unit octonions, respectively.
For each u€ X, define
Ju: O — O, Ju(x) = zu.

Since u=—u, (2.8) implies that this linear automorphism of O satisfies
J? = —Idg and (Ju(@), Ju(y)) = (z,y) Va,yeO.
Thus, J, preserves the subspace
fvelmO: (v,u)=0} =T, X.

It follows that the family {.J,}, determines an almost complex structure on O—R, which restricts
to an almost complex structure J on X. The Nijenhuis tensor of J is given by

Aj(vy,vg) = (vl(vgu)—(vlv2)u—vg(v1u)+(vgvl)u) VueX, vy, el X.

AN

For example, As(i,))|u=e = (ji)€ if i,j € H are orthonormal purely imaginary quaternions. Thus, the
almost complex structure J is non-integrable. Since H?(X;Z)={0}, the sentence containing (2.6)
implies that X admits no symplectic form.

Example 2.5 ([22, 41]). Let G be the group with the underlying set Z* and the product given by
(k,6,m,n)(K' 0 ,m' n') = (k+K kK +0+0 m+m' km' +n+n).

This group acts on R* on the left by the diffeomorphisms
(k, €, m,n)(x1, 22, y1,92) = (w1+k, vo+kz1+4, y1+m, y2+ky1+n)

properly discontinuously. Thus, the quotient X is a smooth manifold, known as the Kodaira-
Thurston manifold. It is a non-trivial T2?-bundle over T? and thus compact. Since the commuta-
tor [G,G] of G is {0}3xZ, Hi(X;Z)~Z3. The above G-action on R* preserves the symplectic
form

wra = dxy Adxo+dy; Adys

and the complex structure Jga given by

0 0 0 0
J]Rélaixl—aiyl and JR487$2—871/2.

Thus, they descend to a symplectic form w and a complex structure J on X. On the other hand,
the sentence containing (2.7) implies that X admits no Kahler structure.

A simply connected closed ten-dimensional smooth manifold X admitting a symplectic form, but
no Kéhler structure, is constructed in [27] as a symplectic blowup, in the sense of [29, Section 7.1],
of P° along an embedded copy of the Kodaira-Thurston manifold. Simply connected closed four-
dimensional smooth manifolds X admitting a symplectic form, but no complex structure, are
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constructed in [16, Sections 3,6]. On the other hand, every simply connected closed complex man-
ifold (X, J) of real dimension 4 admits a Ké&hler structure; see [2, Theorem IV.3.1]. A simply
connected closed six-dimensional smooth manifold X admitting a symplectic form and a complex
structure, but no Kéhler structure, is constructed in [3].

Let X be a smooth manifold. We denote by J(X) and Q2(X) the spaces of (smooth) almost
complex structure on X and of nondegenerate 2-forms on X, respectively, with the C°°-topologies.
These are Fréchet manifolds and

TJJ(X):{AGF(X;EndR(TX)):JA:—AJ} vVJeJ(X).
For a 2-form w on X, we denote by
Jim (W), Tem(w) C T (X)

the subspaces of w-tame and w-compatible almost complex structures on X; both are empty un-
less w € Q2(X). The former is then an open subspace of J(X), while the latter is a Fréchet
submanifold with

T1Jem(X) = {A€T;T(X): w(JA- )= —w(- JA)} VYV JETem(X).
For a metric g on X, we similarly define
J(g)={JeT(X): g(J(v),J (V') =g(v,v") Vv,v' €T, X, z€X}

to be the subspace of almost complex structures on X preserving g.

Let g be a metric on X and w a 2-form on X. Following [21, Appendix], we define
Ag € T(X; Endr(TX)) by g(Agw(v),v) =w(v,v) Yo, el X, zeX. (2.9)
Since w is anti-symmetric in the two inputs,
g(AgM(v),v') = —g(v,Agyw(U’)) Vo, el, X, zeX,

i.e. the transpose A;w with respect to g equals —A,,. If we N2(X), Ay, is an automorphism

of TX. The Polar Decomposition Theorem [19, Proposition 2.19(1)] then implies that there exist
unique automorphisms Jy, ., Sy, of TX such that

Ag,w = g,wosg,w7 g(Sg,w(U),’U) >0 VveTX-X,

2.10
9(Jgw(v), Jgu(®) = g(v,v") and g(Sgw(v),v") = g(v, Sgw(®)) Vv,v' €T X, zeX. (2.10)

We denote by J;fw the transpose of J,,, with respect to g.

By the penultimate equation in (2.10),
J;’erng, Jg,WOJg’rM =—Idrx.
Combined with the first and last equations in (2.10) and A}, =—A, ., this gives
(Jg,wng,W) © (J;fwoSg,wng’w) = —Jgw0Sgwodgw

tr tr
- _Ag7wOngw = Ag,wOJQM - gywOJgMOJQW - _Sg7w °
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From the last equation in (2.10) and the uniqueness of polar decomposition, it then follows that
J927w = —ldrx, J;,rw = —Jgw, J;fwosngotjgw = Sgw -
Along with (2.9) and the first three equations in (2.10), this gives

w(v, JgM(v)) >0 VoeTX X, w(ng(v), ngw(v/)) = w(v,v/) Voo €T, X, zeX,
g‘jg’w (v,0") = w(v, Jg,w(v’)) = —g(Jg,w (Ag,w(v)),v’) = g(AgM(v),v’) Voo eT, X, xeX.

In particular, Jg ., € J(9)NJTem(w). If either J € Jem(w) and g=g4 or J € Jem(g) and w=w?, then
Ag=J and thus Jg,=J.

Suppose B is a topological space, (ws)sep is a continuous family of nondegenerate 2-forms on X, and
(Js:0)seB and (Js1)sep are two families of almost complex structures on X with Jy.0, Js;1 € Tem(ws)
for every s€ B. The map
Bx [07 1] — j(X)v (37 t) — J(l—t)g°j:;0+tg}’j;1,ws ’

is then a homotopy between (Js.0)sep and (Js1)sep such that Jg.o, Js.1 € Jom(ws) for all s€ B and
t€[0,1]. In particular, the space Jm(w) is contractible for every w € Q2(X), provided Jom(w)#0.
Since Jem(w) # 0 if X is a point, the contractability of Jem(w) when nonempty implies that
Jem(w) # 0 for any manifold X and w € Q2(X). This yields the claim concerning Jem(w) below.
By Proof 2 of [30, Proposition 2.5.13], the inclusion

u7cm(w) — u7tm(w)
is a homotopy equivalence. This implies the claim concerning Jim(w) below.

Proposition 2.6. Let X be a smooth manifold and w€N2(X). The spaces Jym(w) and Jem(w) of
w-tamed and w-compatible almost complex structures on X are nonempty and contractible.

Any almost complex structure J on a smooth manifold X of real dimension 2 is necessarily in-
tegrable and compatible with a symplectic form. On the other hand, [6, Proposition 2.3] implies
there can be no topological condition on an almost complex manifold (X, .J) of real dimension 4
or higher that ensures the existence of a symplectic form w even just taming J. Conjecture 2.7
below instead surmises that every deformation equivalence class of almost complex structures on
a closed smooth manifold X of real dimension 6 or higher contains an almost complex structure
which is compatible with some symplectic form w in a given deformation equivalence class of “non-
degenerate” elements of H geR(X ). If true, this would in particular imply that every deformation
equivalence class of “nondegenerate” elements of H, C%ER(X ) can be represented by a symplectic form
if X is a closed smooth manifold of dimension at least 6 that admits an almost complex struture.
The desired conclusion of this conjecture does not hold for closed smooth manifolds of dimension 4,
as illustrated by Examples 2.9 and 2.10 below; a weaker claim is proposed by Conjecture 2.8 in
this case.

Conjecture 2.7 ([9, Conjecture 6.1]). Suppose X is a closed smooth manifold of dimension 2n,
wo € Q3(X), and o € H3,5 (X) is such that nff #0. If n>3, there exist paths (w;)sepo,1) in Q2(X)
and (1;)e(0,1] In Hip(X) so that nf #0 for every t€[0,1], dw1 =0, and [wi]=n.
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Conjecture 2.8 ([9, Conjecture 6.2]). Suppose X is a closed smooth fourfold, wy € Q2(X), and
no € H*(X;7Z) is such that ng #£0. There exist N €Z, a closed oriented surface 3 C X representing
the Poincaré dual to + N1, a smooth covering m: X —» X branched only over ¥ so that 7~1(X) C X
is a submanifold, and paths (&t );e(0,1) in 02(X) and (Mt)eefo,) in ngR()?) so that

Do =7'wo, To=7"no, T #0 Vt€[0,1], dd =0, [&] =7,

and W1 |pr-1(x) does not vanish on T 1(%).

If J is an almost complex structure on a smooth manifold X, then X is oriented by J,
wi(X)=0, and  wy(X)=c(X,J)z, € H*(X;Zy) Vi€Z, (2.11)

where ¢;(X, J)z, is the mod 2 reduction the i-th Chern class of the complex vector bundle (T'X, J).
If in addition X is closed and of real dimension 4, then

X(X) = (e2(X, J), [X]) and  {e1(X,J)% [X]) = 30(X)+2x(X), (2.12)

where x(X) is the Euler characteristic of X and o(X) = b3 (X)—b; (X) is the signature of X,
i.e. the difference between the numbers b3 (X) and b, (X) of positive and negative eigenvalues of
the quadratic form

H*(X;R)®? — R, (a, B) — (a3, [X]).

The first equality in (2.12) follows from Corollary 11.12 and the definition of ¢, (X, J) on page 158
in [31], while the second from the Hirzebruch Signature Theorem [31, Theorem 19.4], [31, Theo-
rem 15.5], and the first equality.

By [43, Théoreme 10], a closed oriented smooth fourfold X admits an almost complex structure if
and only if

Je€ H*(X;Z) st. ¢z, =wa(X) € H(X;Zy) and (% [X]) =30(X)+2x(X);  (2.13)

the only if part is immediate from the i =1 case of the second equation in (2.11) and the second
equation in (2.12). If J is an almost complex structure on a closed smooth fourfold X , then

{ea(X, ) +c1(X, )%, [X]) € 12Z;
this follows from [23, Corollary D.18] with c¢=¢; (X, J). Along with (2.12), this implies that
X(X)+o(X)e4Z  and by (X)—bi(X) & 27Z (2.14)
if X is a closed oriented smooth fourfold admitting an almost complex structure.
Example 2.9 ([1]). The manifold X = (S x S35 x S3HKS? x S?) is oriented and satisfies

X(X) = 2x (S x 8%) +x(S% x 5?) —2(2—x (S % [0,1])) = 0,
o(X) =20(S' xS +0(5?x 5?) = 0.

Since wa (S xS53), w2 (5%x5?) =0, wa2(X)=0 (this condition is equivalent to X being spin, i.e. TX
being trivializable over a 2-skeleton of X; see [8, Sections 1.1,1.2]). By [43, Théoreme 10] with ¢=0,
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X thus admits an almost complex structure. Since H?(X;R)#0, n3 #0 for some no€ H*(X;Z).
The smooth manifold

X = (S x SO (S x S W25 x §%) = (5" x STW2(S" x SPWE(S? x S2) #(5? x §%)

is a double cover of X. Since by of each of the two summands on the right-hand side above is

nonzero, all Seiberg-Witten invariants of X vanish; see [35, Theorem 4.6.1]. By [40], X thus does
not admit a symplectic form. It follows that X does not admit a symplectic form either. Along with
[2, Theorem IV.3.1], this implies that X does not admit an integrable almost complex structure.

Example 2.10. We denote by a € H?(IP?;Z) the positive generator and by ay € H?(P?;Zy) its
mod 2 reduction. For k € ZT, let X, = #kP? be the connected sum of k copies of the complex
projective plane. This simply connected manifold is oriented and satisfies

X(Xi) = kx(P?) = (k=1)(2—x(S°x[0,1])) = k+2,  x(X),bf (X3) = kb (P?) = £,
H?*(Xy; R) ~ kH*(P*%; R);
the last isomorphism holds for any commutative ring R with unity. By (2.14), X} with k € 2Z%

thus does not admit an almost complex structure. Under the above isomorphism with R = Zs,
wa(Xy) corresponds to (az,...,az). If r€Z*, [43, Théoreme 10] with

c= (3@,...,3@,@,...,@)

T r—1

thus implies that Xo,_; admits an almost complex structure. If r>2, Xo. 1= Xo,_o#P2. Since b;
of each of the two summands of X9, 1 is nonzero, all Seiberg-Witten invariants of Xo, 1 vanish;
see [35, Theorem 4.6.1]. By [40], X9, with 7>2 thus does not admit a symplectic form. Along
with [2, Theorem IV.3.1], this implies that Xo,_1 with r >2 does not admit an integrable almost
complex structure.

2.3 Key notation and terminology

Let (X,j) be a Riemann surface, V' be a vector bundle over ¥,
p,n € T(S;T*E@RV), and g eI (% V*®2).
For a local coordinate z=s+it, define

g(uein) = (g(1(8s),n(9s) +9(1(8y),n(8r))) dsAdt,,
g(unin) = (g(1(8s), n(0r) —g((0r), n(9s)))ds Adt .

By a direct computation, the 2-forms g(1®;n) and g(puAjn) are independent of the choice of local
coordinate z=s+it. Thus, (2.15) determines global 2-forms on ¥ (which depend on the choice of j).

(2.15)

Let X be a manifold, (X,j) be a Riemann surface, and f: ¥ — X be a smooth map. We denote
the pullbacks of a 2-tensor g and a 2-form w on X to the vector bundle f*T'X over X also by g
and w. If g is a Riemannian metric on X and U C ¥ is an open subset, let

B(N=75 [oldiedn el amd  E(RU)=E(f) (216)
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be the energy of f and of its restriction to U. By the first equation in (2.15),

BN =5 [L1asE, (217)

is the square of the L?-norm of df with respect to the metric ¢ on X and a metric gs, compatible
with j. In particular, the right-hand side of (2.17) depends on the metric ¢ on X and on the
complex structure j on X, but not on the metric g on ¥ compatible with j.

Let J be an almost complex structure on a manifold X and (X,j) be a Riemann surface. For a
smooth map f: X — X, define

o;f = %(df—h]odfoj) e L'(Z(T*8, ) @c f(TX, J)).

If w is a 2-form on X taming J and u: ¥ — X is J-holomorphic, then
Big(£) = [ (FotdiOufeduf)+ ) (218)

by (2.16) and (2.5). If J is w-compatible, the last term above vanishes. A smooth map u: > — X
is J-holomorphic if dyu=0. For such a map, the last two terms in (2.18) vanish.

The next lemma summarizes key properties of the energy function; they follow from (2.17) and (2.18).
In the case the 2-form w in Lemma 2.11(2) is closed, (2.19) imposes a restriction on the elements
of Hy(X;Z) that can be represented by J-holomorphic maps from closed Riemann surfaces for an
w-tame almost complex structure J on X.

Lemma 2.11. Suppose X is a smooth manifold, (¥,j) is a Riemann surface, and f: ¥ — X is a
smooth map.

(1) Let g be a Riemann metric on X. The map f is constant if and only if E4(f)=0.

(2) Let w be a 2-form taming J. If f is non-constant and J-holomorphic, then

/ Frw>0. (2.19)
¥

By Lemma 2.11(2),
us[X] # 0 € Hy(X;Q) (2.20)

for any non-constant J-holomorphic map u: ¥ — X from a closed Riemann surface if J is tamed
by a symplectic form w. The next three examples show that a non-constant J-holomorphic map
u: ¥ — X from a closed Riemann surface could represent the zero element of Hy(X;Z) otherwise.
By Example 2.14, any almost complex structure J can be deformed locally to an almost complex
structure not tamed by any symplectic form.

Example 2.12. Let X ~S3x S! be the complex manifold of Example 2.3. The Z-action on Ex-
ample 2.3 preserves the complex linear subspaces of C2. For every complex linear one-dimensional
subspace L C C2, the subspace

(L—{oy/z c X

is a complex submanifold diffeomorphic to the 2-torus S*x S'. Since Hy(X;Z)=0, the homology
class of this complex torus in X vanishes.
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Example 2.13. Let (X, J) be the almost complex manifold of Example 2.4. For every linear three-
dimensional subspace L CIm O so that R@ L is preserved under the octonion multiplication, such
as ImH, the intersection LNX in Im O is an almost complex submanifold of (X, .J) diffeomorphic
to PL. Since Ho(X;Z)=0, the homology class of this .J-holomorphic sphere in X vanishes.

Example 2.14. [[6, Proposition 2.3]] Let T? C B be a 2-torus embedded inside of the unit ball
in R3. For n>2, the standard complex structure Jc» on

C" =R*xRxC

can deformed within the ball B3" C C" of radius 2 through almost complex structures to an almost
complex structure Ji, preserving 7T? C TC"|p2. Suppose now that (X, J) is any almost complex
manifold so that the real dimension of X is 2n >4 and U C X is an nonempty open subset. The
latter contains a coordinate 3-ball Bg" inside of which J can be deformed to an almost complex
structure restricting to Jen in the coordinates on B3". The new almost complex structure can then
be deformed within B3" to an almost complex structure J' on X restricting to Ji., on B3". The
2-torus T? C B" is then a J'-holomorphic submanifold representing the zero class in Hy(X;Z).

For each RER™, denote by Br CC the open ball of radius R around the origin and let
Bp = Br—{0}.

If in addition (X, g) is a Riemannian manifold and z € X, let Bf(z) C X be the ball of radius &
around x in X with respect to the metric g.

Exercise 2.15. Let (X, J,g) be an almost complex Riemannian manifold. Show that there exists
a continuous function §: X — RT with the following property. If u: ¥ — X is a .J-holomorphic
map from a closed Riemann surface with u(X) CBg(x) (x) for some x € X, then u is constant.

Let (X, J) be an almost complex manifold and (3,)) be a connected closed orientable surface. A
smooth map u: X — X is called

e somewhere injective if there exists z€ X such that u=!(u(z))={z} and d,u#0,

e multiply covered if u = v/ oh for some connected closed orientable surface ¥/, branched cover
h:¥—3 of degree different from +1, and a smooth map u': ¥ — X,

e simple if it is not multiply covered.
By Proposition 4.11, every J-holomorphic map from a compact Riemann surface is simple if and

only if it is somewhere injective (the if implication is trivial).

3 Local Properties

We begin by studying local properties of J-holomorphic maps u from Riemann surfaces (X,)) into
almost complex manifolds (X, J) that resemble standard properties of holomorphic maps. None of
the statements in Section 3 depending on X being compact; very few depend on ¥ being compact.
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3.1 Carleman Similarity Principle

Carleman Similarity Principle, i.e. Proposition 3.1 below, is a local description of solutions of a non-
linear differential equation which generalizes the equation dju=0. It states that such solutions
look similar to holomorphic maps and implies that they exhibit many local properties one would
expect of holomorphic maps.

Proposition 3.1 (Carleman Similarity Principle, [11, Theorem 2.2]). Suppose n € Z*, p,e e R"
with p>2, J € LY(B¢; EndgC"), C € LP(B; EndgC"™), and ue LY(B; C") are such that

u(0) =0, J(2)? = —Tdcn, us(2) + J(2)us(2) + C(2)u(z) =0 V z=s+it€ B,. (3.1)
Then, there exist 6 € (0,€), ® € LY(Bs; GL2yR), and a Jen-holomorphic map o: Bs— C" such that

a(0) =0, J(2)®(z) = ®(2)Jcn, u(z) =P(2)o(z) V z€B;s. (3.2)

By the Sobolev Embedding Theorem of Corollary D.3, the assumption p > 2 implies that « is a
continuous function. In particular, all equations in (3.1) and in (3.2) make sense. This assumption
also implies that the left-hand sides of the third equation in (3.1) and of the second equation in (3.2)
and the right-hand side of the third equations in (3.2) lie in L.

Example 3.2. Let ¢: C— C denote the usual conjugation. Define

. -1
~ B i 0\ 1 0 1 0 2 9 L
J(z1,22) = <—2islc i) = ( oc 1>J(C2<81c 1) :CF — C° Vzy=s;+it;,

u: C — C2, u(s+it) = (2,82).

Thus, J is an almost complex structure on C? and v is a j—holomorphic map, i.e. it satisfies the

~

last condition in (3.1) with J(z)=J(u(z)) and C(z)=0. The functions

0:C—C?, o(z)=(20), $: C — GL4R, P(s+it) = (sc—il—i‘st (1)> ,

satisfy (3.2).

Corollary 3.3. Letn, p, €, J, C, and u be as in Proposition 3.1. If in addition Jy=Jcn and u
does not vanish identically on a neighborhood of 0, then there exist {€ZT and o€ C"*—0 such that

ot
i W0
z—0 z
Proof. This follows from (3.2) and from the existence of such ¢ and « for o. O

Corollary 3.4. Suppose (X, J) is an almost complex manifold, (X,j) is a Riemann surface, and
u: X — X is a J-holomorphic map. If u is not constant on every connected component of X3, then
the subset

u ' ({u(2): z€%, du=0}) C %

is discrete. If in addition x € X, the subset u=1(z) CX is also discrete.
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Proof. The first and third equations in (3.2) immediately imply the second claim (but not the first,
since ® may not be in C'). The first claim follows from Corollary 3.3 and Taylor’s formula for u
(as well as from Corollary 3.6). O

Before establishing the full statement of Proposition 3.1, we consider a special case.

Lemma 3.5. Suppose n € Z* and p,e € RT are as in Proposition 3.1, A € LP?(B¢; EndcC"), and
we LY (Be; C") are such that

u(0) =0, us + Jenue(z) + A(z)u(z) =0 V z=s+it€ B.. (3.3)
Then, there exist 6 € (0,¢), ® € LY (Bys; GL,,C), a Jen-holomorphic map o: Bs — C™ such that
o(0) =0, ®(0) = Idcn, u(z) = ®(z)o(z) V z€B;. (3.4)
Proof. For each § €10, €], we define

A(z), if z€ By;

As € LP(§% EndcC") by As(z) = ‘
0, otherwise;
Dy : LY (5% EndcC") — LP(S% (T*S*)* ' @cEndcC”) by DsO = (O4+Jcn©;+As0)dz.

Since the cokernel of Dy =20 is isomorphic H'(S?;C)®cEndcC", Dy is surjective and the homo-
morphism

Do: L8(S% EndcC") — LP(S?%(T*5%)" @cEndeC™) @ EndcC”,  © — (D0, 0(0)),
is an isomorphism. Since
|Ds€ — Do®|l, < 45|z Bllco < CllAsl ol ¥ © € LE(S* EndeC™)
and ||As||zr — 0 as § — 0, the homomorphism
Ds: IX(S?% EndcC") — LP(S%; (TS5 @cEndcC") @ EndcC",  © — (Ds0,0(0)),

is also an isomorphism for § > 0 sufficiently small. Let ©5= Dgl(O, Idcn). Since Djs is an isomor-
phism,

05 1dee]| o < CllO5-Tden | < [ D5(O5-1den), = s

HCO HLP

Since || Asz» — 0 as § — 0, ©;5 € L¥(Bs; GL,C). By (3.3) and DsO5=0, the function 0 =0;"u
satisfies
a(0) =0, os+Jenor=0 V z € By,

i.e. 0 is Jon-holomorphic, as required. O

Proof of Proposition 3.1. (1) Since B, is contractible, the complex vector bundles u*(T'C", Jcn)
and u*(T'C™, J) over B, are isomorphic. Thus, there exists

U € LY(Be; GLg,R) st. J(2)¥(z) =¥(z)Jen V z€B..
Let v=U"14. By the assumptions on u, veLY(B;C") and

v(0) =0, vs(2) 4+ Jenv(2) + C(2)v(2) =0V z=s+iteB,, (3.5)
where C =01 (U, + J¥, + C¥) € LP(B.; EndgC").
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Thus, we have reduced the problem to the case J=Jcn.

(2) Let Ct= %(5 F JCnéJ(Cn) be the C-linear and C-antilinear parts of 5, ie. Ot Jon = +JenCE.
With (-, -) denoting the Hermitian inner-product on C" which is C-antilinear in the second input,
define

) it . _ ~
D c LOO(Be,EndRCn), D(Z)w: |,U(Z)‘ <v(z),w>v(z), 1 ’U(Z)?.éo, A:C++C*D
0, otherwise;

Since DJgen =—Jen D and Dv=v, A € LP(B.; EndcC") and Av=Cuv. Thus, by (3.5),
U5+JCnUt+AU:O.
The claim now follows from Lemma 3.5. Ul

Corollary 3.6. Suppose n € Z*, e € R, J is a smooth almost complex structure on C" with
Jo=Jcn, and u: Be — C" is a J-holomorphic map with w(0) =0. Then, there exist 6 € (0,¢€),
C € RT, ® € C%Bjs; GL2yR), and a Jen-holomorphic map o : Bs — C" such that ® is smooth
on By,

c(0) =0, ®(0)=Idcr, J(u(2))®(z)=®(2)Jcn, u(z)=P(2)o(z), |d.®|<CVzeB;.

Proof. We can assume that u is not identically 0 on some neighborhood of 0 € B,. Similarly to (1)
in the proof of Proposition 3.1, there exists

U e C®(C%GLyR) st W(0) =Iden, J(z)¥(x) = U(z)Jen ¥ zeCm.

Let v(z) = ¥(u(z))"tu(z). By Corollary 3.3, we can choose complex linear coordinates on C"
so that
v(z) = (f(2),9(2))h(z) € CRC™ ! Vz€By

for some € € (0, €), holomorphic function h on By with h(0) =0, and continuous functions f and
g on By with f(0) =1 and ¢g(0) =0. By Lemma 3.7 below applied with f above and with each
component of g separately, there exists 6 € (0, €') so that the function

¢: B; — GL2uR, O(2) = ¥ (u(2)) <£§j)) (1)> ’

is continuous on Bs and smooth on Bs—0 with |d,®| uniformly bounded on Bs—0. Taking
o(z)=(h(z),0), we conclude the proof. O

Lemma 3.7. Suppose e€R™, and f,h: B.— C are continuous functions such that h is holomor-
phic, h(z)#0 for some z € B, and the function

B, — C, z — f(2)h(2), (3.6)
is smooth. Then there exist 6 € (0,¢) and C €R™ such that f is differentiable on B.—0 and

|d.f|<C  Vz2eB;—0. (3.7)
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Proof. After a holomorphic change of coordinate on By C B, we can assume that h(z) = 2 for
some £ €Z=9. Define

9:Bas — C,  g(2) = f(2)2" = f(0)2" .

By Taylor’s Theorem and the smoothness of the function (3.6), there exists C'> 0 such that the

smooth function g satisfies
|g(z)} < Oz vV z€DBs.

Dividing ¢ by z‘, we thus obtain (3.7). O

Remark 3.8. Corollary 3.6 refines the conclusion of Proposition 3.1 for J-holomorphic maps.
In contrast to the output (®,0) of Proposition 3.1, the output of Corollary 3.6 does not depend
continuously on the input u with respect to the L{-norms. This makes Corollary 3.6 less suitable
for applications in settings involving families of J-holomorphic maps.

3.2 Local structure of J-holomorphic maps

We now obtain three corollaries from Proposition 3.1. They underpin important geometric state-
ments established later in these notes, such as Propositions 3.13 and 4.11 and Lemma 5.4.

Corollary 3.9 (Unique Continuation). Suppose (X, J) is an almost complex manifold, (X,)) is a
connected Riemann surface, and
U,U,I (Eal) — (Xv J)

are J-holomorphic maps. If ug and uf, agree to infinite order at zo €%, then u'=u'.

Proof. Since the subset of the points of ¥ at which w and v’ agree is closed to infinite order, it is
enough to show that v =’ on some neighborhood of zy. By the continuity of u, we can assume
that X =C", ¥ =By, 20=0, and u(0), 4 (0)=0. Let

w=u—u: B, — C".

Since J is C1,

1 i
J(x+y)=J(x)+/0 d‘](djty +Zyz/ T (3.8)

Since v and v’ are J-holomorphic, (3.8) implies that

m—l—ty

dsw + J (u(z))Ow + C(2)w(z) = 0, where C € LP(By; EndgC"),

y—Zyz</0 P ()dt)&tw|z.

By Proposition 3.1, there thus exist § € (0, 1), ® € L} (Bs; GL2,R), and holomorphic map w: Bs — C"
such that

v(z)+tw

w(z) = ®(2)w(z) V z € Bs.

Since w vanishes to infinite order at 0, it follows that w(z) =0 for all z € B; (otherwise, w would
satisfy the conclusion of Corollary 3.3) and thus w(z)=0 for all z € Bs. dJ
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Corollary 3.10. Suppose (X, J) is an almost complex manifold,
u,u's (3,), (X,1) — (X, J)

are J-holomorphic maps, zo € ¥ is such that d,;u#0, and zy € ¥’ is such that u'(z)) = u(zo). If
there exist sequences z; € X —zp and z} €X' —z{ such that

lim 2 = 2, lim 2zl =2, and u(z)=1u'(z) VicZ",
11— 00 11— 00

then there exists a holomorphic map o: U' — X from a neighborhood of z{y in ¥’ such that o(z{) = 2o
and |y =uoo.

Proof. Tt can be assumed that (3.}, z0), (X', 2{,) = (B1,0,0), where B; C C is the unit ball with
the standard complex structure. Since d,,u# 0 and w is J-holomorphic, u is an embedding near
0€ B; and so is a slice in a coordinate system. Thus, we can assume that

u,u' = (v, w): (B1,0) — (CxC"10), u(z) = (2,0) € CxC"1,

and u,u’ are J-holomorphic with respect to some almost complex structure

J11($,y) le(x7y) ) n—1 n—1 n—1
J(z,y) = :CxC s CxC , .y) € CxC .
(#:3) ( Jor(w,y)  Jaa(z,y) % X (z,y) € Cx

Since J is C1,

1 n—1 1
dJi '(1’, ty) OJZ i
Jii(x,y) = Jii(x,0 +/ I At = Jii(x,0) + yi/ J dt. 3.9
.7( ) .7( ) 0 dt J ( ) ; 0 83/1 (z7ty) ( )
Since wu is J-holomorphic,
Jo1(2,0) =0, Joa(z,00>=-Id VzeB cC. (3.10)

Since v is J-holomorphic,
dsw + Joz (v(z), w(2)) Fw + Jo1 (v(2), w(2))Opv = 0.
Combining this with (3.9) and the first equation in (3.10), we find that

dsw + Jaz(v(2),0) 9w + C(2)w(z) =0, where C € LP(By; EndR(C"_l),

n—1 1 1
dJ- dJ-
Clz)y =) yz<</ 82? dt)at’w|z+ (/ 82-1 dt>8t1)|z> .
=1 0 Y l(u(z)tw(z)) 0 Y l(u(z)tw(z))

By Proposition 3.1 and the second identity in (3.10), there thus exist 6 € (0, 1), ® € L (Bs; GLa,,—2R),
and holomorphic map w: Bs — C"~! such that

w(z) = ®(2)w(z) V z € Bs.

Since u/(2}) =u(z;), w(z}) =0 for all i € Z*. Since z, — 0 and z] #0, it follows that w=0. This
implies the claim with U’ =Bs and o=v. O
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Corollary 3.11. Let (X, J,g) be an almost complex Riemannian manifold and x € X be such that
g is compatible with J at z. If uw: ¥ — X is a J-holomorphic map from a compact Riemann
surface with boundary so that x Zwu(0%), then

E -u— 1 (BY
lim g(uiu™ (By(2))) = ord,u .
6—0 w02
Exercise 3.12. Let u: C—C" be given by u(z)=az’ with « €C"—{0} and £€Z*. Show that
Egen(u; u_l(BgC"(O))) = (né?,

where gcn is the standard metric on C™.

Proof of Corollary 3.11. By the continuity of u, we can assume that X = C”, J agrees with the
standard complex structure Jcn at the origin, g agrees with the standard metric gcn at the origin,
Y= Bpg for some ReR™T, and «(0)=0. In particular, there exists C'>1 such that

95— gon| S Clel  VaeC st fo <1, (3.11)

where | - | denotes the usual norm of z (i.e. the distance to the origin with respect to gcn). We can
also assume u does not vanish identically on a neighborhood of 0.

Let £=ordpu and aa€ C"—0 be as in Corollary 3.3, where 0 € Bp, is the origin in the domain of w.
Thus, there exist e€(0,1), C€R™, and a smooth function f: C—C™ such that

w(z) = az'+f(2), lo||f(z)| < Clz|"" VzeB.. (3.12)

With z=s+it as before,
us(z) = alz"1 4+ £o(2), wi(z) = aliz"" 14+ fi(z) VzeB..
By (3.12), there exists C €R™ such that
all| £s(2)], |ele| fi(2)| < C|2|* V¥ z€Be. (3.13)
We can also assume that the three constants C in (3.11), (3.12), and (3.13) are the same, C'>1,
Coe = (C+Clal+C?|al)e < 1,

and |u(z)| <1 for all z€ B.. By (3.11)-(3.13),

|u(2)]g
| 2]

- )

2] 2]

us(2)lg '

hMMg_ﬁscm+cmmV+ﬁmwwﬂ
(3.14)
< Coa‘z| Vze B,

where | - |; denotes the distance to the origin in C" with respect to the metric g and the corre-
sponding norm on T'C".

Given re(0,1), let 6, €(0, €) be such that

. ((1_2;;”)'(”) . (3.15)
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For any §€[0,0,], (3.14) and (3.15) give

1/¢
A< () — w9 EBO).

1/¢
u(z) € BY(0) = |z] < ((1—?")]04]) )

5\ us(2)ly  |ue(2)]
< — 1—p < 1532719 I_ <14y
‘z'—<<1—r>|a|> = " ol fajgae T <

Combining these, we obtain

(=) (lale] 2|t 1 ws |2+ |y
/Z|<( el < o N D

(I+7) e
/—1\2
/ %1—1-7“)2(]04]&2] e,

(1 r)\a|

IN

Evaluating the outer integrals, we find that

-\ < (s 0 (BI(0))) < (7 s,
147 AN 0 = \1-r

These inequalities hold for all r€ (0,1) and 6 € (0, ,); the claim is obtained by sending r—0. [

3.3 The Monotonicity Lemma

Proposition 3.13 below is a key step in the continuity part of the proof of the Removal of Singularity
Proposition 5.1. The precise nature of the lower energy bound on the right hand-side of (3.16)
does not matter, as long as it is positive for § > 0.

Proposition 3.13 (Monotonicity Lemma). If (X, J) is an almost complex manifold and g is a
Riemannian metric on X compatible with J, there exists a continuous function Cy y: X — R
with the following property. If (X,j) is a compact Riemann surface with boundary, u: X — X is a
J-holomorphic map, x€ X, and 6 €RT are such that w(0X)NBY (x) =0, then

62

65 (3.16)

Ey(u) > (ordyu)
Ifw(-,-) =g(J-,) is a symplectic form on X, then the above fraction can be replaced by 162e=Co.1 ()87
If in addition the metric g is flat and § <r4(x), then the above fraction can be replaced by m&>.

Corollary 3.14 (Lower Energy Bound). Suppose (X, J,g) is a compact almost complex Rieman-
nian manifold. There exists hj gy € RT such that Eg(u)>hy, for every non-constant J-holomorphic
map u: X—> X from a closed Riemann surface.

Proof. By the compactness of X, we can assume that g is compatible with J. Let C € RT be the
maximum value of a function Cj ; provided by Proposition 3.13 and

. T2
= max .
19 = Sert 1406

The desired energy bound for non-constant J-holomorphic maps u: ¥ — X from compact Riemann
surfaces with 90X =) then follows from (3.16). O
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According to Proposition 3.13, “completely getting out” of the ball Bs(z) via a J-holomorphic map
requires an energy bounded below by a little less than 762. Thus, the L?-norm of a J-holomorphic
map u exerts some control over the C%-norm of u. If p>2, the L{-norm of any smooth map f from
a two-dimensional manifold controls the C%-norm of f; see Corollary D.3. However, this is not the
case of the L2-norm, as the following example illustrates.

Example 3.15 ([29, Lemma 10.4.1]). The function

1, if |z] < ¢
fe:R2—>[0a1L fe(z): 11%@7 if€§’2’§1;
0, if |z| > 1,

with any e€ (0, 1) is continuous and satisfies

2
/R2 |fe|2 = ﬁ(1—62(2(1n6)2—2(1ne)—|—1)>, /R2 |df€|2 = _é.

This function is arbitrarily close in the L%—norm to a smooth function ﬁ Thus, it is possible to

“completely get out” of Bg (x) using a smooth function with arbitrarily small energy (fe does this
for the ball Bi(1) in R).

Suppose (X, J) is an almost complex manifold and w is a symplectic form taming J. By (2.18),
the holomorphic maps from a closed Riemann surface (X,j) are the local minima of the functional

COO(E,X)—>R, f—)Egy(f)—/Zf*wbj

This fact underpins Lemma 3.19, the key ingredient in the proof of the Monotonicity Lemma.
Lemma 3.19 implies that the ratio of Ey(u;u™*(B{(z))) and the fraction on the right-hand side (3.16)
is a non-decreasing function of §, as long as w(9X)NBY(x)=0. By Corollary 3.11, this ratio ap-
proaches ord,u as ¢ approaches 0. These two statements imply Proposition 3.13.

We first make some general Riemannian geometry observations. Let (X,g) be a Riemannian
manifold. Denote by exp: W, — X, the exponential map from a neighborhood of X in T'X with
respect to the Levi-Civita connection V of g. For each v€T X, we denote by

Vo1 [0,1] — X, (7)) = expy (o),
the geodesic with 7/ (0)=v. Let
rg: X — RT  and  d,: XxX — R0
be the injectivity radius of exp and the distance function. For each x € X, define
Go € T(BY (@1 TX) by expy(G(y) =2, 9C(v), GW) <rg(2)* YyeB! (o).

Lemma 3.16. Let (X,g) be a Riemannian manifold and x € X. If a: (—€,¢) — X is a smooth
curve such that a(0) Gng(x) (x), then



Proof. 1f B(1)=exp, ! a(r), then

By Gauss’s Lemma,

9(8'(0), 8(0)) = g({ds(0) exp, }(6'(0)), {ds(0) exp, }(6(0))) = g(’(0), —Cx((0))) -
This establishes the claim. ]

Lemma 3.17. If (X, g) is a Riemannian manifold, there exists a continuous function Cy: X — R
with the following property. If € X, ve T, X with [v|y< 3ry(x), and T—> J(7) is a Jacobi vector
field along the geodesic ~, with J(0)=0, then

|[7'(1) = J(D)], < Cyl@) ]I ()],

If the metric g is flat on ng(x)/2(x)’ then Cy can be chosen to vanish at x.

Proof. Let R, be the Riemann curvature tensor of g and f(7)=|rJ'(1)—J(7)|y. Then, f(0)=0
and

f =1y

52 J(0)? = g(r"(1), 77 (1) = J(7) = 79 (R (7), J( )W (7). 7. ()= T (7))

< Cy(@)[vf3|T(7) g7 f (7).
If Cy is sufficiently large, then |J(7)|; <Cy(z)|J(1)|g. Thus,
F@) (1) < Cyl@)vlg|Jo (1)o7 f(7) < Co(x)?[ulgl T (Dgr f(7),  f'(7) < Cyla)?|vlz] I (1)]g7.
The claim follows from the last inequality. O

Corollary 3.18. If (X, g) is a Riemannian manifold, there exists a continuous function Cy: X — RT
with the following property. If x€ X, then

‘Vwéx]y + w‘g < Cg(a;)dg(x,y)Q\w\g VweT,X, yEBfg(x)/Q(x).
If the metric g is flat on qu(z)/Q(x), then Cy can be chosen to vanish at x.

Proof. Let T—u(s, 7) be a family of geodesics such that

U(S7O) =7z, U(O, 1) =Y,

Since T—u(s, 7) is a geodesic,

d
Eu(sn’) B = {duf(&o) expm}(uT(s,O)) = f(x(u(s, 1)),
D du(s,T) D du(s, )
dr  ds T ds dr = ~Vuely-
(s,7)=(0,1) (s,7)=(0,1)
Furthermore, J(7)= L u(s, T)‘S:O is a Jacobi vector field along the geodesic 7— u(0, 7) with
D du(s,7)
J(O) =0, J(l) = w, J/(l) = ——" = _vax| .
dr ds (5,7)=(0,1) Y
Thus, the claim follows from Lemma 3.17. O
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Lemma 3.19. Suppose (X,w) is a symplectic manifold, J is an almost complex structure on X
tamed by w, and V is the Levi-Civita connection of the metric g4 as in (2.4). If (£,)) is a compact
Riemann surface with boundary and w: > — X is a J-holomorphic map, then

/g‘j(du@)jvg) :/ (W {Vews}+wy(dunVE)) VEET (X, u"TX) s.t. £loxn=0.
b by
Proof. For T €R sufficiently close to 0, define

ur: N — X, UT(Z) = EXDPuy(z) (7'5(2))

Since &|gn =0, ur|sx =u|sxn. Denote by ¥ the closed oriented surface obtained by gluing two copies
of 3 along the common boundary and reversing the orientation on the second copy. Let

Ur: S X
be the map restricting to u, on the first copy of ¥ and to v on the second.

By (2.18),

E(1) = Egs (ur) — / uzwy — Egs(u) = /Ailiw + 2/ 95 (0ur®;0ur;) >0 Vr.
‘ b $ b

Since w is closed and u, represents the zero class in Hy(X;Z), the first integral on the right-hand
side above vanishes. Thus, the function 7— E(7) is minimized at 7=0 (when it equals 0) and so

0= B0 = - (Bt - [ )

7=0
3.17
dl/‘”(d@d)/* i
=—|= ur®idus) — [ wiw ;
dr \ 2 EgJ T & T 5 TwWJ 7—:0,
the last equality above uses the definition of E(u,) in (2.16).
Let z=s+it be a local coordinate on (X,j). Since V is torsion-free,
D _Ddu,|  Ddu| D, D B
S s | T dsar |, T as sV @ (“T)t‘ Lo = Vik

Since V is also g%-compatible,

1d
559(} (dUT®Jd’UJ7—)

95 <us, E(UT)S T:0> + 49 <ut, E(uf)t T:O)) dsAdt

= 9% (us, V&) + g% (u, Vi) = g% (du®; VE)

7=0

D D
Eu:wJ . = ({VEWJ}(US,Ut) +wy (dT(uT)S To,ua +wy <u5, d—T(uT)t TO>) dsAdt
= u*{ngJ}—l—wJ (du/\j V{) .
Combining this with (3.17), we obtain the claim. O
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Proof of Proposition 3.13. Let 6, : X — R™ be a continuous function such that for every
x € X there exists a symplectic form w, on Bg{sg(w)(m) so that J is tamed by w, on Bg(sg(w) (x) and
the metric g5* as in (2.4) agrees with g at . We assume that 264(z) <ry(x) for every € X. It is
sufficient to establish the proposition for each z € X and each § <d,4(x) under the assumption that

the metric g agrees with g% on ng @) ().

Choose a C*°-function n: R— [0, 1] such that

1, ifr< %; ;
= <0. 3.18
(o) {07 NSO (319

For a compact Riemann surface with boundary (,j), a smooth map u: ¥ — X, z€ X, and d e R,
define

Nu,x,6 € 000(27 R)7 77u,x,6(z) = n(W)a

1

Eyzn(0) = 2/277u7m’5(z)g(du®jdu) . Eul.(6) =E, (u;u_l(Bg(x))).

We show in the remainder of this proof that there exists a continuous function Cy j: X —R™
such that
—0F, 4 (0) + 2Ey 2.n(8) < 2C, j(2)0 By 2.4(8) + Cy.y(2)5°EL, ., () (3.19)

u,x,n U,T,1n

for every compact Riemann surface with boundary (X,j), J-holomorphic map u: ¥— X, and
§€(0,04(x)) such that u(0X)NBY(z)=0. This inequality is equivalent to

<%th%wﬁa

By Lebesgue’s Dominated Convergence Theorem, E, . ,(6) approaches E, .(6) from below as n
approaches the characteristic function x(_q, 1) of (=00, 1). Thus, the function

52
o E““((”/ (15 Cyr(@)0)7

is non-decreasing as long as u(9X)NBY(x)=0. By Corollary 3.11,

. 62 - Bue(6)
N O e e o

This implies the first claim.

Fix x € X. We note that

For a compact Riemann surface with boundary (%,j), a smooth map u: ¥ — X, and d € (0, 64(z)),
let

gu,x,é € F(Za U*TX)a {u,x,é(z) = _nu,xﬁ(z)gx (U(Z)),
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the vanishing assumption in (3.18) implies that &, ;5 is well-defined. If u(9¥X)NBJ(x) =0, then
&u,z,5|on=0. By Lemma 3.16,

Veunsle =1 (L) 0 G )G ) = () Vo, (321

Along with Corollary 3.18, (3.20), and the last assumption in (3.18), this implies that

/Z dg(z,u(2))[g(du®; VEuzs)| < 26°E,, , ,(8) + 2(1+Cy(2)5%) 6 By e(0). (3.22)

By the w,-compatibility assumption on J at x, there exists a continuous function C': X —sR™
such that

/ ‘(Wx)J(dU/\jvéu,x,é)‘ < C(l‘)/ dg(xvu(z))lg(du®jv£u,x,6)‘
) b

for all w and § as above. Along with this, Lemma 3.19 implies that there exists a continuous
function C: X — R™ such that

‘ /2 9(du®; V&, z.5)

< C(I)/Z (9(du@jdu) €u,z,s]+dg (2, u(2))]g(du®; VEus)|)

for every compact Riemann surface with boundary (X,j), J-holomorphic map u: ¥ — X, and
§€(0,04(x)) such that u(9X)NBY () =0. Combining this with (3.22), we conclude that there exists
a continuous function C: X —R™ such that

‘ /2 9(du®; V&, z,s)

for all v and ¢ as above.

< C(@) (0Buwn(0)+0°E, ., (9)) (3.23)

Suppose (X,j) is a compact Riemann surface with boundary, u: ¥ — X is a smooth map, and
d€(0,04(x)). Let z=s+it be a coordinate on (£,j). By (3.21),

I ACRIC) W SR
g(ug,vsgu,zﬁ) = ( 5 >5dg(x,u(z))g( 87C$( ( ))) (324)
+nu,x,5(z)g(usv VS(_Cm) |z) .
By Corollary 3.18,
|u5|2 < g(us, Vs(—Cx)\z) + Cg(z)dg(x,u(z))2|us|2 Vzeu ! (ng(x)(a:)) . (3.25)
If w is J-holomorphic, then |us|=|u|, (us,ur) =0, and
1 2 2 2_} w2412 wlz 2
5 (s el ) dy (2, u(2)* = 5 (Jus|* +[udl*) |G (u(2)] (3.26)
> g(us, Go(u(2))” + g (ur, Colu(2))”
Since 1’ <0, (3.24)-(3.26) give
%,’7/ (dg(x,(SU(Z))) dg($,6U(Z)) (|us|2+|ut’2) + nu,x,é(z)(|us|2+|ut|2) (327)

< g(u87 ngu,a:,é) + Q(Ut, vt&u,mﬁ) + Cg(x)nu,zﬁ(z)dg(xa U(Z))2 (|US‘2—|—|U1§|2).
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Along with (3.20), this implies that
—0F, »1(0) + 2By 2.5(8) < /Eg(du®j Véuws) +2Cy(2)5*Ey 4.5(0) (3.28)

for every compact Riemann surface with boundary (X,j), J-holomorphic map u: ¥— X, and
d€(0,04(z)). Combining this inequality with (3.23), we obtain (3.19).

Suppose w = g(J-,-) is a symplectic form on X. We can then run the above argument with
dg(x)=7r4(z)/2 and wy =w|ps (@) Since J is w-compatible, wy=0. By Lemma 3.19, (3.28) then
becomes !

—0E!, 4 (8) + 2By 21(8) < 2C,(2)02 By iy (9) -

u7x777
The reasoning below (3.19) now yields the second claim of the proposition. If in addition the

metric ¢ is flat, Cy(z) vanishes in (3.25), (3.27), (3.28), and above. The reasoning below (3.19)
then yields the last claim. O

4 Mean Value Inequality and Applications

We now move to properties of J-holomorphic maps v from Riemann surfaces (X,j) into almost
complex manifolds (X, J) that are of a more global nature. They generally concern the distribution
of the energy of such a map over its domain and are consequences of the Mean Value Inequality
for J-holomorphic maps. These fairly technical properties lead to geometric conclusions such as
Propositions 4.3 and 5.1.

4.1 Statement and proof

According to Cauchy’s Integral Formula, a holomorphic map u: Bgr —> C" satisfies

u'(0) = i ij)dz Vre(0,R).
2mi |z|=r ¥4
This immediately implies that a bounded holomorphic function defined on all of C is constant. The
Mean Value Inequality of Proposition 4.1 bounds the norms of the differentials of J-holomorphic
maps of sufficiently small energy away from the boundary of the domain “uniformly” by their
L?-norms. In general, one would not expect the value of a function to be bounded by its integral.
The Mean Value Inequality implies that a J-holomorphic map which is defined on all of C and has
sufficiently small energy is in fact constant; see Corollary 4.2.

Proposition 4.1 (Mean Value Inequality). If (X,J) is an almost complex manifold and g is a
Riemannian metric on X compatible with J, there exists a continuous function hjg: X xR— R
with the following property. If u: B — X is a J-holomorphic map such that

u(Br) C BY(x) and Ey(u) < hyg(z,r)

for some x€ X and r €R, then

2 16
‘dgu|g < ﬂ_—RzEg(u). (4.1)
Proof. Let ¢(z)= %|dzu|§ By Lemma 4.7 below, A¢>—A ;¢ with A;,: X xR—RT determined
by (X, J,g). The claim with ij,=7n/84,, thus follows from Proposition 4.6. O
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Corollary 4.2 (Lower Energy Bound). If (X, J, g) is a compact almost complex Riemannian man-
ifold, then there exists hj,€R" such that Ey(u)>hy, for every non-constant J-holomorphic map
u: C— X.

Proof. By the compactness of X, we can assume that g is compatible with J. Let A, > 0 be
the minimal value of the function 4,4 in the statement of Proposition 4.1 on the compact space
X x[0,diamg(X)]. If u: C— X is J-holomorphic map with Eq(u)<h;g,

16

16

by Proposition 4.1. Thus, d,u=0 for all z€C, and so u is constant. O

Since C C P!, Corollary 4.2 implies that E,(u) > hj, for every non-constant .J-holomorphic map
w: P'— X. This lower bound and the compactness of the Deligne-Mumford moduli space of
stable marked curves are among the key ingredients in the proof of Theorem 1.5. This theorem
in turn implies that for every a € Z=° there exists & Jg:a € R* such that Ey(u) > hjg.q for every
non-constant J-holomorphic map u: 3 — X from a connected closed surface of arithmetic genus a.

If : U—R is a C?-function on an open subset of R?, let

0?2 0?2
A¢:T$+T;§E¢ss+¢tt

denote the Laplacian of ¢.

Exercise 4.3. Show that in the polar coordinates (r,6) on R?,
A= ¢+ 170+ 2 bpp (4.2)

Lemma 4.4. If $: BR—R is C?, then

2rR$(0) = —R (InR—Inr)A¢ + ®. (4.3)
(r,0)eBr OBRr

Proof. By Stokes’ Theorem applied to ¢df on Br— Bs,

pdo— ¢ ¢do :/ ¢y dradd = /027T/6R(r¢r)r_1drd9

8BR 835 BR_B5

27 27 rR
:/ (1nR—ln5)5gbr(5,9)d0+/ / (In R—In7)(¢ry + 7 b, )7 drdf ;
0 0 Js

the last equality above is obtained by applying integration by parts to the functions Inr—In R
and r¢,. Sending § — 0 and using (4.2), we obtain

1
= ¢ — 21 $(0) :0+/ (InR—Inr)A¢,
R OBRr (T,Q)EBR
which is equivalent to (4.3). O

Corollary 4.5. If ¢: B —R is C? and A¢p>—C for some C€RT, then

1 ,, 1
0(0) < SOR* + — BR¢. (4.4)
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Proof. By (4.3),

2 pr 2
27r7’d>(0)§Cr/ / (lnr—lnp)pdpd0+/ ¢:Cr-27r-r+/ ¢  Vre(0,R).
0 Jo 0B 4 0B
Integrating the above in r € (0, R), we obtain

2 4
27¢(0) - % <2rC- %+ ¢.

This inequality is equivalent to (4.4). O
Proposition 4.6. If ¢: B —RZ° is C? and A¢p>—A¢? for some AcRY, then

o< g0 o [ o> (1.5

Proof. Replacing A by A=R?A and ¢ by
¢:B1 —R,  ¢(2) = ¢(Rz2),

we can assume that R=1, as well as that ¢ is defined on Bj.

(1) Define
f:10,1) — R=Y by f(r)=(1-r)*max¢.

r

In particular, f(0)=¢(0) and f(1)=0. Choose 7*€]0,1) and z* € B, such that
f(r*) =sup f and d(z*) =supop = c*.

Br*

Let §=1(1—7r*)>0; see Figure 6. Thus,

' N f(r*+96) frr)
f(r*) =46%¢* and sup ¢ < sup ¢ = ” < =4¢(z") = 4c".
Bs(z*)  Bpess  (I=(r*+0))2 T j(1—r*)2
By the second equation, A¢ > —A¢p? > —16Ac*? on Bs(z*).
(2) Using Corollary 4.5, we thus find that
1 1 1
& =¢(z%) < = -16Ac% - p* 4+ — ¢ <2Ac*p*+— [ ¢ VY pel0,d]. (4.6)
8 P2 B,(=*) ? ),
If 24c*6% < %, the p=4 case of the above inequality gives
1 1 8
- ox — < *) 452 * o 2 )
S o 0 =0 <0 =t <2 [ o
If 2Ac¢*6? > 1, E(4Ac*)7§ < ¢ and (4.6) gives
1 4Ac*
* <94 *2 .
€ =200 A + 7r /Bld)
™
Thus, / o> —. O
B, 84
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Figure 6: Setup for the proof of Proposition 4.6

Lemma 4.7. If (X, J) is an almost complex manifold and g is a Riemannian metric on X com-
patible with J, there exists a continuous function Aj,: X xR—RT with the following property.
If QCC is an open subset, u: Q— X is a J-holomorphic map, and u(Q)C Bf(x) for some x€ X
and r €R, then the function ¢(z)= %\dzulg satisfies A > —Ajq(z, )02

Proof. Let z=s-+it be the standard coordinate on C. Denote by us and u; the s and t-partials of u,
respectively. Since u is J-holomorphic, i.e. us=—Juy, and ¢ is J-compatible, i.e. g(J-, J-)=g(, ),
\uslg = |ut|§. Since the Levi-Civita connection V of g is g-compatible and torsion-free,

1d?
5@1%13 = |Veus|j + (VeVius, us), = [Veus|; + (VeViur, us), - (4.7)
Similarly,
1d? 9 2
§£|ut|g = ‘Vsut}g + <sttus,ut>g- (4.8)
Since ug=—Juy,
(VSVtus, Ut>g = —<V5Vt(Jut), ut>g
= —(JVsVeur, up), = (Vo) Vieug, ue), = (Vs(VeT Jur), ur), (4.9)

= —<V5Vtut,u5>g — <(VSJ)VtUt,Ut>g — <VS((VtJ)Ut),Ut>g .
Putting (4.7)-(4.9), we find that
1
580 = |Veus|) + [Vaue |+ (Ry(ur, wsyur, ws)y = (Vo) Veur, ur), = (Vo((VeTJur), ), (4:10)

where R, is the curvature tensor of the connection V. Since u(Q) C Bf (x),

’<Rg(uta us)ut7 U8>g‘ < Cg(l', T)’u5’3|ut|52] ’
’<(V5J)vtutaut>g‘ < CJ,Q(vaT)|U5|glut|g‘vt(<]u5)‘g < CJ,g(xv7")|U8|g’ut|g(lus,g|ut|g+|th5’g>
< Cogla,r)|uslgluelg + Cug(ar,r)?|usGluelg + [Vieus]g
|<V5((th)ut>vut>g‘ < CJ,g(””vT)’Ut‘z(’Us,g’ut|g+|vsut’9)
< Cugla,r)uslgluely + Cuglw, ) |uelg + |V suelg.
(4.11)
Combining (4.10) and (4.11), we find that
1
580 > = O, 1)l 2 sl a3 - £) > =3C )7,

as claimed. n
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4.2 Regularity of J-holomorphic maps

By Cauchy’s Integral Formula, a continuous extension of a holomorphic map u: By — C™ over
the origin is necessarily holomorphic. By Proposition 4.8 below, the same is the case for a
J-holomorphic map u: By — X of bounded energy.

Proposition 4.8. Let (X,.J,g) be an almost complex Riemannian manifold. If R € RT and
u: BR— X s a continuous map such that u|31§ is a J-holomorphic map and E4(u; By) < oo,
then u is smooth and J-holomorphic on Bpg.

For a smooth loop 7: S — X, define

~(0) = %7(610) € Ty ey X and ly(y) = /:ﬂh'(ﬁ)‘gde e R=0
to be the velocity of v and the length of ~, respectively.
Lemma 4.9 (Isoperimetric Inequality). Let (X, J,g), R, and u be as in Proposition 4.8 and
A St — X, %(ew) = u(rew) Vre(0,R).
There exist 6 € (0, R) and C €R* such that
Ey(u; BY) < Cly(v)>  Vre(0,0). (4.12)

Proof. Let exp be as above the statement of Lemma 3.16, J, and w, be as in the first two sentences
in the proof of Proposition 3.13,

o =u(0), 0= 0,(x0), wo=wapy  B:(0,R) — R, B(r)=Ey(u;B).
We can assume that the metric g is determined by J and wgy on Bgo (z0).
For a smooth loop ~: S? —>B§O (x0), define
&St —= T X by expyy&(e¥) = (), ¢ ()] < 20,
friBu— X, fy(re”) = exp, ) (rgy(e7)).

In particular,

05,0, = 6], < L0)/2. |r 00 fs (16| = |dye, ey (€,(0)], < CL7(6)],

for some C'€R™ determined by xy. Thus,

‘/ f;wo
B1

2w pl
< C/ / ‘8Tf7(7aeie)|g‘r_189fv(reie)‘gr drdé
0 Jo

(4.13)

21 pr

1
< C'y(7) / 17/ (0)| rdrdf = ~C'4y(~)?
0 Jo g 2

for some O, C’ € R*™ determined by xg and wy.
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Yo Tr

Figure 7: The maps from an annulus and two disks glued together to form the map F,; : 52— X
in the proof of Lemma 4.9

By Proposition 4.1 and the finiteness assumption on E(u; By), there exists 6 € (0, R/2) such that

2 i0n 12 0v2 S
b/;(a)‘g = ‘ﬁgu(pele)’g — p2’apu(ﬁ’eg)‘g < ;E(Qp) YV pe (0,5), (4.14)
ly(7,)? <32TE(2p) VY pe(0,9). (4.15)
By the continuity of u, we can assume that u(Bag) CB;;’O (o). For r€(0,6) and pe(0,7), define
Fop:S? — X

to be the map obtained from u|p,_p, by attaching disks to the boundary components 9B, and
0B, and letting F), be given by f,, and f, on these two disks, respectively; see Figure 7. Since
F),.. is homotopic to a constant map and wy is closed,

0—/52 ‘owo = Eg(w; By —B,) /f wo — /fy,wo

Combining this with (4.13) and (4.15), we obtain
Ey(u; B,—B,) < Cly(,)* + 32nE(2p) (4.16)

for some C' € RY independent of r and p as above. Since Ey(u; Bj,) <0, E(2p) — 0 as p—0.
Taking the limit of (4.16) as p—0, we thus obtain (4.12). O

Corollary 4.10. If (X, J,g), R, and u are as in Proposition 4.8, there exist § € (0, R) and ju, C € R™T
such that
‘drewu|g < Cri1 Vre(0,6). (4.17)

Proof. Let ~,, 6, C, and E(r) be as in the statement and proof of Lemma 4.9. Thus,

1 27 1 2m 2
E(r) = 2/0 ; ‘dpeigu‘ipdpde < Cly(y)? = 2C’r2< ; }dreagu‘gdé

2m
< Crr? ‘dreaeu‘zdﬁ =2C7rE'(r) Vre(0,9);
0

the second inequality follows from Holder’s inequality. This implies that
(r2TE(r) >0, E(r) <7 VPOTE@) V2O =0 Yre(0,4).
Combining this with (4.14), we obtain (4.17) with ¢ replaced by ¢/2. O
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Proof of Proposition 4.8. With u as in Corollary 4.10, let p € R be such that p > 2 and
(1—p)p<2. In particular,

ulBp,, € L5 (Brj2; X), dyulBg,, =0 € LP(Bgy; T*Brja@cuTX).

By elliptic regularity, this implies that w is smooth; see [29, Theorem B.4.1]. By the continuity
of dju, u is then J-holomorphic on all of Bp. O

4.3 Global structure of J-holomorphic maps

We next combine the local statement of Proposition 3.1 and some of its implications with the
regularity statement of Proposition 4.8 to obtain a global description of J-holomorphic maps.

Proposition 4.11. Let (X, J) be an almost complex manifold, (X,j) be a compact Riemann surface,
u: X — X be a J-holomorphic map. If u is simple, then u is somewhere injective and all limit
points of the set

{zeX: [u N (u(2))|>1} (4.18)

are critical points of u.

Suppose (X, J) is an almost complex manifold, (¥,j) is a Riemann surface, and u: ¥ — X is a
J-holomorphic map. Let
Y=Y —u ' (u({z€2 : dou=0})) (4.19)

be the preimage of the regular values of u and
R, C X x5,

be the subset of pairs (z,2’) such that there exists a diffeomorphism ¢,/, : U, — U, between
neighborhoods of z and 2’ in ¥ satisfying

0. (2) =2 and Uy, = uow,,. (4.20)
Denote by R, CX x X the closure of R;,.
It is immediate that R} is an equivalence relation on ¥ and u(z) =u(z’) whenever (z,z') € R}.

Thus, R, is also a reflexive and symmetric relation and u(z) = u(z’) whenever (z,2') € R,. By
Lemma 4.14 below, R, is transitive as well. We denote this equivalence relation by ~,,. Let

hy: 3 — Y'=%/~y, and u:Y — X (4.21)
be the quotient map and the continuous map induced by u, respectively. In particular,
u=u'ohy: ¥ — X.

In the case X is compact, we will show that ¥’ inherits a Riemann surface structure j’ from j so
that the maps h, and v’ are j’- and J-holomorphic, respectively. If the degree of h is 1, we will
show that all limit points of the set (4.18) are critical points of u.

Lemma 4.12. Suppose (X,J) is an almost complex manifold, R € R*, and uw: Bg — X is a
non-constant J-holomorphic map such that d.u#0 for all z€ Bj,. Then there exist meZ* and a
neighborhood Uy of 0 in Br such that

hy: UOﬂB}k{ — hy (UoﬂB;%) - Bg% (4.22)

s a covering projection of degree m.
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Proof. By the continuity of u, we can assume that X =C", u(0) =0, and Jy=Jcr. As shown in
the proof of Corollary 3.11, there exist e€ (0, R) and 6 € (0, €/2) such that

Uy = u™ " (u(Bs))NBe C Ba.
By Proposition 3.1 and the compactness of Bys C B, the number
m(z) = ‘h;l(hu(z))ﬁUo}
is finite for every z€ UpNDBF,.

Suppose z; € By and z, € Uy are sequences such that z; converges to some zg € By with z; # zg for
all i and hy(z;)=hy(z]) for all i. Passing to a subsequence, we can assume that z, converges to
some z{ € Bas. By the continuity of u, u(z)) =1u(zp) and so z{, € Up. Corollary 3.10 then implies
that hy(2() =hu(20). Since Bj is connected, this implies that the number m(z) is independent of
z2€UpNBY; we denote it by m.

Suppose z € UpNBy and
hyt (ha(2)) VUG = {21, 2m} -

Let ¢;: Uy —Uj; for i=1, ..., m be diffeomorphisms between neighborhoods of z; and z; in UyNBF
such that
wi(21) = zi, u=uoyp; Vi, UinU;=0 Yi#j,

and u: Uy — X is injective. Then h,(U;) C B is an open neighborhood of h,(z),
m
hy ' (ha(U1) N U = | | U5,
i=1
and hy,: U;—> hy(U7) is a homeomorphism. Thus, (4.22) is a covering projection of degree m. []

Lemma 4.13. Suppose (X,J), R, and u are as in Lemma 4.12. Then there exists a neighbor-
hood Uy of 0 in Br such that

Wo: hy(Up) — C,  hy(z) = 1T - (4.23)
2/ €hy ! (hu(2))NUo

is a homeomorphism from an open neighborhood of h,(0) in By, to an open neighborhood of 0 in C
and Voohy|y, is a holomorphic map.

Proof. By Lemma 4.12, there exists a neighborhood Uy of 0 in Bg so that (4.22) is a covering
projection of some degree meZ™. Since the restriction of u to By is a J-holomorphic immersion,
the diffeomorphisms ; as in the proof of Lemma 4.12 are holomorphic. Thus, the map

\I/Oohu’UoﬂB;‘%: UoﬂB}';L — C, zZ— H 2
Z'ehgt (hy(2))NUg

is holomorphic. Since it is also bounded, it extends to a holomorphic map

\Tfoi Uy — C.
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This extension is non-constant and vanishes at 0.

After possibly shrinking Uy, we can assume that there exist k€Z* and C € R such that
CF2|F < [To(2)] < CHl2F V2. (4.24)
Since Wo(2') =Wy (z) for all 2’ € by (hy(2))NUy, it follows that

C2|z| < || < C?|z] V2 ehy; (ha(2))NUy, z€Uy,
C™2m 2™ < |o(2)] < CP™2|™ Y zeU.

Along with (4.24), the last estimate implies that k=m and that 50 has a zero of order precisely m
at z=0. Thus, shrinking § in the proof of Lemma 4.12 if necessary, we can assume that ®g is
m:1 over UpNBj. This implies that the map (4.23) and its extension over the closure of h,(Up)
in BY, are continuous and injective. Since the closure of h,(Up) is compact and C is Hausdorff, we
conclude that (4.23) is a homeomorphism onto an open subset of C. O

Lemma 4.14. Suppose (X, J), (X,j), and u are as in Proposition 4.11 and (x,y) €R,,. For every
neighborhood U, of x in X, the image of the projection

RuNUzxX) — X
to the second component contains a neighborhood U, of y in X.

Proof. By Corollary 3.4, the last set in (4.19) is finite. By the same reasoning as in the last part
of the proof of Lemma 4.12,
hy: 385 — hy(3) C X (4.25)

is a local homeomorphism. Since u(z)=wu(z") for all (z,2") € R%, the definition of 3% thus implies
that (4.25) is a finite-degree covering projection over each topological component of h, (3}). Since
the complement of finitely many points in a connected Riemann surface is connected, the degree
of this covering over a point h,(z) depends only on the topological component of 3 containing z.
For any point z € ¥, not necessarily in 37, we denote this degree by d(z).

By Corollary 3.4, the set
S=u(u(z)) C¥

is finite. Let W C X be a neighborhood of u(x) such that the topological components ¥4 of u~! (W)
containing the points s€ S are pairwise disjoint (if U is a union of disjoint balls around the points
of S, then

W=X—-uX-U)

works). By Lemma 4.12, for each s€ .S there exists a neighborhood U, of s in Xg such that
hu: Ui—{s} — hy(U,—{s}) C ¥

is a covering projection of some degree mgs € Z*; we can assume that U, C U,. Along with the
compactness of ¥, the former implies that

‘h;l(hu(y/)) N U;’ e {0,m;} Vo' eUlLNTE, 5,8 €8,
> |hyt (hu(y) NUL| = d(s) vy eU,Nt, ses. (4.26)
seS
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Define
Py(S) = {S'CS: > my=d(y)}.

ses’

Let U, CU, be a connected neighborhood of y. For each S’ €P,(S), define
vor = {y €UNS,: {s€S: by (hu(y))NUL#D} =5}
By (4.26), these sets partition U,/N¥y. Since each set
{y €UyNZy: by (hu(y)NU#0}
is open, (4.26) also implies that each set U]’ ¢, is open. Since the set U:L,// N} is connected, it follows
that Uy NY}, = Uy for some Sy € Py(S). Since (z,y) € Ry, x € Sy. Thus, the image of the
projection
RuNULxX) — X

to the second component contains the neighborhood Uy of y in . O

Corollary 4.15. Suppose (X,J), (3,)), and u are as in Proposition 4.11. The quotient map hy,
in (4.21) is open and closed.

Proof. The openness of h, is immediate from Lemma 4.14. Suppose A C X is a closed subset and
yi € hy 1 (hy(A)) is a sequence converging to some y € ¥.. Let x; € A be such that hy(x;) =h(y;).
Passing to a subsequence, we can assume that the sequence x; converges to some x € A. Since
¥ — 3% consists of isolated points, we can also assume that y; € ¥ and so (z;,v;) € R}. Thus,
(z,y) €R, and so y € hyt(hy(A)). We conclude that h,, is a closed map. O

Proof of Proposition 4.11. Let X', h,, and u' be as in (4.21). By the second statement in
Corollary 4.15 and [33, Lemma 73.3], ¥’ is a Hausdorff topological space. Fix a Riemannian met-
ric g on X.

For (z,2') € R} with z#2/, the neighborhoods U, and U,/ as in (4.20) can be chosen so that they
are disjoint and u|y, is an embedding. Since u is J-holomorphic, ¢,/, is then a biholomorphic
map and hy|y, is a homeomorphism onto h,(U,) C ¥/. Thus, the Riemann surface structure j
on ¥ determines a Riemann surface structure j’ on h,(X}) so that h|s: is a holomorphic covering
projection of h,(¥;) and u[;, () is a J-holomorphic map with

Ey(u's ho(2})) < Eg(u). (4.27)

By Corollary 3.4, 3!, —h,(X}) consists of finitely many points. By the first statement in Corol-
lary 4.15 and by Lemma 4.13, j’ extends over these points to a Riemann surface structure on ¥'; we
denote the extension also by j’. Since the continuous map h,, is j’-holomorphic outside of the finitely
many points of ¥—X* it is holomorphic everywhere. Since the continuous map u’ is J-holomorphic
on hy (%), (4.27) and Proposition 4.8 imply that it is J-holomorphic everywhere.

Suppose z€X and z;, 2} €Y with ¢€Z™ are such that
d,u # 0, 2 # 25, u(z) = u(z)) Vi, lim z; = 2.
1—> 00
Passing to a subsequence, we can assume that the sequence z, converges to some point z' €3
with u(2') =u(z). Since the restriction of u to a neighborhood of z is an embedding, 2’ # z. By
Corollary 3.10, there exists a diffeomorphism ¢/, as in (4.20). Thus, hy(z)=h(2'), the map h,, is
not injective, and w is not simple. O
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4.4 Energy bound on long cylinders

Proposition 4.16 and Corollary 4.17 below concern J-holomorphic maps from long cylinders. Their
substance is that most of the energy and variation of such maps are concentrated near the ends.
These technical statements are used to obtain important geometric conclusions in Sections 5.2
and 5.3.

Proposition 4.16. If (X, J,g) is an almost complex Riemannian manifold, then there exist con-
tinuous functions 854, hyg, Crg: X — RT with the following properties. If u: [-R, R]x S'— X
is a J-holomorphic map such that Imu C ng,g(u(o’l))(u((), 1)), then

Ey(u; [-R+T,R—T]xS") < Cyg(u(1,0))e TEy(u) VT >0. (4.28)

If in addition Eg(u) < hjg(u(0,1)), then
diamg (u([~R+T, R—T]xSY)) < Crg(u(1,0))e /2 [Ey(u) VT >1. (4.29)

Corollary 4.17. If (X, J,g) is a compact almost complex Riemannian manifold, then there exist
constants hjg, C.1 g €RT with the following properties. If Ri, Ry €R and u: [Ry, Ra] X Sl—Xisa
J-holomorphic map such that Eg4(u) <hjg4, then

Ey(u; [R14+T, Ro—T]xS") < Cyge T Ey(u) VT >1,
diamg (u([R1+T, Ro—T]x SY)) < Cyge T2\ [Eyu) VT >2.

As an example, the energy of the injective map

[-R,R] x S' — C, (5,0) —> se'?

o2R_ sz)

is the area of its image, i.e. 7( e . Thus, the exponent e~ in (4.28) can be replaced by e =27
in this case. The proof of Proposition 4.16 shows that in general the exponent can be taken to
be e #T" with p arbitrarily close to 2, but at the cost of increasing C' 7,9 and reducing 64.

Proof of Proposition 4.16. 1t is sufficient to establish the first statement under the assumption
that (X,g) is C™ with the standard Riemannian metric, J agrees with the standard complex
structure Jen at 0€ C™, and u(0,1)=0. Let

—_

ou = §(ut + JCn’U@) .

By our assumptions, there exist §',C >0 (dependent on u(0,1)) such that
|0.u| < Cold.u| ¥V zeu(Bs(0), § <6 (4.30)
Write u= f+ig, with f, g taking values in R" and assume that Imu C Bs(0). By (2.5),
|dul? = 4|8u|® + 2d(f-dg).

Combining this with (4.30) and Stokes’ Theorem, we obtain

/ |dul? < 40252/ |dul? + 2/ frg9dd — 2/ f-g9db. (4.31)
[—tt] xSt [—t,¢] xSt {t}xS1t {—t}xSt
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Let f: f— % 027r fdf. By Holder’s inequality and Lemma C.5,

1 1
~ ~ 2 2
‘ / f-gedG‘z‘ / f-ged9‘§< / \f\2d9> ( / |g9|2de)
{£t} xSt {£t} xSt {£t} xSt {£t}xS1
1 1
- 3 21
s( / |fe|2d9> ( / |ge|2d9> <3 [ k.
{t}x St {£t}xsS1t {*t}x st

3lug|* = 2lug|® + |ug — 25u’2 < 2|dul? + 8|5u}2,

(4.32)

Since

the inequalities (4.30)-(4.32) give

(1—40252)/ |dul? < g(1+40252) </ |du|*d6 +/ \du\2d0>.
[—,8] xS 3 {1} xS {—t}x St

Thus, the function

e(T) = E, (u; [—R+T,R—T]) = 1

/ |du|?dAdt
2 JI_R+T,R-T)x 51

satisfies ¢(T) < —&/(T) for all T € [—R, R, if § is sufficiently small (depending on C'). This im-
plies (4.28).

For the purposes of establishing (4.29), we can assume that the metric g on X is compatible with J.
Let
hig: X — R, hg(@)=hyg(x,d54(x)),

with hj4(-,-) as in Proposition 4.1 and d4(-) as provided by the previous paragraph. Suppose u
also satisfies the last condition in Proposition 4.16. By Proposition 4.1 and (4.28),

[Ageoyul < 3y/By(us [=[t]=1, 1] +1]x 51) < 3y/Crg (u(0, 1))eHI=R2, [ ()

for all t € [-R+1,R—1] and # € S*. Thus, for all t1,t3 € [~R+T, R—T)] and 61,6, € S with T >1
and tl Stg,

to
dy (u(ty,61),u(tz,62)) 33\/cj,g(u(o, 1)) E,(u) <7Te(1+t1|R)/2+ / e<1+flR>/2dt>

t1
< (3m+12)4/Crg(u(0,1)) T2 By (u).
This establishes (4.29). O

Lemma 4.18. If (X, J,g) is a compact almost complex Riemannian manifold, there exists a con-
tinuous function €54: RT — R with the following property. If § R and u: (—R, R) X Sl—X
is a J-holomorphic map with E4(u) < €14(0), then

diamg (u([-R+1,R—1]x S')) < 6.
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Proof. We can assume that the metric ¢ is compatible with J. By Proposition 3.13 and the
compactness of X, there exists ¢4, € R with the following property. If (X, ) is a compact connected
Riemann surface with boundary, u: ¥ — X is a non-constant J-holomorphic map, = € u(X), and
deRT are such that w(0X)NBY(x) =0, then

Ey(u) > ¢y 402, (4.33)

Let hj,>0 be the minimal value of the function %, in the statement of Proposition 4.1 on the
compact space X x [0, diamg(X)].

Suppose u: (—R, R) x S' — X is a J-holomorphic map with Ej,(u)<h,, and
by = diamg (u([—R+1, R—1]x S")) > 32,/ E,(u).

By the first condition on u,

16

|doul? < —Ey(u) V¥ 2€[-R+1,R-1]xS",
T
diamg (u(rx S')) < 8y/Ey(u) Vre[-R+1,R—1]. (4.34)

Let r_, 70,7+ €[~R+1,R—1] and 6_, 6y, 0, € S* be such that

r_ <rg<Tg, dg(u(rg,Ho),u(rijé’i)) > —0y.

N

By (4.34), we can apply (4.33) with
¥ =[r_,r ] xSt x = u(rg, 0p), d = —0u,

and u replaced by its restriction to %. We conclude that

€Jg <2
Eq(u) > 16g 9,

It follows that the function

) 52 ¢y
€1g: RT — R, €74(0) = min (hJ,g’ 3927 16952>,

has the desired property. ]

Proof of Corollary 4.17. Let § €R™ be the minimum of the function d 4, in Proposition 4.16 and
€74(-) be as in Lemma 4.18. Take Cj4 to be the maximum of the function C ;4 in Proposition 4.16
times e and hj,€RT to be smaller than the minimum of the function s 4 in Proposition 4.16 and
the number €74(6). If u is as in the statement of Corollary 4.17, the required bounds then follow
from (4.28) and (4.29) applied with

R=(Ry—Ry)/2 and  u:[-R,RxS'— X, u(s,0) =u(s+Ri+R,0).

The map w is J-holomorphic and has the same energy as wu. O
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5 Limiting Behavior of J-Holomorphic Maps

This section studies the limiting behavior of sequences of J-holomorphic maps from Riemann
surfaces into a compact almost complex manifold (X, .J). The compactness of X plays an essential
role in the statements below, in contrast to nearly all statements in Sections 3 and 4.

5.1 Removal of Singularity

By Cauchy’s Integral Formula, a bounded holomorphic map u: By —C" extends over the origin.
By Proposition 5.1 below, the same is the case for a J-holomorphic map u: By — X of bounded
energy if X is compact.

Proposition 5.1 (Removal of Singularity). Let (X,.J) be a compact almost complex manifold and
u: Bj, — X be a J-holomorphic map. If the energy Eq4(u) of u, with respect to any metric g on X,
is finite, then u extends to a J-holomorphic map u: Bp— X .

A basic example of a holomorphic function u: C* — C that does not extend over the origin 0 € C
is z—1/z. The energy of u By, With respect to the standard metric on C is given by

1 1 2m rR
E(u; Bg) = 2/ dul? = / h = / / r3drdf £ oco.
Br Br 0 Jo

The above integral would have been finite if |du|?> were replaced by |du|'~¢ for any € > 0. This
observation illustrates the crucial role played by the energy in the theory of J-holomorphic maps.

By Cauchy’s Integral Formula, the conclusion of Proposition 5.1 holds if J is a complex structure
and u(Bj) is contained in a complex coordinate chart for some ¢ € (0, R). We will use the Mono-
tonicity Lemma to show that the latter is the case if the energy of w is finite; the integrability of J
turns out to be irrelevant here.

Proof of Proposition 5.1. In light of Proposition 4.8, it is to sufficient to show that u extends
continuously over the origin. We can assume that the metric g is compatible with J and R=1.
Let ¢jg4,hy g €RT be as in the proof of Lemma 4.18. Define

v:R™ xS — X, v(r,eie) :u(er“e).
This map is J-holomorphic and satisfies Eq(v)=FE4(u) < oo.

Since Ey(u) < oo,
: S N B* )
rgn_looEg(v,( 00, 1) x S") Tgrr_looEg(/Uder) 0. (5.1)
In particular, there exists R€R™ such that
Eg(v;(—oo,r)xSl) < hjg Vr<R.

By Proposition 4.1 and our choice of A4, this implies that

}dzv}z < 17r—6Eg(v; (—oo,r+1)><Sl) v zE(—oo,r)xSl, r<R-1,

diamg (v({r} x §1)) < 4y/m\/By(v: (—o0,r+1)x81) ¥ r<R-1.
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Tk+1 ik Tk 1

Figure 8: Setup for the proof of Proposition 5.1

Combining the last bound with (5.1), we obtain

lim diamg(v({r}xsl)) =0.

r—>—00

Thus, it remains to show that lim wv(r, 1) exists.
r——o0

Since X is compact, every sequence in X has a convergent subsequence. Suppose there exist
SeRT, zye X, ip,r, € R s.t.
dg(x,y) > 30, rpy1 <ip <rg, v({ix}xS') C Bs(z), v({re}xS") C Bs(y).
We thus can apply (4.33) with X, z, and u replaced by
Y = [rk+1,rk]><51, zp = ulix, 1), and v =vly,,

respectively. We conclude that

Eq4(v) > ZEg(U; k) = ZEg(Uk) > ZCJ,Q(SQ =00.
k k

k

However, this contradicts the assumption that E,(v)=E,(u) < oo. O

5.2 Bubbling

The next three statements are used in Section 5.3 to show that no energy is lost under Gromov’s
convergence procedure, the resulting bubbles connect, and their number is finite.

Lemma 5.2. Suppose (X, J,g) is an almost complex Riemannian manifold and u;: By — X is a
sequence of Ct-maps converging to a C'-map u: Bf — X Cl-u.c.s. so that E4(u) < oo and the
limit

m= lim lim Fy(u;; Bs) (5.2)

0—0i—r0

exists and is nonzero.

(1) The limit m(0) = lim Ey(u;; Bs) exists for every § € (0,1) and is a continuous, non-decreasing

1—> 00
function of 4.

(2) For every sequence z; € By converging to 0 and 6 €(0,1), lim Ey(u;; Bs(z;)) =m(6).

1—>00
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(3) For every sequence z; € By converging to 0, p€(0,m), and i€ Z" sufficiently large, there exists
a unique 0;(j1) € (0, 1—|z;]) such that Eq(us; Bs,(,(2:) = p

Proof. (1) Since du; converges uniformly to du on compact subsets of Bf,

m(d) = lim E (uz,B5) = hm lim F, (ui;Bg/) + lim lim E (ui;Bg—Bg/)

i—>00 —01—00 8’ —0i—00

=m+ ylEOEg (u; 35—35/) =m+ Ey(u; Bs).
Since E4(u; Bs) is a continuous, non-decreasing function of ¢, so is m(d).
(2) For all 4,8’ €eR™" and z; € By, Bs_5 C Bs(2;) C Bsysr. Thus,
Ey(ui; Bs—s) < Eg(ui; Bs(2:)) < Eg(us; Bstsr)
for all 1€ Z™ sufficiently large and

lim m(6—0") < lim lim Ey(us; Bs(z)) < hm m(d+4") vV eRT.

'—0 0'—0i—>00 6'—0
The claim now follows from (1).

(3) By (2), (1), and (5.2),
lim Eg(u;; Bs(z)) =m(8) > m.

—00

Thus, there exists i(u) €ZT such that
Eg(ui; Bs(z)) > p YV i>i(p).

Since Ey(u;; Bs(2;)) is a continuous, increasing function of § which vanishes at § = 0, for every
i >1i(p) there exists a unique d0;(u1) € (0,9) such that Ey(u; Bs, () (2:) = . O

Corollary 5.3. If (X, J, g) is a compact Riemannian almost complex manifold, there exists hj € RT
with the following properties. If u;: B1 — X is a sequence of J-holomorphic maps converging to a
C'-map u: Bf — X C'-u.c.s. so that Ey(u)< oo,

lim max‘duz‘ = 00,
i—00 Bi)s 9

and the limit (5.2) exists, then
(1) m > h‘]’g;

(2) for every sequence z; € Bs converging to 0, the numbers §;(1) € (0,1—|z;|) of Lemma 5.2(3)
with pe (m—hyg,m) satisfy

Rh—I>noo zE)nooE (ui; BR&-(M) (zz)) =m, (53)
lim lim diamg (us(Bs(2i) — Brs,(u) (%)) = 0. (5.4)

(R,6)—(00,0) i—00
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Proof. Let hj, be the smaller of the constants h;, in Corollaries 4.2 and 4.17. Let w;, u, and m
be as in the statement of Corollary 5.3.

(1) For each i€ ZT, let
Mi:r@(|dzui‘ eRT
By 2 g

and z; € B1/2 be such that |dziui]g = M;. Since M; — 0o as i —» 0o and u; converges to u u.c.s.,
z;—0. For i €Z™ such that |z;|+1/v/M;<1/2, define

vi: B g — X, vi(w) = ui(zi+w/Mi).
Thus, v; is a J-holomorphic map with
sup ‘dvi‘g = ’dovi‘g =1, Ey(v;) = Eg(ui;Bl/m(zi)) < Eg(“i3B|zi|+1/\/M) . (5.5)

By the first statement in (5.5) and the ellipticity of the O-operator, a subsequence of v; converges
uniformly in the C°°-topology on compact subsets of C to a non-constant J-holomorphic map
v: C— X. By the second statement in (5.5) and Lemma 5.2(1),

E4(v) < limsup Eg(ui;Bl/\/M(zi)) < 6lim lim Eg(uj; Bs) = m. (5.6)

i—00 —0i—00
By Proposition 5.1, v thus extends to a J-holomorphic map v: P' — X. By Corollary 4.2,
Ey(v) = Eg(v) = hyg -
Combining this with (5.6), we obtain the first claim.

(2) By the first two statements in Lemma 5.2 and (5.2),

lim lim Ey(u;; Bs(z)) = lim m(6) = m. (5.7)

6—0i—>o0 T 5—50

After passing to a subsequence of u;, we can thus assume that there exists a sequence §; — 0
such that
lim Eg(us; Bs,(2)) = m. (5.8)
1—> 00
Since 0; — 0, (5.7) and (5.8) imply that
lim lim Ey(us; Bps,(z)) = m. (5.9)

R—00 i—>00

Suppose p€ (m—~hjg,m). By (5.9) and the definition of 6;(1),

lim  lim Eg(us; Brs, (2i) = Bs;(u)(2i)) = m—p < higg.

R—00 i—>0

Thus, Corollary 4.17 applies with (R1, Ra,T") replaced by (Ind;(u),Ind;+In R,In R) and wu replaced
by the J-holomorphic map

v;: (R1, R2)x St — X, 0i(r,0%) = g (247,
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Figure 9: Illustration for the proof of (5.3)

By the first statement of this corollary,

oy
Rg Eg (U)

Ey(u; Bs, (21)) — Eq(u; Brs, () (21)) = Eg(u; Bs, (2i) = Brs, (u)(21)) <
for all ¢ sufficiently large (depending on R); see Figure 9. Combining this with (5.8), we obtain (5.3).

It remains to establish (5.4). By Lemma 5.2(2), (5.2), and the definition of d;(u).

lim lim lim Ey(u;; Brs(zi)— By, () (21)

R—00 6—0i—>00

= lim 1im B (u;; Bs(2:) — 1im By (ui; By, () = m—p.

6—0i—>r00

Thus, for all R>0 and § € (0,5(R)) there exists i(R, ) €Z™ such that
Eg(ui; Brs(2i) = B,y (1)) < hsg  Vi>i(R,6).

Thus, Corollary 4.17 applies with (R, R, T') replaced by (Ind;(u),Ind+In R,In R) and u replaced
by the J-holomorphic map

v;: (R1, R2) X St — X, v; (r, ew) = u; (zi+er+w).
By the second statement of this corollary,

CJ,g

h
VR

Since increasing R does not increase the left-hand side above, we obtain (5.4). O

diamg (u;(Bs(2i) — Brs,(u)(21) < Vi>i(R,0), 6€(0,5(R)).

Lemma 5.4. If (X, J,g) is a compact almost complex Riemannian manifold, then there exists a
function N : R—Z with the following property. If (3,)) is compact Riemann surface, So CX is a
finite subset, and u;: Uy — X 1is a sequence of J-holomorphic maps from open subsets of ¥ with

Ui CUp1,  2-So=|JUi, and E=liminf Eg(u;) < oo, (5.10)

71— 00
i=1
then there exists a subsequence of {u;}, still denoted by {u;}, so that the set

S = {ZGE—SO: 61i;n();;1(1;)|dui‘g:oo}

is of cardinality at most N(E) and the sequence u; converges to a J-holomorphic map u: ¥ — X
C'-u.c.s. on X—SpUS.
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Proof. Let hj, be the minimal value of the function provided by Proposition 4.1. For E€R™, let
N(E)€Z=" be the smallest integer such that E<N(E)hy,.

Let X, So, u;, and FE be as in the statement of the lemma and N =N(E)+|Sp|. Fix a Riemannian
metric gy, on X. For z € ¥ and 0 € X, let Bs(z) C ¥ denote the ball of radius § around z.
By Proposition 4.1, there exists C' € RT with the following property. If u: Bs(z)— X is a J-
holomorphic map, z€3, and § €R™, then

Ey(u; Bs(2)) < hyg = |dzul, < C/6°. (5.11)

For every pair 4, j€Z™", let {zfj}évzl be a subset of points of ¥ containing Sy such that

N
ZEX, =8— UB% (=5) — Eg(ui; Byyj(2)NU;) < hyyg. (5.12)
k=1
By (5.11) and (5.12),
|daui| < Cf° VzeXy st Byyy(2)CU;. (5.13)

After passing to a subsequence of {u;}, we can assume that the sequence Ej4(u;) converges to E
and that the sequence {zfj}iew converges to some zf €Y for every k=1,...,N and j€Z". Along
with (5.13) and the first two assumptions in (5.10), this implies that

lim sup ‘dzul‘ < Cj? VzeXy;. (5.14)
i—>00 g
After passing to another subsequence of {u;}, we can assume that the sequence {z;“} jez+ converges
to some z* € ¥ for every k=1,..., N.

For each j€Z™, let
N

¥ = 2= U By ().
k=1
By (5.14) and the ellipticity of the J-operator, a subsequence of u; converges uniformly in the
C*°-topology on compact subsets of ¥} to a J-holomorphic map v;: ¥ — X. By (5.14) and the
ellipticity of the O-operator, a subsequence of this subsequence in turn converges uniformly in the
C*°-topology on compact subsets of £3 to a J-holomorphic map vs: X5 — X. Continuing in this
way, we obtain a subsequence of u; converging uniformly in the C'*°-topology on compact subsets
of X% to a J-holomorphic map v;: ¥7 — X for every j €7Z7". The limiting maps satisfy

_ - +
Uj|2jmz;f, = vy oynss, V3, €LT.

Thus, the map
u:E*EE—{zl,...,zN}—>X, u(z) = v;(2) Vz€X],

is well-defined and J-holomorphic.
Since the convergence is C* on compact subsets of X%, SC{z!,..., ZN} and

Ey(u) <liminf Ey(u;) = E.

1—00
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By Proposition 5.1, u thus extends to a J-holomorphic map > — X, which we denote by u
as well. If z¥ ¢ SoUS, a subsequence of u; converges uniformly in the C*-topology on Bs(z*)
to a J-holomorphic map v: Bs(2*) — X for some 6 € RT. Thus, a subsequence of u; converges
uniformly in the C'°°-topology on compact subsets of ¥ —SgUS to the J-holomorphic map u
above. O

5.3 Gromov’s convergence

We next show that a sequence of maps as in Corollary 5.3 gives rise to a continuous map from a
tree of spheres attached at 0 € By, i.e. a connected union of spheres that have a distinguished base
component and no loops; the distinguished component will be attached at co € P! to 0€ B;. The
combinatorial structure of such a tree is described by a finite rooted linearly ordered set (or rooted
tree), i.e. a partially ordered set (¥, <) such that

(RS1) there is a unique smallest element (root) vp€ ¥, i.e. vg<wv for every veI—{vp}, and
(RS2) for all v,v1,v9 €Y with vy, v <v, either v1 =vg, or v1 <V, Or vy <vy.

For each v € ¥ —{w}, let p(v) € ¥ denote the immediate predecessor of v, i.e. p(v) € ¥ such that
p(v) <v and v/ <p(v) for all v’ € ¥ —{p(v)} such that v <v. Such p(v) € ¥ exists by (RS1) and is
unique by (RS2). In the first diagram in Figure 10, the vertices (dots) represent the elements of a
rooted linearly ordered set (7', <) and the edges run from ve#» —{vg} down to p(v). For ve ¥, let

Sy(V) = {v' eV —{v}: p(v')=v}

be the set of immediate successors of v.

Given a finite tree (¥, <) with root vy and a function

p: V—{v} — C s.t. (p(vl),u(vl)) # (p(vg),u(vg)) Vv, vg € ¥V —{vo}, v1#ve, (5.15)

let
Sru= (LI OP)/~ (000) ~ (o) uto) ¥ ve (oo
veEY
see the second diagram in Figure 10. Thus, the tree ¥y ,, of spheres is obtained by attaching oo in

the sphere
P! = {v} xP!

to u(v) € ]P’Il;(v). By (5.15), ¥y, is a nodal Riemann surface, i.e. each non-smooth point (node)
of ¥y, has only two local branches (pieces homeomorphic to C). We call a function y as in (5.15)
an attaching map for (7, <).

Proposition 5.5. Let (X, J, g) be a compact almost complex Riemannian manifold and u;: B1 — X
be a sequence of J-holomorphic maps converging to a J-holomorphic map u: B — X C'-u.c.s.
on Bf. If the limit (5.2) exists and is nonzero, then there exist

(1) a J-holomorphic map wy,: P! — X with u,,(c0)=u(0) and a finite subset S,, CC,
(2) a subsequence of {u;}, still denoted by {u;}, and

(3) for every i€Z™", a biholomorphic map ;: U; — By 3, where U; CC is an open subset,
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Figure 10: A tree (¥, <) with root vg and the associated tree ¥y , of spheres

such that
(a) Ui CUitq for allieZt, C = |JU;, and the sequence uo); converges to uy, Cl-u.c.s. on C=Syy»
i=1
(b) the limit
my, = lim  lim Ey(u;0t;; Bs(w)), (5.16)

6—0i—00

exists and is nonzero for every weS,, and m = I, (uvo) + E My,
’LUES'UO

(c) if uy, is constant, then |Sy,|>2.

Proof. Let h=h;4 be as in Corollary 5.3. For each i€ Z* sufficiently large, choose z; € Bj /5 so that

zIenE?l}/{g ’dui‘g = ‘dziui‘g. (5.17)

Since u; converges uniformly in the C°°-topology on compact subsets of B} to u, z; — 0 as i — o0.
Thus, Bj/s(2i) C By for all i € Z* sufficiently large. By Lemma 5.2(3), for all i € Z* sufficiently
large there exists d; € (0,1/2) such that

Eg(ui; Bs,(2:)) = m —

N | St

(5.18)

Define
Y Ui={weC: zi+5iw€B1/2} — Byo by Yi(w) = zi+6;w.

Since d; — 0, the second property in (b) holds. By taking a subsequence of {u;}, we can assume
that the first property in (b) holds as well.

For each i € Z™T sufficiently large, let
Uygsi = uiowi: Uz — X. (519)

Since u; is J-holomorphic and 1; is biholomorphic onto its image, u,,;; is a J-holomorphic map
with Eg(uv,i) = Ey(ui; Byjp). Along with Lemma 5.2(2), this implies that

lim Ey(uy,;) =m(1/2) < oo.

i—>00
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1 @ 5o/5;

Figure 11: The energy distribution of the rescaled map ,,;; in the proof of Proposition 5.5

By Lemma 5.4, there thus exists a subsequence of {u;}, still denoted by {u;}, so that the set

Sy = {weC: lim sup‘duvo’z‘g 00} (5.20)

6—0 Bs(w)

is finite and the sequence u,,; converges to a J-holomorphic map w,, : P! — X C'-u.c.s. on C—S,,.
In particular, the last property in (a) holds and |duy,.;|4 is uniformly bounded on compact subsets
of C—5,,.

For all R>0 so that S,, C Bg, 6 >0 so that Bs(w) C Bg for every w e S,, and Bs(w)NBs(w')=0
for all w,w’ €S, distinct, and i€Z" so that Br CUj,

Uvo Z7 U35 ZEQ (uU(Jv'L’B(S(w)) = Eg(uvo;i’BR)' (521)

WE Sy WE Sy

We can pass to a further subsequence of {u;} so that the limit (5.16) exists for every w € S,,. In
light of Corollary 5.3(1), m,, >h for all we S,,. By (a) and (5.21),

Eg(uvo)—i—me: lim lim hmE uvolaBR— U35

R—00 §6—0i—00

WE Sy wWESy
+ 511_1)110 zgnooE (Uvo;i§B5(w)) (522)
wWE Sy
= lim limFE (uvo;i,BR) = lim lim E (uiaBRéi(Zi)) =m;
R—00i—00 R—00 i—00

the last equality holds by (5.3).

We next show that u(0) =wu,,(c0). Note that

dg(u(0), uyy(00)) = lim  lim dg(u(d), uy(R)) = lim lim lim dg(u;(zi+0), tuyi(R))

R—000—0 R—006—0i—>0

= lim lim lim dg(ui(zi+0), ui(z+R6;)) (5.23)

R—00 6—0i—>00

< (zi)).
< Rh_r}nooéh_n)lmg"ﬂ diamg (u; (Bs(2:) — Brs, (%))
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Along with (5.4), this implies that ©(0)=1,,(c0).
Suppose 1y, : P! — X is a constant map. By (5.22), S,, #0. Since

fi
Eg(uvo;i; Bl) = Eg(ui; Blgl(zl)) - m— 5

l\'J\Df

(5.24)

by (5.18), Sy,NB1#0. By (5.17) and the definition of v;, |dotyg:i| > |dwtiy,:i| for all w e U;. Thus,
0€S,,. By (5.24),

mo = lim lim Ey(uy; Bs) < lim Eg(uyy; Br) =m —

h
— <m,
6—0i—00 i—>00 2

and so [Sy,| > 2, as claimed in (c). Since the amount of energy of w,,; contained in C— By
approaches f/2, as illustrated in Figure 11, there must be in particular a bubble point w € S,,, with
|lw|=1, though this is not material. O

Corollary 5.6. Let (X, J,g), u;, u, and m>0 be as in Proposition 5.5. There exist
(0) a finite tree (¥, <) with root vy and an attaching map u for (¥, <),

(1) a J-holomorphic map s : Xy, — X with uoohp}m (00)=u(0),

(2) a subsequence of {u;}, still denoted by {u;}, and

(3) for everyveY and i €ZT, 6, €RT and a biholomorphic map ;i : Uy — Bs, (u(v)), where
Uy;i CC is an open subset and p(vg) =0,

such that

o

(a) for every v € ¥, Uyi C Upir1 for all i € ZT, C = |J Uy, and the sequence uy,;, where
i=1

Up ()i = Wi AN Uy = Up ()i ifve ¥ —{vo}, converges to uoohp% Clou.c.s. on C—u(S,(7)),

(b) for everyve¥,

m, = lim  lim Eg (uy(0)45 Bs(1(v) = Eg(uoolpr ) + va , (5.25)

6—01—00
v €Sy (V)
(c) if veE? and ux|py is constant, then [S,(¥)|>2.

If ve 7 is a maximal element, m, = Ey(us|p1) by (5.25). Since the set 7 is finite, it follows
from (5.25) that

m=my, = Ey(uoo).

Proof of Corollary 5.6. Let h be the smaller of the numbers A4 in Corollaries 4.2 and 5.3. In
particular, m>h. Let N €Z" be the largest integer so that NA<m.

Let wyy, Suys {Uils Y =i, and Uy,,; = U; be as in (1)-(3) of Proposition 5.5 and d,, =1/2. If
N=1,5,,=0 by (b) and (c¢) in Proposition 5.5. We then take ¥ ={vp} and ucc =1uy,, establishing
the conclusion of Corollary 5.6 in this case.
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Suppose N > 2 and the conclusion Corollary 5.6 holds for all smaller values of N. Let w € S,
and &, € RT be such that Bas, (w) CC is disjoint from S,, —{w}. By a translation and rescaling,
we identify Bsgs, (w) with B;. By (b) and (c¢) in Proposition 5.5, m,, < Nh. By the inductive
assumption, there exist

0) a finite tree (¥4, <) with root w and an attaching map g, for (%, <w),

(
(
(2) a subsequence of {u;}, still denoted by {u;}, and
(

)

1) a J-holomorphic map ;e Xvq, 1y, — X With ty;00|p1 (00) =y, (W),
)
)

3) for every ve ¥, and i€Z", 6, € R and a biholomorphic map )y : Uyi — Bs, (pw(v)), where
Uy;i CC is an open subset and pu,,(w)={wvo},

such that

(a) for every ve ¥y, Uy CUyitq for all i€ ZT, C = |J Uy, and

=1

m, = lim lim £ ( p(v);i) B(j(,uw(’()))) = Eg Un; oo’]Pl Z My,

0—0i—>0
v ESU(VW)

where ()i = Ungyi Ad Uy = Up(p), 0wy if vE PV —{w},

(b) the sequence uy; converges t0 Uy, |p1 uniformly in the C'°°-topology on compact subsets of
C_Uw(s’u(%’w»a

(c) ifve¥,, and uw;oo]]p}) is constant, then |\S,(%,,)| >2.

We take

¥V = {vo}U |_|7/w, vo <V YUE Yy, WESy, v=<v Vu,v' €V weS,, s.t. v=<y,v,
wES’UO

w, if weSy;
w: ¥V —{v} — C, p(v) = { ’

oy (v), fve?,—{w}, weSy;

’Uo’

) if zeP!
Uso: Dy — X, Uoo(2) = thuo (2) ne 1
Uwioo(2), if 2€P,, vET,, WE Sy,.

By (1) in Proposition 5.5 and (1) above, the map u is well-defined and satisfies the conditions

in (1) in Corollary 5.6. By (a)-(c) in Proposition 5.5 and (b)-(c) above, the requirements (a)-(c) of
Corollary 5.6 are satisfied as well. O

Proof of Theorem 1.3. Fix a Riemannian metric g5, on . For z€ ¥ and § € 3, let Bs(z) C X
denote the ball of radius § around z.

By Lemma 5.4, there exists a subsequence of {u;}, still denoted by {u;}, so that the set

S = {ZEZ: 5li_r)n0;;1(1;)|dui‘g:oo}
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Figure 12: Gromov’s limit of a sequence of J-holomorphic maps u;: By — X

is finite and the sequence u; converges to a J-holomorphic map u: ¥ — X C'-u.c.s. on ¥ —S.
In particular, |du;|, is uniformly bounded on compact subsets of ¥ —S5. We can also assume that
the limit

m, = lim lim E,(u; Bs(2))

T 5 50i—r00

exists for every z€S. We note that

l
—l—Zmz— lim hmE u;E—UB(;(z + lim limFE (ui;Bg(z))

zes 0 e e (5.26)
= lim limE,(u;) = limEy(u;).
 50i—ro0 i—>00

For each z € S, Corollary 5.6 provides a tree Xy, , of Riemann spheres P! with a distinguished
smooth point co and a J-holomorphic map

Uzioo: 24, — X 8.t Uzoo(00) =u(z) and Eg(uzoeo) =m,.
Combining the last equality with (5.26), we obtain

Eq( —i—ZE (Uzioo) = lim Eg(u;) .

1—00
z€eS

Identifying the distinguished point oo of each ¥y, , with z € ¥, we obtain a Riemann surface

z

(Y00, jo0) and a J-holomorphic map s : Yoo —> X with the desired properties.

By Corollary 5.6(c), the limiting map (X0, joo, Uco) constructed above is stable unless w is a constant
map, ¥ =P!, and |S|<2. If u is a constant, then S#{ by (5.26). Suppose ¥ =P!. Let h: P — P!
be a holomorphic automorphism so that the set h=1(S)N By consists of 0 € C only. By replacing
each u; with u;oh, we can assume that SNB1(0)={0}. For each i € Z", let z; € By 5 be such that

M, = @|duz‘ = ‘dziui‘, (5.27)
Byya

with the norms taken with respect to the standard Euclidean metric on B/, CC. Define
hi: Pt — P, hy(2) = zi+2/M;,  and  v;=wu;oh;: P! — X.

In particular, Eq(v;) = Eq4(u;). Since SNB1(0) ={0}, z; — 0 and M; — co. Along with (5.27),
this gives
sup }dvz-‘ = ‘dovi‘ =1 (5.28)

By
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for all i € Z* sufficiently large. By Lemma 5.4, there exists a subsequence of {v;}, still denoted
by {v;}, so that the set
S'={zeP": li dv;| =
{zEP%s lim sup|de], =oo)

is finite and the sequence v; converges to a J-holomorphic map u: P' — X Cl'-u.c.s. on P' — 5’
By (5.28), S'NB;=0. Thus, |dou|y;=1 and the map w is not constant. Along with Corollary 5.6(c),
this implies that the limiting map (X0, joo, Uso) Obtained by applying the above construction to
the sequence {v;} is a stable J-holomorphic map. O
5.4 An example

We now give an example illustrating Gromov’s convergence in a classical setting.

Let n€Z*, with n>2, and P"~!=CP"~!. Denote by ¢ the positive generator of Hy(P" 1;Z)~Z,

i.e. the homology class represented by the standard P! CP"~!. A degree d map f: P! —P" !is a
continuous map such that f,[P!]=dl. A holomorphic degree d map f: P! —P"~1 is given by

[u,v] — [Ri(u,v), ..., Rn(u,v)]

for some degree d homogeneous polynomials R1,..., R4 on C? without a common linear factor.
Since the tuple (ARy, ..., AR,) determines the same map as (R, ..., R,) for any A€ C*, the space
of degree d holomorphic maps f: P! —P"~! is a dense open subset of

%md = ((Symd(CQ)n _ {0})/(:* ~ [P(d'H)n_l .

Suppose fi: P1— P! is a sequence of holomorphic degree d>1 maps and
Ry = [Rk;la SR} Rk,n] € xn,d

are the associated equivalence classes of n-tuples of homogeneous polynomials without a common
linear factor. Passing to a subsequence, we can assume that [Ry] converges to some

R= [(vlu—ulv)dl . (Umu—umv)del, el (vlu—ulv)dl (vmu—umv)den] €Xndq, (5.29)
with dy,...,d, €Z" and homogeneous polynomials
S=[S1,...,5)] € X4
without a common linear factor and with do € Z=°. By (5.29),

do+di+...+d,, =d.

Rescaling (Ry.1, . . ., Ri:n), we can assume that
lim Ry = (viu—u0)® ... (v —upmv)?™S; Vi=1,...,n. (5.30)
k—so00
Suppose zy € C—{u1/v1,...,Un/Vn}. Since the polynomials Si,...,S, do not have a common

linear factor, Sj,(20,1)# 0 for some ig=1,...,n. This implies that Ry, (z0,1)#0 for all k large
enough and so

lim Ryi(2,1) kli_r)noo Ryii(2,1) C (vz—u)® (v =) Si(2,1)  Si(z,1)
k—o0 Rpo(2,1) klim Riio(2,1)  (viz—u1)® ... (Umz—tm)%S; (2,1)  Si(2,1)
—00
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for all i=1,...,n and z close to zyp. Furthermore, the convergence is uniform on a neighborhood
of zg. Thus, the sequence f, C*-converges on compact subsets of P! —{[uy,v1],. .., [tum,vm]} to
the holomorphic degree dg map g: P! —P"~! determined by S.

Let w be the Fubini-Study symplectic form on P"~! normalized so that (w,f)=1 and E(-) be the
energy of maps into P*~! with respect to the associated Riemannian metric. For each § >0 and
j=1,...,m, denote by Bs([uj,v;]) the ball of radius ¢ around [u;, v;] in P! and let

Py =P' — | Bs([u;, vj]) -
j=1

For each j=1,...,m, let
W, 0] ({f6}) = Jim lim E(fy; Bs([ug,v])) € R=°

be the energy sinking into the bubble point [u;, v;]. By Theorem 1.3, the number my, ., 1 ({ fx}) is the
value of w on some element of Hy(P"!;7Z), i.e. an integer. Below we show that My, o) ({fx}) =d;.

Since the sequence f;, C*°-converges to the degree dy map g: P! — P"~! on compact subsets of
Pl—{[U1, Ul]v ey [umavm]}7

do = (w, dol) = E(g) = lim Ey(g;P5) = lim lim E(fi;P).

Thus,

> om0 ({fr}) = Zéﬁ_ngo Jim E(fi; Bs([ug,05])) = Jim - lim B (fes UBs([us,v;]))
=1 =1 =1

= lim lm (BEy(fi)—Ey(fs;P5)) =d—do=di+ ...+ dn.

6—0k—o0
In particular, my, . ({fx})=d; if m=1, no matter what the “residual” tuple of polynomials S is.

We use this below to establish this energy identity for m>1 as well.

By (5.30), for all ke Z" sufficiently large there exist Ap;.j.,, €C with i=1,...,n, j=1,...,m, and
p=1,...,d; and tuples
Sk = [Sk;la s ask;n] € %n;do

of polynomials without a common linear factor such that

k‘h—>rnoo Sk = Sv kh—I>noo )‘k;i;j;p =1 vza]ap7
m  dj
Ry.i(u,v) = H H(vjuf)\k;i;j;pujv) - Ski(u,v) Yk, i.
j=1p=1

For each jo=1,...,m, let
Tjo = [Tiots - -+ Tjom) € Xnza—a,
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be a tuple of polynomials without a common linear factor. If in addition, i=1,...,n, e€R, and
keZ™, let

m

Sizjose(u,v) = H (vju—ujv)¥ - Si(u,v) + €Tjo.i(u,v), 1=1,...,n,
J#jo
dj,
Riijose(u,v) = Ryi(u,v) + € H(Ujo“_)‘k;i;jo;p“jov) “Tjsi(u,v), t=1,...,n.
p=1

The polynomials within each tuple (S;;jo:c)i=1,...,n and (Rp:;:jo:e )i=1,...,» have no common linear factor
for all e € R* sufficiently small and k sufficiently large (with the conditions on € and k& mutually
independent). We denote by

Jrsjose: P! — P!

the holomorphic degree d map determined by the tuple

Rijore = [Rk;l;jo;ev S Rk;ﬂ;jo;é] .

Since
kh—1>noo Risjose = [(Ulu_ulv)djo Stijoser - (viu—ugv)%o Sn;jo;G] € Xnd
and the polynomials S1.jg:e, - - -, Sn;jo:e have no linear factor in common,
hi?o E}n E(fk iJoses ([ujm Ujo])) = My v5,] ({fk;jo;e}) = djo (5.31)

by the m=1 case established above.

For § e R™ sufficiently small, e € R™ sufficiently small, and % sufficiently large,

m dj

IT TT@ju—Akisgpusv) - Skilu,v) #0 ¥ [u, 0] € Bag ([0, vj0))-

J#jop=1

Thus, the ratios

Rkwo, ( ) —14e¢ Tjo;i(uvv)
R]“(u,v) m  dj
’ IT II (vju—Agijpusv) - Skii(u,v)
Jj#jo p=1

converge uniformly to 1 on Bs([uj,,v;,]) as e—0. Thus, there exists k* € Z such that

| ka730,6|

|d.. fx|

lim sup sup
e—0 k>k* ZEB&(["]Q:”JQ])

1| =

It follows that
m[ujo,vjo]({fk}) = 6h_r>n0 kh_r? E(fk;B5([ujovvjo])) = hm lim hm E(fk;jo;e;BcS([ujo’vjo]))

0k—roc€

€l£>n 5hi>n0 klin E(fkdo € ([ujo’vjo])) - hm djo = djy;

the second-to-last equality above holds by (5.31).
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Suppose that either dy >1 or m>3. Otherwise, the maps fi can be reparametrized so that dy#0;
see the last paragraph of the proof of Theorem 1.3 at the end of Section 5.3. By Theorem 1.3 and
the above, a subsequence of {fx} converges to the equivalence class of a holomorphic degree dy
map f: ¥ — P!, where ¥ is a nodal Riemann surface consisting of the component £y = P*
corresponding to the original P! and finitely many trees of P!’s coming off from . The maps on
the components in the trees are defined only up reparametrization of the domain. By the above,
fls, is the map g determined by the “relatively prime part” S of the limit R of the tuples of poly-
nomials. The trees are attached at the roots [uj,v;] of the common linear factors vju—u;v of the
polynomials in R; the degree of the restriction of f to each tree is the power of the multiplicity d;
of the corresponding common linear factor.

The same reasoning as above applies to the sequence of maps
(idp1, fr) : P* — PP,

but the condition that either dy > 1 or m >3 is no longer necessary for the analogue of the conclusion
in the previous paragraph. This implies that the map

Moo (P xP* L (1,d)) — Xng,  [frg] — [gof '],

from the subspace of 9y o(P!xP" !, (1,d)) corresponding to maps from P! extends to a continuous
surjective map

Moo (P <P, (1,d)) — Xna- (5.32)

In particular, Gromov’s moduli spaces refine classical compactifications of spaces of holomorphic
maps P! — P!, On the other hand, the former are defined for arbitrary almost Kahler manifolds,
which makes them naturally suited for applying topological methods. The right-hand side of (5.32)
is known as the linear sigma model in the Mirror Symmetry literature. The morphism (5.32) plays
a prominent role in the proof of mirror symmetry for the genus 0 Gromov-Witten invariants in [14]
and [24]; see [20, Section 30.2].

5.5 Convergent sequences and topologies

We now discuss topologies induced by collections of “convergent sequences”, in the spirit of [29,
Section 5.6]. Such a sequence in a set 9t can be identified with a tuple

(.T, (xk)kez+) S mme+ .

If a subset A of a topological space (9, 7)) is closed, i.e. is the complement of an element of T,
then a limit of every sequence in A convergent in 97 is contained in A. The converse holds if the
topological space (9, T) is T'1, i.e. the one-point subsets of 9 are closed, and first countable. This
underpins the discussion below.

For a topology 7 on a set I, let
C(T) = {(z, (x1)rezs ) EMxME VU ET with zeU, IN€Z* st. ax €U Vk>N}.
It is immediate that the subset €=%(T) of MxMZ" satisfies

(1) if e X and xp == for all ke Z™, then (z, (xk)pez+) €C;
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(62) if (z, (x)pez+) € and o1 ZT — 77 is a strictly increasing function, then (z, (x,(s))kez+) €
;

(€3) if (2, (z)pez+) € MxME" and for every strictly increasing function ¢ : Z+ —s Z* there
exists a strictly increasing function ¢/ : Z* — Z% such that (x, (z,/(k)))kez+) € €, then
(@, (xr)pez+) €C.-

If (9, T) is a first countable topological space, then € =% (T) satisfies

(€4) if (x, (xp)pez+) € € and (x, (Tpn)pez+) € € for every k € Z, then there exist functions
11,12 7+t — 771 so that (SUQ, (xLl(k),Lg(k))k:eZ+) €%.

If (9, T) is a Hausdorff topological space, then € =%(T) satisfies

(€¢5) if (x, (xk)pez+) €C and (2, (xf)pez+ ) EE, then x=2a'.

For a subset & of E)ﬁxi)ﬁw, let

Top(€) = {UCM: V(x, (2k)pez+) €C with €U, INEZ sit. 2, €U VE> N},
Ta(€) = {UCM: YV (2, (xk)pez+ ) € With 2, ¢U VEEZT, 2¢U}
={UCM:V (2, (z)pez+) EC with z€U, ILeZ s.t. 2, €U} D Top(6).

It is immediate that 75, (%) is a topology on 9t so that
€ C Cg(%p(%)) and Top(€) = Top (Cg(%p(%))) (5.33)

If € satisfies (€'1), then T5,(%) is a T'1 topology. The collection 7¢i(4) may not be a topology
on .

Exercise 5.7. Let € CMx9MZ". Show that
(1) if € satisfies (62), then Top(€) =Ta(€);
(2) if € satisfies (¢'1), (¢2), and (¢'4), then the closure of a subset AC 9 with respect to Top (%)
is given by
A={zeM: I(ap)pez+ cA”" st (z, (zk)pez+) EE}.
Lemma 5.8 ([29, Lemma 5.6.4]). Let € COMxMZ" . If € satisfies (61)-(€5), then € =€ (Top(€)).
Proof. In light of the first statement in (5.33), it remains to show that € C € (T (%)). Let
(2, (Tk)rez+) € MxM>" —%.
By (¢3), there exists a strictly increasing function ¢: Z* —Z™ so that

(x7 (xL(L/(k)))k€Z+) ¢ €

for every strictly increasing function /: ZT —Z*. Along with (4’1), this implies that there exists
N €Z" so that ;) #x for all k> N. Let

A:{l’L(k)kzN} cMm
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and AC A be the closure of A with respect to Top(%). We show below that x ¢ A. Thus,
U=M—A € Top(4), zeU, and T, €U VE>N.
This means that (z, (x)kez+) €€ (Top(€)).
Suppose x € A. By Exercise 5.7(2), there exists a function /: ZT — Z% so that
J(k)>N VkeZt  and  (z, (%, 0))kez+) € C-

If «/ were unbounded, there would exist a strictly increasing function ¢”: Z* —7Z% so that the
composition /ot : ZT —Z™T is also strictly increasing. By (€2),

(2, (T (o)) Jhez+ ) € C

this would contradict the assumption on ¢. Thus, ¢/ is bounded and there exists a strictly increasing
function ¢ : ZT —Z* so that the composition +/o/”: ZT —sZ7T is a constant function; let m> N
be its value. By (¢2) and (¥¢1),

(z, @@y kez+) €C and  (2ym), (T () kez+) € C,

respectively. Along with (¢'5), this implies that T=1,(,). However, this contradicts the assump-
tions on ¢ and N. Thus, z € A. O

The conclusion of Lemma 5.8 and (€'5) imply the uniqueness of the limits of convergent sequences
in (9, Top(€)). The uniqueness of the limits of convergent sequences in a first countable topological
space implies Hausdorffness. However, the topological space (9, Top (%)) need not be first countable
even if ¢ satisfies (€'1)-(¢’5).

Exercise 5.9. Let (9, 7) be the topological space obtained by identifying the origins of countably
many one-dimensional vector spaces. Show that

(1) the topological space (9, 7T) is Hausdorff, but not first countable;

(2) the subset €¥=%(T) of MxM™ satisfies (€'1)-(¢5) and Top(€(T)=T.

6 Proof of Theorem 1.5

6.1 Convergence for marked maps

We first modify Proposition 5.5 and Corollary 5.6 by treating 0 € By as a marked point. A sequence
of maps as in Corollary 5.3 then gives rise to a continuous map from a tree of spheres ¥y, attached
at 0 € B; with an additional marked point

21 =0y € C—p(Sy+ (7)) C Py (6.1)
for some v* €Y.

Proposition 6.1. Let (X, J,g), u;, u, and m>0 be as in Proposition 5.5. There exist (¥, <, vo, p),
Uso, @ subsequence of {u;}, still denoted by {u;}, 0y, Uy, and 1y, as in (0)-(3) of Corollary 5.6
and z1 as in (6.1) satisfying (b) and (a) of Corollary 5.6 along with

64



(¢) ifve? and uxp1 is constant, then either [S,(¥)|>2 or Sy(¥)#0 and z1 €Py;
(d) if v=v*, then u(v)=1,;(0)=0 for all i€ ZT.

Proof. We begin by modifying the conclusion of Proposition 5.5. We show that there exist wuy,,
Suo» & subsequence of {u;}, still denoted by {u;}, Ui, and 1; as in (1)-(3) in the statement of this
proposition satisfying (a) and (b) there, 1;(0)=0, and

(d') if uy,, is constant, then |S,,U{0}| >2.

Let z; € By and §; €ER™ be as in the proof of Proposition 5.5. By passing to a subsequence of {u;},
we can assume that z; / d; converges to some Zvg cP!.

Case 1: z,,€C. We can then assume that J; is decreasing. Define
Vit Ui=DByjgs, — Bijp by  ¢i(w) =dw.

Since d; — 0, (b) in Proposition 5.5 holds. As in its proof, the rescaled maps wy,,,; in (5.19) are
J-holomorphic. After passing to a subsequence of {u;}, we can again assume that the set (5.20)
is finite, the sequence u,,;; converges uniformly in the C°°-topology on compact subsets of C—.S,,,
to a J-holomorphic map uy, : P! — X, the limit (5.16) exists for every w € S, and (5.22) holds.
Since z;/d; — zy,, Uy, differs from the map w,, in the proof of Proposition 5.5 by the composition
with the shift by —z,,. Thus, the properties (a)-(c) in the statement of the proposition continue
to hold.

Case 2: z,,=00. We can then assume that z;#0 for all i€Z" and |z;| is decreasing. Define
Vit Ui=Byja)z,) — By by  i(w) = zw.

Since z; — 0, (b) in Proposition 5.5 holds. As in its proof, the rescaled maps wuy,,; in (5.19) are
J-holomorphic. After passing to a subsequence of {u;}, we can again assume that the set (5.20)
is finite, the sequence u,,;; converges uniformly in the C°°-topology on compact subsets of C—.S,,,
to a J-holomorphic map wy, : P! — X, the limit (5.16) exists for every w € S, and (5.22) holds.
Since z;/d; — 00,
my = lim lm B (tnpzi; Bs (1)) = Jm Hm E, (i3 Bs|z(20))

> i lim F,(u;; Bgrs.(z;)) = m;

=z Rinoo zinoo g(uu R(Sl(zz)) m;
the last equality holds by (5.3). Along with (5.22), this implies that S,, ={1} and w,, is a constant
map. By the same reasoning as in the proof of Proposition 5.5, we obtain u(0) =1, (c0).

We now take 7 and N as in the proof of Corollary 5.6 and wuy,, Svy, Vi =¥ and Uy, = U; as
constructed just above. We then proceed again by induction on N, assuming Corollary 5.6. For
each w € S, —{0}, we take (¥4, <w, fw), Uwoo, & subsequence of {u;}, d,, ¥y, and U,,; exactly
as in the proof of Corollary 5.6. If 0 € .S,,, we take (¥, <o, 110), U0;00, & subsequence of {u;}, s,
Yy:i, and Uy; as provided by Proposition 6.1 and the inductive assumption. We then combine these
collections as at the end of the proof of Corollary 5.6 to conclude the inductive step of the proof. [
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We also include a modification of Proposition 5.5 and Corollary 5.6 for S*-marked maps. A sequence
of maps as in Corollary 5.3 then gives rise to a continuous map from a tree of spheres ¥y, attached
at 0 € By with marked points

zs € C—p(Sy, (V) C P, (6.2)

for some v, €Y.

Proposition 6.2. Let (X, J,g), u;, u, and m be as in Proposition 5.5, S* be a finite nonempty set
so that either |S*|>2 or m>0, and z;;s € By be a sequence of points for each s€S* converging to 0
so that zis # zi.s for all s#s'. There exist (¥, <,v0, ), Uso, @ subsequence of {u;}, still denoted
by {ui}, 6y, Ui, and ¥y, as in (0)-(3) of Corollary 5.6 and (v, zs) € ¥ xC for each s € S* with
2s € (Sy(Y)) satisfying (b) and (a) of Corollary 5.6, (vs, zs) # (vs, zg) for all s#£5', and

() if ve? and ux|py is constant, then |S,(¥)|+[{s€S*: vs=v}|>2;

(d') zp)si;s € Bs, (u(v)) for allv <, i€ZT, and s€5*, where zyy.i.s = 2is and ZU’;i;szw;}i(zp(v’);i;s)
if vo = v' <ws;

(¢) for every s€ S*, the sequence z,,.;.s converges to zs.

Proof. We first show that there exist w,,, Sy,, & subsequence of {u;}, still denoted by {u;}, U,
and v; as in (1)-(3) in the statement of Proposition 5.5 and z,,.s € C for each s € S satisfying (a)
and (b) there and

(d') if wuy, is constant, then |Sy,U{zy,:s: s€S*}>2;
(¢') zi;s € Byyq for all i€ ZT and s€ S*;
(f') for every s€S*, the sequence zvo;i;szwfl(zi;s) converges to Zy:s.

If m#£0, let z; € By and §; € RT be as in the proof of Proposition 5.5; otherwise, let z; =0 and
d;=1. By passing to a subsequence of {u;}, we can assume that (¢’) above holds and the sequence
(2i;s—2i)/0; converges to some 2, . €P! for every s S*.

Case 1: m#0 and 2] ., €C for all s€S. We then take U;, 1;, a subsequence of {u;}, u,, and Sy,

038

as in the proof of Proposition 5.5 and zy,.s = 2.5

Case 2: m#0 and z;ms = oo for some s€ S. By passing to a subsequence of {u;}, we can assume
that the sequence (z;—z;.s)/ (% — 2i;s+) converges to some zy.s s+ € P! for all s#s*. Let s* €S be
such that 2, ¢+€ C for every s€S. Thus, z;, . =00. We can then assume that z; s # z; for all
i€Z7'. Define

T/Ji: UZ‘E{’LUE(Ci Zi;s* +(ZZ‘—ZZ‘;5*)UJ€BU2} — B1/2 by zpz(w) = zi;s*—i-(zi—zi;s*)w.

By passing to a subsequence of {u;}, we can assume that (b) in Proposition 5.5 holds. Furthermore,

1 2i— Ziss _
Zugris =0y (2is) = 1= 7 > Zugys =1 — 2ug;s,5 €C
Zi— Zi;s*

for all s€.S*. As in the proof of Proposition 5.5, the rescaled maps w,;; in (5.19) are J-holomorphic.
After passing to a subsequence of {u; }, we can again assume that the set (5.20) is finite, the sequence
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Uy converges uniformly in the C*°-topology on compact subsets of C-S,,, to a J-holomorphic map
Uy, : Pt — X, the limit (5.16) exists for every w€ S,,, and (5.22) holds. Since (2;—z;s+)/8; — 00,
my = lim lim E, (togsi; Bs(1)) = Jm lim E, (wis Bs|z;— 2,0 (20))
> lim lim F, (ui; BRéi(Zi» =m;

~ R—oc0i—00

the last equality holds by (5.3). Along with (5.22), this implies that S,, ={1} and wu,, is a constant
map. By the same reasoning as in the proof of Proposition 5.5, we obtain u(0) =1, (c0).

Case 3: m=0 and thus |S|>2. Fix s; € S. By passing to a subsequence of {u;}, we can assume
that the sequences (2.5 — zi.s; )/ (2i:sr — 2irs,) cOnverge to some 2,5 € P! for all s,s" # s1. Let
sy €S —{s1} be such that z,,.s s, €C for all s€S. Define

P UZ‘E{’LUE(C: zi;sl—i—(zi;SQ—zi;sl)weBlp} — Bl/2 by lp,(w) = zi;sl—k(zi;Sz—zi;sl)w.

By passing to a subsequence of {u;}, we can assume that (b) in Proposition 5.5 holds. Furthermore,

| Ziss T Zizs _
Zugsiis =Wy (Ziss) = ———— — Zug;s = Zug;s,s €C
Zi3s0 T 2381

for all s€.S*. By the reasoning in Case 2 and the assumption m=0, the set (5.20) is empty in this
case and the sequence u,,; converges uniformly in the C'°*°-topology on compact subsets of C to a
constant map wy, : P! — X with value u(0). The set {2y,.s: s €.S*} contains z,y.s, =0 and 2.5, = 1.

We now take i and NN as in the proof of Corollary 5.6, wy,, Svy, Vug:i = Vi, Uny:i =Us, and 2,5 as
constructed just above, and
Spy = SueU{weC: [s€8: zyps =w} >2}.
We then proceed by induction on N+|S5*|, assuming Corollary 5.6. For each we Sy, , let
Sy = {SGS: zvo;szw}.
We take (%4, <w, fw), Uwioo, & subsequence of {u;}, 6y, Yy, Upsi, and zy,s with s €S} as in the
proof of Corollary 5.6 if S;, =0 and as provided by Proposition 6.2 and the inductive assumption
with S* =5 if S #(0. We then combine these collections as at the end of the proof of Corollary 5.6
to conclude the inductive step of the proof. O
6.2 Bubbling on thin necks
For 6,6, €RT and AeC, let
A5, 5,(N) = {(z,9) €C?: wy =, |2 <0y, [y <5y }.
The space As, s5,(0) is the wedge of the disks
Bf ={(z,0)€C?: |z|<d,} and Bgy = {(0,y)eC?: |y| <4y}

identified at 0, € Bf and 0, € Bgy. Let A5 ; (0) C As,5,(0) be the complement of the resulting
node. If A#0 and 6,0, >|)|, As,.5,(A) is the annulus with the ratio of the radii equal d,6,/|)|. In
such a case, we identify As, 5, (\) with the annuli Bf —ETM /s, and Bgy *ETJ&I /s, Via the projections

Tz, Ty * Aézﬁy ()\) — Bg;: ng 7T$(.%', y) = (%’, 0) 7ry<$> y) = <O7 y)
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For maps u,: Bf — X and uy: Bgy — X, define

ug(x), if z=(x,0);

JUuys A5 (0) — X, upUuy () =
Uz Uty 5w’5y() uz Uty (2) {uy(y)7 if z=(0,y).

We say that a sequence u;: As, 5, (A;) — X of C*maps into a smooth manifold X converges to a
Cmap u: A;xﬁy(O) — X C‘-u.cs. if the sequence \; converges to 0 in C and the sequences

—1 A T =14 -1 . Yy nY e
WiOTy, i * Béz _B|>\i|/5y — X and UiCT sy * B5y _B|)\i\/51 X

of smooth maps converge to smooth maps U’Bg —{0,) and U|B§; —{0,}> respectively, C*-u.c.s.
@ y
We now obtain analogues of the statements of Section 5.2 for sequences of maps from the thin

necks As, 5,(A). Except as noted, they follow by the same reasoning as the corresponding state-
ments (if any) in Section 5.2.

Lemma 6.3. Let (X,J,g) be an almost complex Riemannian manifold. Suppose dy € RT, and
u;: Asys0(Ni) — X is a sequence of C1-maps converging to a C*-map u: Aj 5,(0)— X Cl-u.c.s. so
that Eq(u) <oo and the limit
m= lim lim Eg(u;; A5 5(N\)) (6.3)
6—01—>00

exists.

(1) The limit m(dz,0,) = ignooEg(ui;A(;I,gy (M) exists for all 65,0y € (0,d0) and is a continuous,

non-decreasing function of 0, 0y.
(3) For every pe (0,m) and i€ Zt sufficiently large, there exists a unique §;(p) € (0,d0) such that
Eg (ui; As, () 6, () (M) = .

For all pe (0,m), u' €(0, ), and i € Z" sufficiently large, there exists a unique 6;(p, ') € (0, dp)
such that

Eyq (“i? A&(M,M’)ﬁi(u)()‘i)) = u'

(4) If X is a compact, m=0, and the maps u; are J-holomorphic, then u extends to a J-holomorphic
map As, s,(0) — X.

Proof. 1f the maps u; are J-holomorphic, so are the maps u|py (0} and u[py_qy. Since Ey(u) <oo,
they extend to J-holomorphic maps

Ugy: B — X and Uy: B — X
by Proposition 5.1. The substance of (4) is that ,(0,) =1,(0,) if m=0.

Suppose m=0. Let hj4 be as in Corollary 4.17 and 6 € (0,dg) be such that m(d,6) <hj4. Since
Eq(ui; As5(Ni)) <hyg for all i sufficiently large, Corollary 4.17 applies with (Rq, Ra, R) replaced by
(In|A;|—Ind,Ind,Ind—Inr) and u replaced by the J-holomorphic map

Vg - (Rly R2) XSI — X, Vi (S, ei@) = u; (eS'HQ’ )\ie_s_w)_
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By the second statement of this corollary,
diamg (u;(Ar (M) < CrgVrhy, Y 1re(0,8/9), i > i(0).
Since the maps wu; converge to u C%u.c.s. and the maps 1, and Uy are continuous,

dg (Uz(0z), 1y (0y)) = rli_ngodg(u(r, 0),w(0,7)) = lim lim dg(ui(r,\i/7), wi(Ni/7,7))

r—0i—s00
< rh_r>n01 hmoodlamg (ui(Arr(N)-

Combining the last two equations, we obtain 2, (0,) =1, (0y). O

Corollary 6.4. If (X, J, g) is a compact Riemannian almost complex manifold, there exists hj g€ RT
with the following properties. If 6o € RT and u;: As, 5,(Ni) —> X is a sequence of J-holomorphic
maps converging to a C*-map u: Af 5,(0)— X Ct-u.c.s. so that Ey(u) < oo and the limit (6.3)
exists and is not zero, then

(1) m > h]yg;
(2) for all pe (m=hyy,m) and sequences 0., oy, € (0,60) converging to 0 with Eg(ui; As,; s, (M) = 14,

lim lim F, (ul, ARé,.q.6(Ni )), lim lim F, (ul, AR,s M,Ryéy;i()‘i)) =m, (6.4)

(R,8)—(00,0) i—>00 Ry, Ry—>00 i—00

lim diamg (u;(Asg), |/ Rui; (Ai ) =0; (6.5)

m
(R,6)—(00,0) i—>00

(8) for all pe(m—hyg,m) and p' € (m—hyg, ),

p—p < hmlnfhmlnfE (u“Aal:%i(u,u’)ﬁi(u,u’)()‘i)) <m—u. (6.6)

R—00 i—>00

Proof. (2) For r, RER" and A€ C, define
Rr(AN) = {(z,y) € As5,5,(N): r<|z| <R} and AR, (\) = {(z,y) € As, 50(N): r<|y|<R}. (6.7)

Let hjg4 be the smaller of the constants h ;4 in Corollaries 4.2 and 4.17. Let u;, u, and m be as in
the statement of Corollary 6.4 and 6,.i, 9y, € (0,00) be as in (2). After passing to a subsequence
of {u;}, we can choose 4 ; € (62, 90) and dy; € (dy;, do) so that

lim F, (UZ,A(;/ 5/ ()\)) =m.

1—>00

Applying the reasoning in the proof of (5.3) to the annuli A%, 5 _()\ )and A% o o (Ai), we then

RZ/ PRY Y3t

obtain (6.4) and (6.5) whenever p€(m—nh;g,,m) and p>0.
(1) Suppose 0<m<hy,4. Let §;=0;(m/2) for i€ Z* sufficiently large,

m, = lim lim By (u; A%y, 5.(N), and my = lim lim E (ui;A?IJ%i,éi()‘i))'

R—00 i—>00 R—00 i—>00

By the second equation in (6.4) and the definitions of m and d;, m,+m, =m/2. By symmetry, we
can assume that my, >0.
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For i€ Z" sufficiently large (so that ; is defined and thus |)\;|<§?), define
vi: U= {weC: 2|\ /606 <|w|<b0/26;} — X, vi(w) = u; (Gw, Ai/ (B;w)).
Thus, C*=J;2, U; and v; is a J-holomorphic map with

lim Ey(v;) = i B g (s Asy 2,50 /2(Ai)) = m(60/2,00/2) < oc. (6.8)

1—00

After passing to a subsequence of {u;}, we can assume that the sequences d; and |\;|/d; are de-
creasing and thus U; CU;41.

By (6.8) and Lemma 5.4, there exists a subsequence of {u;}, still denoted by {u;}, so that the set

SE{wE(C 6hHmOBs%p‘de| —oo}

is finite and the sequence u; converges to a J-holomorphic map v: P! — X C'-u.c.s. on C*—5.
For we S, let
My = lim lim F (vi;Bg(w)).

6—0i—00

Similarly to (5.22),

—i—me = hm lim E (vZ,BR Bl/R) lim lim F (ui;ACIE%Si,é,'/R(/\i))

—00 1—>00 R—00i—00

< lim lim FE (u“AM(A )) =m< hy,.

§—0i—00

Along with Corollary 5.3(2), this implies that S={) and

hjg > Eg(v) > lim lim Ey(us; A%, 5.(A)) = mg > 0.

R—00 i—00
Thus, v: P! — X is a non-constant .J-holomorphic map with E,(v) <hy,. Since this is a contra-
diction, we must have m>"hy .
(3) By the definitions of d;(u) and §;(u, p'), 8;(p, p') < ;(p) and
Eg (us; A (1),6: (ot (o)) = p—p'.
By the second equation in (6.4),

lim lim E (ui;Aﬁ&i(u)ﬁ&(uyﬂ’)o\i»

R—00 i—>00

= lim  1im (Ey(wi; Aps,(u),r6,()(AN) — lim lim (Eg (uis Aps, a0,z (M) = 0.

R—00 i—>00 R—00 i—>00

By the last two equations,

lim inf lim inf By (u; AR, () 85 () (M)

R—00 1—00

> lim lim (Eg(ui?Agi(u),éi(u,u’)()‘i))_Eg(“i3A%éi(u),Réi(u,u’)()‘i))) = p—y.

R—00 i—>0

This establishes the left inequality in (6.6). The right one follows from (6.4) with u replaced by y/
and the definition of &;(u, it'). O
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Proposition 6.5. Let (X, J,g) be a compact almost complex Riemannian manifold. Suppose
b0 € ZT and u;: Agsy 250(Ni) — X is a sequence of J-holomorphic maps converging to a C'-
map u: As o5 (0) — X Cl-u.c.s.. If Eg(u) < oo and the limit (6.3) exists and is nonzero, then
U‘BS(;O—{O} extends to a J-holomorphic map uy: Bys — X and there exist

(1) a J-holomorphic map uy,: P — X with uy,(c0) =u,(0;) and a finite subset S,, CC*,

(2) a subsequence of {u;}, still denoted by {u;}, and

(3) for every i€Z™, a biholomorphic map v;: Bp, _En- — Asy 60 (Ni)s

(4) 6,€(0,80) and a sequence X; € C* converging to 0,

such that

(a) Ri<Riy1 and r;>rivq for alli€Z™, (R;,r;) — (00,0) as i— 00, and the sequences
ujoth;: Bp,— By, — X and uiogbiom\;;x: Ag(x)%()\;) — X

converge to uy, C'-u.c.s. on C*—S,, and to Uy, | By, Vul gy Cl-u.c.s., respectively,
0 55

(b) the limits

mo= lim lim By (u;oth;; Bs—B,,;5) and

6—0i—00

my, = lim lim Eg(uiowi;Bg(w)) with w € Sy,

6—0i—00

exist, my, #0 for weS,,, and m = Eg(uv0)+m0+ me,
weSvO

(¢c) if uy, is constant, then Sy, #0.

Proof. Let h="h,4 be the smaller of the numbers f;, in Corollaries 5.3 and 6.4 and p=m—h/4.
For every i€ Z™ sufficiently large, let

0; = 0; (u,m—h/2) € (0, 50)
After passing to a subsequence of {u;}, we can assume that the limit

1—00
exists and lies in [h/4, 1/2]; see Corollary 6.4(3). Define
Ry =00/di,  ri=INil/dodi, N = Ni/di,

Since |A\;| < 0;(p)ds, 0; < 6;(p), and d;(n) — 0, (R4, 1) — (00,0) as ¢ — co. After passing to a
subsequence of {u;}, we can assume that R; (resp. r;) is an increasing (resp. decreasing) sequence.
Thus, the first two properties in (a) are satisfied.
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For each i€ Z™ sufficiently large, let
Uygzi = ui0¢i: BRi_ETi — X.

Since u; is J-holomorphic and v; is biholomorphic onto its image, uy,;; is a J-holomorphic map
with Ey (i) = Eq(ui; Asy,s0(Ni)). Thus,

lim Eg(uyyi) = m+Eg(u; Asy s, (i) < 00.

—00

By Lemma 5.4, there thus exists a subsequence of {u;}, still denoted by {u;}, so that the set

Sy = {weC™: Shglogip\duvo, iy =00}

is finite and the sequence u,,.; converges to a J-holomorphic map u, : P! — X Cl-u.c.s. on C*—=Sy,-
In particular, the third property in (a) is satisfied and |duy,.i|g is uniformly bounded on compact
subsets of C*—.S,,.

For all R>0 so that Sy, C Bg, 6 >0 so that Bs(w) C Bp, for every w € {0}L1S,,, and Bs(w)NBs(w') =0
for all w,w’ € {0}US,, distinct, and i €ZT so that R;> R and r; <42,

Eg (uvo;i7 Br—Bs— UB(S(U))) +Eg (uvo;i; B5_Bri/6)

wESvo

(6.10)
+ ZEg (Ufuo;z'? Bé(w)) = Eg (uvo;i7 BR_Bri/é)'

wGSuO

We can pass to a further subsequence of {u;} so that all limits in (6.9) exist. In light of Corol-
lary 5.3(1), my, >h for all we S,,. By the conclusion of the previous paragraph and (6.10),

Eg(ty,)+mo+ me = lim lim Ey(uvyi, BR—B,/s)

R—00 1—00

WESy, (6.11)

- Rhi?oo zgnooE (U’Z? AR517505(>\ )) =m;

the last equality holds by the first statement in (6.4).
Let 6y € (0,d0) be such that Byg NSy, =0. Since

{uiowow/\;;x}ow;&x:uiom: Bf;”/ —B‘m)\/'/(;, — X and

{wioiomy fomyl, =uiomy s By =B,y — X,

the last property in (a) is satisfied. By (6.5) and the reasoning in (5.23), uz(0z) =1y, (c0). By the
reasoning in (6.11) and by (6.6),

Ey +§mw > lim 1 By (g, Br—B1) = lim  lim By (us, AR, 5,(M)) = h/4.
WE Sy

If u,, : P! — X is a constant map, this implies that S, #0. O
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If (¥,<) is a finite tree with root vg, we call a subset %4 C ¥ a stem of (¥, <) if vp€ ¥ and there
is an ordering vy, ..., v, of the elements of ¥4 —{vp} so that p(v;) =v;—1 for every i=1,...,m. In
such a case, we define max ¥ =v,,. If ve ¥ =¥, then S,(¥)N¥e=0.

Corollary 6.6. Let (X, J,g), u;, and u be as in Proposition 6.5. If Eg(u)<oo and the limit (6.3)
exists and is nonzero, then u]B%c& —{0} and U|Bgé {0} eatend to J-holomorphic maps uy: Bys — X
0 0

and uy: Bg&) — X, respectively, and there exist

(0) a finite tree (¥, <) with root vy, a stem Yo C ¥, and an attaching map p for (¥, <) so that
n(7e) ={0},

(1) a J-holomorphic map s : Xy, — X with uoohp}m (00) =ug(05) and use|pr (0) =uy(0y),

X Ve

(2) a subsequence of {u;}, still denoted by {u;}, and

(8) for every ve ¥y and i€ Z, 6,€(0,0pw)), Avyi €C*, and a biholomorphic map

¢U§i : BRu;i _Erv;i — Aép(v)vép(v) ()\p(”)ﬂ:)’
where b,,0) =00 and Ap(yy);i = Ni,

(4) for every v € ¥V —Y, and i € Z*, 6, € RT and a biholomorphic map )y, : Uy — Bs, (u(v)),
where U,; CC is an open subset,

such that

(a) for every vE€¥e, Ryi < Ryit1 and 1y >7ryiq1 for all i€ZY, (Ryy, i) — (00,0) as i — 00,
and the sequences

uv;i:BRw.—E ,—— X and  uyiomy

Tv;i

x- A25U,25U ()\U;i) — X,

v

where Up(yy)i = Wi and Uy = Up(y);; 0wy if v € Yo —{vo}, converge to uso|py Cl-u.c.s. on
C*—p(Su(7)), and to uy|p,ys, UU‘B% Cl-u.c.s., respectively,

[o.¢]
(b) for every ve ¥ —Yq, Ui CUypi1 for alli€Zt, C = |J U, and the sequence uyi: Uy — X,
i=1
WheTe Ui = Up(y);i OPusi, converges to uoo]p% u.c.s. on C—pu(Sy(¥)),

(c) the limits

My = lim lim F, (um-; Bg—BTW./(;) with v € Ve and

6—0i—>00

m, = lim  lim By (uy); Bs(u(v))  withv € ¥ =7,

6—0i—>00

exist, Myax v, =0, and

Moo = Eg(toolp) +muo+ > my  VwveT,
V€S (¥)
my = By (ucclp) + ) my Ve,
V€S (Y)

(6.12)

where My, () .0=m,
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(d) if veYe (resp. vEV =7, ) and uso|py is constant, then Su(PV)£D (resp. |So (V)] >2).

If v €7 is a maximal element, m, = Ey(uc|p1) by (6.12). Since the set ¥ is finite, it follows
from (6.12) that

M=My(0):0 = g (Uso)-
Proof of Corollary 6.6. Let h be the smallest of the numbers 44 in Corollaries 4.2, 5.3, and 6.4.

In particular, m>h. Let N €Z™ be the largest integer so that Nh<m. We proceed by induction
on the admissible values of N.

Let wyy, Sy, {Uiks Oy = 00/2, Augii = N5y Rugii = Ri, Tugyi = 1, and 1y, = ¢; be as in (1)-(4) of
Proposition 6.5. By (b) and (c) in Proposition 6.5 and Corollaries 4.2 and 5.3(1),

My,.0=mMp < m—Ah.

For each w € S,,, we take (%4, <uw, fw), Uw;co, & subsequence of {u;}, 0y, Py, and U,,; exactly as
in the proof of Corollary 5.6.

Case 1: my,.0=0. We then combine the above collections as at the end of the proof of Corollary 5.6
to obtain a finite tree (¥, <) with root vy, an attaching map u for (¥, <), a J-holomorphic map
Uso : Ly, — X with uoohp%o (00) = uz(04), and 0y, Avgiis Rugiis Tvgsis Uviis and ¥y as in (3) and
(4) satistying (a)-(d) with %4 = {v9}. By Lemma 6.3(4) applied to the sequence ;o mx
Uoo|IP>},O(0):“y(0y)-

vO;i§1’7

Case 2: my,.0>0. We take (%0, <0, Y00, 140), U0;00, & Subsequence of {u;}, 6y, Aviiy Rusiy Twiiy Ui,
and 1,,; as provided by Corollary 6.6 and the inductive assumption for the sequence

Uyg;3 O\ A26v0 1200 (AUO ;i) X.

v;ii L

We then combine this collection with the collections above Case 1 as at the end of the proof of
Corollary 5.6 to obtain (7, <, i), Ye ={v0}U%0:e, Uco, Ous Ausiy Ruiiy Tviis Unsi, and ty,; in (0)-(4)
satisfying (a)-(d). O

A Connections in real vector bundles

A.1 Connections and splittings

Suppose X is a smooth manifold and 7g: E— X is a vector bundle. We identify X with the zero
section of . Denote by

a: FF — F and Tpep: FOE — X

the associated addition map and the induced projection map, respectively. For feC*>(X;R),
define
my: B — F by mys(v) = f(re(v)) v VveEE. (A1)

In particular,
TEQE = TEoa, g =7ngomys YV feC(X;R).

74



The total spaces of the vector bundles
TEee: FOF — X and npE—FE
consist of the pairs (v,w) in F'x E such that 7g(v) =mg(w).

Define a smooth bundle homomorphism

d
tp:mpE — TE, tp(v,w) = &(U—Hw)‘t:o' (A.2)

Since the restriction of tg to the fiber over v€ E is the composition of the isomorphism

d
Erpw) — ToEr(v)s w— &(v—i_tw)’tzo’

with the differential of the embedding of the fiber E (,) into F, tg is an injective bundle homo-
morphism. Furthermore,

drgotg =0, mjpgompmy =dmysorp, a"i1pompgpa = daoipgr, (A.3)
TE|x ~TX @ Imip.

By the first statement in (A.3), the injectivity of ¢, and surjectivity of dng,

0—> B TE -5 eTX — () (A.5)

is an exact sequence of vector bundles over E. By the second statement in (A.3), the diagram

dﬂ'E

0 THE e TE m5TX —0
lﬂ%mf idmf lﬂ'*Eid (AG)
m}LE m;dﬂ'E
0 Tk m}}TE T X ——0

of vector bundle homomorphisms over £ commutes. By the third statement in (A.3), the diagram

dm
0 —> mhep(EOE) —22  ~ T(E®E) — 2% o~ rr X —>0
l”E@E“ lda l”E@Eid (A7)
0— > rf b —F TE — 98 e TX —0

of vector bundle homomorphisms over E@®E commutes.

A connection in E is an R-linear map

V:T(X;E) —T(X;T*"X®rE) st
V(fE) =df@+ fVE V feC®(X), (€T(XE). (A.8)
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The Leibnitz property (A.8) implies that any two connections in E differ by a 1-form on X. In other
words, if V and V are connections in F there exists

0 €T (X;T*X@rHomg(E, E))  s.t.
Vol =Vl +{0(v)}e  VEET(X;E), velLX, z€X. (A.9)

If U is a neighborhood of z € X and f is a smooth function on X supported in U such that f(z)=1,
then

Vél, = V(£9)l, — dofeé(2) (A.10)

by (A.8). The right-hand side of (A.10) depends only on &|7. Thus, a connection V in E is a local
operator, i.e. the value of V¢ at a point x € X depends only on the restriction of £ to any neigh-
borhood U of x.

Suppose U is an open subset of X and &1,...,§,€(U; E) is a frame for E on U, i.e.

51($)7 <o 7§n(x) SO

is a basis for F, for all z€U. By definition of V, there exist
k=n k=n
0f eT(U;T*U)  st. V&= GO =D /e Vi=1,...,n
k=1 k=1

We call

0=(6f),,_, . €L (U;T*UcrMat,R)

the connection 1-form of V with respect to the frame (& ).

For an arbitrary section

l=n
£¢=> flger(U;E),

=1
by (A.8) we have
k=n l=n
ve=Y a(arf+ 30, ie V(e f)=¢ {a+o}r, (A.11)
k=1 =1
where &= (&,...,&), f=(f" o fM). (A.12)

This implies that
V¢l = mlpodeé: To X — B, VEED(UGE) st £(x) =0, (A.13)
where g, : T, E— E, is the projection to the second component in (A.4).

By (A.11), V is a first-order differential operator. By (A.8), its symbol is given by

ov:T*X — Hom(E,T*X ®rE), {ov(m)}(f) =n®f.
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Lemma A.1. Suppose X is a smooth manifold and ng: E— X is a vector bundle. A connection V
i E induces a splitting
TE =~ ntpTX @ npE (A.14)

of the exact sequence (A.5) extending the splitting (A.4) such that
VE| =moleodal: ToX — By VEET(XGE), z€X, (A.15)
where mo|y: T, FE — E, is the projection onto the second component in (A.14). Furthermore,
dm = mpid @ mpme VteR and 4R T e pid © Thepa, (A.16)

with respect to the splitting (A.14), i.e. it is consistent with the commutative diagrams (A.6)
and (A.7).

Proof. Given z€ X and v € Ey, choose £ €I'(X; E) such that £(z)=v and let
T,E" =Im{d¢-V¢} C T,E.
Since mgo&=idy,
dyrgo {dé-VEY =idrx =  TE~TE"®E,~T,X®E,.
This splitting of T, E satisfies (A.15) at v.

With the notation as in (A.11),

l=n

l=n
{de—veY|, = (dxidx, S @0 e =Y fl(a:)Hl"|x> T, X — T,X®OR"
=1 =1

with respect to the identification E|y ~ U x RF determined by the frame (£;),. Thus, T,E" is
independent of the choice of {. Furthermore, the resulting splitting (A.14) of (A.5) extends (A.4)
and satisfies (A.16). O
A.2 DMetric-compatible connections
Suppose EF— X is a smooth vector bundle. Let g be a metric on F, i.e.

g € T'(X; E*QrE") s.t. g(v,w) = g(w,v), g(v,v) >0 VovwekE, v#0, zcX.

A connection V in E is g-compatible if

d(9(&,¢)) =9(VE,Q) +9(&, V) e T(X;T7°X) V& CET(X;E).

Suppose U is an open subset of X and &1,...,§, €'(U; F) is a frame for E on U. Fori,j=1,...,n,
let

9ij = 9(&i, &) € C=(U).
If V is a connection in E and 6y, is the connection 1-form for V with respect to the frame {& }x,
then V is g-compatible on U if and only if

k=n
Z (gzk9f+gjkef) = dgij \V/ i,j = 1,2,...,77“ (A17)
k=1
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A.3 Torsion-free connections

If X is a smooth manifold, a connection V in T'X is torsion-free if

Ve = Vg =[6,¢] V& Cel(X;TX).

If (z1,...,2,): U—R" is a coordinate chart on X, let
0 0
. — e I'(U;TX
0x1’ " Oxy, ( )

be the corresponding frame for T'X on U. If V is a connection in T'X, the corresponding connection
1-form 6 can be written as

k
ZF dazt, where Va/&tla Z ij 83%

The connection V is torsion-free on T'X |y if and only if
rk =1 Vi,j, k=1 A8
ij i 2,7, yoe ey T ( . )

Lemma A.2. If (X, g) is a Riemannian manifold, there exists a unique torsion-free g-compatible
connection V in TX.

Proof. (1) Suppose V and V are torsion-free g-compatible connections in TX. By (A.9), there
exists

0 € I(X;T* X @rHomp(TX,TX))  st.
Vo= Vo6 ={0(X)}Y  VEeD(X;TX), veT, X, z€X.

Since V and V are torsion-free,
{B(v)}w = {H(v)}w Vo,weT, X, xeX. (A.19)
Since V and V are g-compatible,

g({0(v)}w, w’)
g({0(w)}v,w’)
g({0(w")}v,w)

Adding the first two equations in (A.20), subtracting the third, and using (A.19) and the symmetry
of g, we obtain

+ g(w, {0(v
+g(v, {0
+g

0
0 {o(
(v, {6

0
w') =0 Vou,w,w €T, X, r€X. (A.20)
0

29({6(v)}w',w) =0 Vov,ww €T,X, z€X — 6 = 0.

Thus, v=V.
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(2) Let (x1,...,2,): U—R" be a coordinate chart on X. With notation as in the paragraph
preceding Lemma A.2, V is g-compatible on TX|y if and only if

l=n

> (9T + 9iThi) = Or, 9is; (A.21)
=1

see (A.17). Define a connection V in T'X |y by

l=n

1 .
]-—‘Z = 5 ngl (axlg]l + ax]'gil - a:tlglj) v 7, k= 17 RN
=1

where g is the (i, j)-entry of the inverse of the matrix (Gij)ij=1,...n- Since gij = gji, Ffj satisfies
(A.18); a direct computation shows that Ffj also satisfies (A.21). Therefore, V is a torsion-free g-
compatible connection on 7' X |y. In this way, we can define a torsion-free g-compatible connection
on every coordinate chart. By the uniqueness property, these connections agree on the overlaps. [

B Complex structures

B.1 Complex linear connections

Suppose X is a smooth manifold and 7: (E,i) — X is a complex vector bundle. Similarly to
Section A.1, there is an exact sequence

0—=mhE L TE -5 mPX — 0 (B.1)

of vector bundles over E. The homomorphism ¢g is now C-linear. If fe C>*(X;C)and my: E—E
is defined as in (A.1), there is a commutative diagram

dﬂ'E

0 THE e TE m5TX —0
\Lﬂ-Emf idmf lﬂ'*Eid (BQ)
m?LE m’;dﬂ'E
0 gy m;}TE T X ——0

of bundle maps over E.

Suppose
V:I'(X;FE) —T(X;T"X®rE)

is a C-linear connection, i.e.
Vo(i€) =i(V,€) VEETD(XGE), veTX.

If U is an open subset of X and &1,...,&,€'(U; E) is a C-frame for E on U, then there exist
k=n k=n
0f eD(X;T*X) st V= &G0 =) 6/0g Vi=1,...,n
k=1 k=1

We will call
0= ( lk)k I=1,..n € (3 T"X @rMat,,C)
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the complex connection 1-form of V with respect to the frame (). For an arbitrary section

l=n
¢=> fl&eT(U;B),

=1

by (A.8) and C-linearity of V we have
k=n l=n

ve=Ya(aff 3000, ie V(e ) =g {d+o}r, (B.3)
k=1 =1

where § and f are as (A.12).

Let g be a hermitian metric on F, i.e.

g€ F(X;HomC(E@)(cE, (C)) st. g(v,w) =g(w,v), gv,v)>0 Yov,wéeE,;, v#0, reX.
A C-linear connection V in F is g-compatible if
d(9(&,Q)) = 9(VE, Q) +9(€, V) e T(X; T"X@rC) V& (€ D(X;E).
With notation as in the previous paragraph, let
gij = 9(&,&5) € C(U; C) Vi j=1,...,n.

Then V is g-compatible on U if and only if
k=n B
> (gindk + b)) =dgi;  Vij=1,2,...,n (B.4)
k=1

B.2 Generalized 0-operators

If (X,j) is an almost complex manifold, let
T30 = {neT*L®@rCinoj=in} and T*2%' = {neT*SerC:noj=—in}

be the bundles of C-linear and C-antilinear 1-forms on . If (X,j) and (X, J) are smooth almost
complex manifolds and u: ¥ — X is a smooth function, define

_ - 1
Oue NS TS ®@cu*TX) by  Oju= 5 (du+Joduoj). (B.5)

A smooth map u: (%,j) — (X, J) will be called (J,j)-holomorphic if 9;;u=0.

Definition B.1. Suppose (3,j) is an almost complex manifold and 7: (E,i) — ¥ is a complex
vector bundle. A 0-operator on (E,1i) is a C-linear map

0:T(E) — T(X; T*2% @cE)

such that
I(fe) = (0f)®E+ f(08) ¥V feC®(R), €eT(%;E), (B.6)

where Of zém f is the usual J-operator on complex-valued functions.
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Similarly to Section A.1, a G-operator on (F, i) is a first-order differential operator. If U is an open
subset of X and &1,...,£,€(U; E) is a C-frame for E on U, then there exist

k=n k=n
0f eD(U;TU) st 0= GO =D /e Vi=1,...,n
k=1 k=1

We call

0= (60) 1. . € D(U;T*U @cMat,,C)

the connection 1-form of O with respect to the frame (£;);. For an arbitrary section

l=n
£=> flgel(U;E),
=1

by (B.6) we have
B k=n - l=n - -
e =3 (0 +301"), e A s =€ {o+0}s", (B.7)
k=1 =1
where £ and f are as in (A.12). It is immediate from (B.6) that the symbol of  is given by

05: TS — Home (B, TS @cE),  {osm)}(f) = (n+inoj) ® f.

In particular, d is an elliptic operator (i.e. 05(n) is an isomorphism for n#0) if (3,j) is a Riemann
surface.

Lemma B.2. Suppose (X,j) is an almost complex manifold and w: (E,i)— X is a complex vector
bundle. If B
0:T(%E) — T(X; T*2% @cE)

is a O-operator on (E, i), there exists a unique almost complex structure J=.Jg on (the total space
of) E such that 7 is a (j,J)-holomorphic map, the restriction of J to the vertical tangent bundle
TEY~7*E agrees with i, and

976 =0 T(U; T*2" @c&*TE) = K =0el(U;T*2% ®cE) (B.8)
for every open subset U of ¥ and {€T'(U; E).

Proof. (1) With notation as above, define
k=n
¢: UxC" — Ely by go(x,cl,...,c”):é(:r)-gtEchfk(x)GEz.
k=1

The map ¢ is a trivialization of E over U. If J=J5 is an almost complex structure on F, let J be
the almost complex structure on UxC" given by

~ 1 .
J(CL“,Q) = {d(x,g)(/)} o ']go(x,g) o d(zggo I ({L’,Q) e UxC". (Bg)
The almost complex structure J restricts to i on T'EV if and only if

J@ow =iw € T.C" C T, ,(UxC") vV we T,C". (B.10)
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If J restricts to i on TEY, the projection 7 is (j, J)-holomorphic on E|y if and only if there exists
J € T(UxC™; Homg (73 TU, 75 TC™))  sit.
JaoWw =jaw+ Jhgw YV we T,U C Ty (UxC"). (B.11)

If €eT(U; ), let
E=p ol = (idu, f), where  f € C®(U;C").
v (B.9)-(B.11),
28J1€| )(‘0 °© Qajjd ) wo {(IdeU7d f) + ‘Tg(x) © (IdeUadmi) O].Z’} (B 12)
:dg( )(pO(O 28f|x+<]~ )ij). .

On the other hand, by (B.7),
Ola =0 1), = &) - {9+0}1'],
= ‘P(éﬂx + 0 - f(x)t)
By (B.12) and (B.13), the property (B.8) is satisfied for all £€I'(U; E) if and only if

(B.13)

J(x c) - (9 ) © (_]x) = 21936 'Qt N (x,g) c UxC™

In summary, the almost complex structure J=.J5 on E has the three desired properties if and only
if for every trivialization of E over an open subset U of X

j(x,g) (w1, w2) = (Jpwi, iwg + 20, (wy) - ') (B.14)
V (z,c) € UxC", (w1, wz) € T,UST,C" = T, ,(UxC"),

where J is the almost complex structure on UxC" induced by J via the trivialization and 6 is the
connection 1-form corresponding to 0 with respect to the frame inducing the trivialization.

(2) By (B.14), there exists at most one almost complex structure J satisfying the three properties.
Conversely, (B.14) determines such an almost complex structure on E. Since

Ty (w1,w02) = Jig gy (w1, iwn + 26 (w1) - ') = (P, i(iws + 2i6s(w1) - ') + 2, (wn) - )
—(w1,w2),

J is indeed an almost complex structure on E. The almost complex structure induced by Jon E lu
satisfies the three properties by part (a). By the uniqueness property, the almost complex structures
on F induced by the different trivializations agree on the overlaps. Therefore, they define an almost
complex structure J=Jg on the total space of 2 with the desired properties. ]

B.3 Connections and J-operators
Suppose (3,j) is an almost complex manifold, 7: (E,i) — X is a complex vector bundle, and
0:T(%E) — T(X; T*2% @cE)

is a d-operator on (E,i). A C-linear connection V in (E,1) is -compatible if

0¢ = Ové = %(vg +iVE 0j) Ve (X X). (B.15)
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Lemma B.3. Suppose (3,j) is an almost complex manifold, m: (E,i) — X is a complex vector
bundle, B
:T(%; E) — T'(; T2 @c F)

is a 0-operator on (E,i), and J is the complex structure in the vector bundle TE — E provided
by Lemma B.2. A C-linear connection V in (E, 1) is 0-compatible if and only if the splitting (A.14)
determined by V respects the complex structures.

Proof. Since J3 =i on 7*E C TE, the splitting (A.14) determined by V respects the complex
structures if and only if

Jlv 0 {d¢ = Ve = {d¢ = V¢ 0o TX — TLE

for all ze¥, ve E,, and £ €T'(X; E) such that £(x)=0; see the proof of Lemma A.1. This identity
is equivalent to

D56 =0vE  VEET(LE). (B.16)
On the other hand, by the proof of Lemma B.2,
81,06 =0¢ VEeT(SE); (B.17)

see (B.12)-(B.14). The lemma follows immediately from (B.16) and (B.17). O

B.4 Holomorphic vector bundles

Let (3,)) be a complex manifold. A holomorphic vector bundle (E,i) on (3,j) is a complex vector
bundle with a collection of trivializations that overlap holomorphically.

A collection of holomorphically overlapping trivializations of (£, ) determines a holomorphic struc-
ture J on the total space of E and a 0-operator

0:T(S;E) — I'(Z; T2 @c F).

The latter is defined as follows. If &1,...,&, is a holomorphic complex frame for £ over an open
subset U of X, then

5%1"’“5,9 = %5#“@@ V£ R e o (U ).
k=1 k=1
In particular, for all £€T'(X; E)
d5;6=0 = o9& = 0.
Thus, J=Jg; see Lemma B.2.

Lemma B.4. Suppose (¥,j) is a Riemann surface and 7: (E,i) — X is a complex vector bundle.

If
0:T(%E) — T(X; T*2% @cE)

is a O-operator on (E,1), the almost complex structure J=J5 on E is integrable. With this complex
structure, w: E—3 is a holomorphic vector bundle and O is the corresponding 0-operator.
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Proof. By (B.8), it is sufficient to show that there exists a (.J,j)-holomorphic local section through
every point v € F, i.e. there exist a neighborhood U of z=7(v) in ¥ and £ €T'(U; E) such that

&)= and A€ = 0.
By Lemma B.2 and (B.13), this is equivalent to showing that the equation
{6 + e}ft =0, fl@)=v, feC®U;CY), (B.18)
has a solution for every v€C". We can assume that U is a small disk contained in S?. Let
n: 8% —[0,1]
be a smooth function supported in U and such that =1 on a neighborhood of . Then,
nf € (8% (T*5%)%! @cMat,,C).
Choose p>2. The operator
O : LY(S%CM) —» LP(8% (TS M 0cC) o C",  O(f) = (/. f(2)),
is surjective. If n has sufficiently small support, so is the operator
O, : LY(S%C") — LP(S%(T*S*) M @cCh) @ C",  0,(f) = ({0i+n0}f, f()).

Then, the restriction of @;1(0,1)) to a neighborhood of z on which n=1 is a solution of (B.18).
By elliptic regularity, @;1 (0,v) €C>®(S?%,C"). O

B.5 Deformations of almost complex submanifolds

If (X, J) is a complex manifold, holomorphic coordinate charts on (X, J) determine a holomorphic
structure in the vector bundle (T'X,i) — X. If (3,j) C (X, J) is a complex submanifold, holo-
morphic coordinate charts on > can be extended to holomorphic coordinate charts on X. Thus,
the holomorphic structure in 7% — ¥ induced from (X,j) is the restriction of the holomorphic
structure in TX|y. It follows that

Ox = 05: I(5;TY) — IS TS @cTY) C T(S; T2 @c TX|s),

where Ox and Oy, are the J-operators in TX |s and T'Y induced from the holomorphic structures
in ¥ and X. Therefore, 0x descends to a J-operator on the quotient

O: T(SNxY) = D(%TX]s) /T(S;,TE) — T(Z; TS @c Ny Y),

where
NxE=TX|y/TE — %

is the normal bundle of X in X. This vector bundle inherits a holomorphic structure from that
of TX|y and X. The above d-operator on Nx3 is the d-operator corresponding to this induced
holomorphic structure on NxX.
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Suppose (X, J) is an almost complex manifold and (3,)) C (X, J) is an almost complex submanifold.
Let V be a torsion-free connection in T X. Define

Dys:T(%;TX|y) — D(Z; T2 @cTX|s) by

1 1
Dyxé = §(V§+JOV§oj) —5JoVe i T — TX]|s. (B.19)

If V is the Levi-Civita connection (the connection of Lemma A.2) for a J-compatible metric on X
(and ¥ is a Riemann surface), then Dy is the linearization of the 0j-operator at the inclusion
map ¢: X — X; see [29, Proposition 3.1.1].

In fact, D.x. is independent of the choice of a torsion-free connection in 7'X. Let
V=V+0, 0eT(X;T*XepHomg(TX,TX)), (B.20)
be another torsion-free connection; see (A.9). Since V and V are torsion-free connections,
(X))} Yy ={6()}X VX,YeT,X, z€X. (B.21)
IfzeX and X, Y el'(X;TX),
(VyJ}X = Vy(JX) = JVy X, {VyJ}X =Vy(JX)-JVyX =
{ﬁyJ}X AV} X ={0V)}(JX) - J{6(YV)} X = {6(JX)}Y — J{6(X)}Y (B.22)
by (B.20) and (B.21). On the other hand, by (B.20) for all X €T% and {€I'(E; T X |yx),
{VE+ToVEOHX) — {VE+ ToVEOTHX) = {0(X)}¢ + J{0(GX) }¢
=J{0(JX)}¢— J{0(X)}¢),

since j=J|rx and J2=—Id. By (B.22) and (B.23), D, is independent of the choice of torsion-free
connection V.

(B.23)

Since any torsion-free connection on ¥ extends to a torsion-free connection on X, the above obser-
vation implies that

Dys:T(5;TY) — (%, T2 @cTY) € T(X; TS @c TX|x). (B.24)

Thus, an almost complex submanifold (3,j) of an almost complex manifold (X, J) induces a well-
defined generalized Cauchy-Riemann operator! on the normal bundle of ¥ in X,

DYy : T(SNXE) — DS T2 @cNyD),  DYg(n(€) = n(Dx(€)) VEET(ZTX]y),

where 7: TX |y, — Nx X is the quotient projection map. The C-linear part of Dﬁ{z determines a
d-operator on the normal bundle of ¥ in X:

Fly: T(ZNxD) — D% T 2" 0Ny D),
5 (©) = 5 (DY5(€) — TDY5(J0) VEET(TNKS).

)

Lsee Section D.3
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Both operators are determined by the almost complex submanifold (X,j) of the almost complex
manifold (X, J) only and are independent of the choice of torsion-free connection V in (B.19).

Any connection V in TX induces a J-linear connection in T X by
VIE =V — = (v NE YoeTX, Eel(X;TX). (B.25)

If V is as in (B.19),

(D€} (0) = {Bgs€}(0) + As(0,6) — H{(Voed) + J(Ve)}0) (5.26)

forall £€I'(3; T X |x) and veTYE, where A is the Nijenhuis tensor of J; see (2.3). Since the sum of
the terms in the curly brackets in (B.26) is C-linear in £, while the Nijenhuis tensor is C-antilinear,
the C-linear operator

N(ZTX|g) — DS T @c TX|y), & — Ogs(§) — i{(ngJ) + J(Ved)}, (B.27)

takes I'(3;T%) to I'(Z; T*X% ' ®@cTY) by (B.24). Thus, it induces a d-operator on Nx¥ and this
induced operator is 8N If the image of the homomorphism

TX —TY" @cTX|y, &— Ve —JIVyed,

is contained in T*X%!®@cTY, then Oy, preserves TY. and induces a d-operator 5@ ; on Nx¥ with
GQ/J :&%Z. In this case,

DY (m(€)) = m(Bgsé + As(-€): TE — NxE  VEeD(S;TX]y).
This is the case in particular if J is compatible with a symplectic form w on X and V is the
Levi-Civita connection for the metric g(-,-) =w(-, J-), as the sum in the curly brackets in (B.26)
then vanishes by [29, (C.7.5)].
It is immediate that A takes TX®rT> to TX and thus induces a bundle homomorphism
AN TS 9p Nx% — NxX.

If ¢ is any vector field on X such that ((z)=X €T,¥ for some x €3, then

(16 €]+ T1I¢.€])] 0

{Dss¢}(X) =
) (B.28)

{80:(€) — 1((Vaed) + I(Vel) }(X) =

B> =N =

since V is torsion-free.? These two identities immediately imply that the operators (B.19) and (B.27)
preserve TS C T X |y and thus induce operators

D NXY) — TS, T2 @c Ny X)

2Since LHS and RHS of these identities depend only ¢ and X =(¢(z), and not on ¢, it is sufficient to verify them
under the assumption that V|, =0.
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as claimed above.

If g is a J-compatible metric on TX |y and 7t : T X|x — TS is the projection to the g-orthogonal
complement of T in TX |5, the composition V+

D(STSL) o (S TX]g) Lo I(S T*S0eTX]s) T (S TS0 T8Y),

with V7 as in (B.25), is a g-compatible J-linear connection in T%+. Via the isomorphism
7w TS+ — NxX, it induces a J-linear connection vV in NV x 2 which is compatible with the
metric ¢V induced via this isomorphism from g|;s.. If the image of the homomorphism

Tt — 175% @c TX |y, £ — Ved — IV jed | (B.29)
is contained in T*X% @¢ TS, then dgn :39{2 and so
D5 (n(€) = m(dgr€+ As(-€): TE — NyZ YV EeD(S;T8h).

This is the case if ¥ is a divisor in X, i.e. rkeN = 1, since (V¢ J)¢ is g-orthogonal to & and J¢ for
all £,(eT, X and z€ X by [29, (C.7.1)]. This is also the case if J is compatible with a symplectic
form w on X and g(-,-)=w(-, J-), as the homomorphism (B.29) is then trivial by [29, (C.7.5)].

C Riemannian geometry estimates

This section is based on [7, Chapter 1] and [10, Section 3] and culminates in a Poincare lemma
for closed curves in Proposition C.6 and an expansion for the 0-operator in Proposition C.13. If
u: X — X is a smooth map between smooth manifolds and £ — X is a smooth vector bundle,
let

M(u; E) =T(Z;w*E), TIYwE)=TE;T*'S0pu*E).

We denote the subspace of compactly supported sections in I'(u; E) by T'.(u; E).

An exponential-like map on a smooth manifold X is a smooth map exp : TX — X such that
exp |x =idx and

dyexp = (idp, x idp,x): To(TX) =T, X & T, X — T,X  VzeX,

where the second equality is the canonical splitting of T, (7X) into the horizontal and vertical
tangent space along the zero section. Any connection V in T'X gives rise to a smooth map exp" :
W — X from some neighborhood W of the zero section X in TX; see [7, Section 1.3]. If
n: TX — R is a smooth function which equals 1 on a neighborhood of X in TX and 0 outside
of W, then

exp: TX — X, v —> exp (n(v)v),

is an exponential-like map. If X is compact, then W can be taken to be all of TX and exp=exp".

If (X, g,exp) is a Riemannian manifold with an exponential-like map and x € X, let rexp(z) € RT
be the supremum of the numbers r € R such that the restriction

exp: {veT,X: jv|<r} — X
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is a diffeomorphism onto an open subset of X. Set
dp(z) = inf {dg(a:,exp(v)): veT, X, |v| :rexp(x)} eRT,
where dg is the metric on X induced by g. If K C X, let
() = inf 18, (2);
this number is positive if K C X is compact.
C.1 Parallel transport

Let (E,(,),V)— X be a vector bundle, real or complex, with an inner-product (,) and a metric-
compatible connection V. If a: (a,b) — X is a piecewise smooth curve, denote by

Ha: Ea(a) — Ea(b)

the parallel-transport map along « with respect to the connection V. If exp: TX — X is an
exponential-like map, x€ X, and veT, X, let

I, By — Bepo)
be the parallel transport along the curve

Yo: [0,1] — X, Y (t) = exp(tv).
If u: [a,b] x [c,d] — X is a smooth map, let

Iy, : Eu(a,c) — Eu(a,c)

be the parallel transport along u restricted to the boundary of the rectangle traversed in the positive
direction. If u: ¥ — X is any smooth map, V induces a connection

V% T(u; E) — Tl (u; E)
in the vector bundle u*E — X. If « is a smooth curve as above and ( €T'(«; F), let
D
where 0; is the standard unit vector field on R.

Lemma C.1. If (X, g) is a Riemannian manifold and (E,(,),V) is a normed vector bundle with
connection over X, for every compact subset K C X there exists C € RT such that for every
smooth map u: [a,b] x[c,d] — X with InuC K

d rb
g, — 1| < CK/ / |us||u|dsdt,
cJa

where the norm of (g, —1I) €End(Ey(,)) is computed with respect to the inner-product in Eyq -
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Figure 13: Extending a basis {v;} for £, ) to a frame {(;} over [a,b] x[c, d]

Proof. (1) Choose an orthonormal frame {v;} for E, . Extend each v; to

i € F(u|a><[c,cl]§ E)
by parallel-transporting along the curve t — u(a, t) and then to (; €I'(u; E') by parallel-transporting
&i(a,t) along the curve s — u(s,t); see Figure 13. By construction,

D
Lo =0el(wE)

Let A be the matrix-valued function on [a, b] X [¢, d] such that

=k

= Aa(s,t)G(s,1), (C.1)

D

&Ci

(s:t)

where k is the rank of E. Note that A;j(a,t) =0 and

DD — /(0 9,
<RV(US,Ut)Cia CJ> = <dsdtC dt ds(z, <j> Z < (8 zl> Cls Cj> Z] ) (C.2)

=1

where Ry is the curvature tensor of the connection of V. Since K is compact and the image of u
is contained in K, it follows that

b
’Aij<b7 t)| < CK/ ‘uS‘(s,t)‘ut’(s,t)dS- (03)

(2) The parallel transport of (; along the curves
T —u(t,¢), T—u(r,d), T— ula,T)

is ¢; itself. Thus, it remains to estimate the parallel transport of each (; along the curve 7 —u(b, 7).
Let h;j be the SOg-valued function (Ug-valued function if E is complex) on [c,d] such that

j=k

- D .
h(C) = H? a zyC] ’ bt) =0 V’L,t.
7=1
The second equation is equivalent to
j=k 1=k
Zh 0G0, + DD hiOAu(b, )G, =0 < K =—hA(D,"). (C.4)
j=11=1
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Since (the real part of) the trace of (A;;) is zero by (C.2), equation (C.4) has a unique solution in
SOy, (or Ug) such that h(c)=I. Furthermore, by (C.3)

d d d rb
|h(d) -1 g/]h'(t)|dt§/|hHA|dt§k2// Ck |us||ue|dsdt. (C.5)

Since Haavizzgi]f hij(d)vj by the above, the claim follows from equation (C.5). O

Corollary C.2. If (X,g) is a Riemannian manifold and (E,{(,),V) is a normed vector bundle
with connection over X, for every compact subset K C X there exists Cix €RT such that for every
smooth closed curve a: [a,b]— X with ImaC K

[T — 1] < i min (||dal]s, (b—a)l|dal3).

Proof. Let exp: TX — X be an exponential-like map. Since the group SOy, (or Uy if E is complex)
is compact and
lda]|? < (b—a)||dall3

by Holder’s inequality, it is enough to assume that
[dally < min(rg, (K)/2,1).
Thus, there exists

a e C%([a, b];Ta(a)X) s.t. a(t) = exp(a(t)), |a(t)|a@) < rexp(a(a)).

Define
u: [0,1]x[a,b] — K ¢ X by u(s,t) = exp (sa(t)).
Using
@0 < Crdy(aa),a(®)) < Ciclldall
&' (6)] = [{daq exp} (/' (1)] < Crkldeal,
we find that
us(s, t) = {dsaq) exp }(a(t)) = Juslsy < Cklldalli; (C.6)
u(s,t) = s{dsaexp }(@'(t) = |uy < Okldial. (C.7)

Thus, by Lemma C.1,
1 rb
My 1) = [Ty — 1| < C’K/ / s |ualdsdt < Cle[[dal2 < Ch (b—a)||dal.
0 Ja

Since ||da||1 <rép(K), it follows that [T, —I| < Ck||da);. O

Corollary C.3. If (X, g,exp) is a Riemannian manifold with an exponential-like map and (E, (,), V)
is a normed vector bundle with connection over X, for every compact subset K C X there exists
Cr € C®(R;R) such that for all x€ K and smooth maps a: (—e,€) —T, X and :(—€,€) — E,

D / ~ ~ ~/

= (Tae®)|_, ~ M€ 0)] < Cie(1@O)]) 30)][a (0)][(0)]. (C8)
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Proof. Define
u: [0,1]x[0,¢/2] — K C X by u(s,t) =exp (sa(t)).

Let {v;} be an orthonormal basis for F,. Extend each v; to
Gi € D(uljo,1)xt; E)

by parallel-transporting along the curves s —u(s,t). If

i=k
&)=Y fultyvi,
i=1
where k is the rank of F, then
i=k
W& = Y filhGLY =
, -
dt( t)f( ))‘t OZZfz( gzlo +Zfz <zlt)‘
i=1
=TIz +Zfz Qlt)t .

On the other hand, by (C.1), (C.3), and the first identities in (C.6) and (C.7),

1
Do Z\Am 1,0)| < kCic(a(0)]) /0 sl ] 5.0l

SCK(!a )I)1a(0)[a’ (0)].
The claim follows from (C.9) and (C.10).

Remark C.4. Note that (C.3) is applied above with K replaced by the compact set

exp ({veT, X: zeK, |v|<|a(0)[}).

(C.9)

(C.10)

Thus, the constants C'.(|a@(0)|) and Ck(|a(0)|) may depend on |&(0)|. If X is compact, then the
first constant does not depend on |a(0)|, since (C.3) can then be applied with K'=X. The second
constant is then also independent of K and |a(0)] if exp=exp" for some connection V in TX. So,

in this case, the function Ck in (C.8) can be taken to be a constant independent of K.

C.2 Poincare lemmas

Lemma C.5 (Poincare Inequality). If ¢: S'—RF is a smooth function such that fO%C(

then
27 2m
/I<(9)|2d9§/ I (6)[2d6.
0 0

n<oo

inf
= Z Cnem ;

n>—oo

Proof. Write
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see [42, Section 6.16]. Since ( integrates to 0, (o=0. Thus,

27 n<oo n<oo o
JAEGRTEES SUEEETS SA Ay MORT
0 n>—oo n>—oo 0
as claimed. 0

Proposition C.6. If (X, g) is a Riemannian manifold and (E,(,),V) is a normed vector bundle
with connection over X, for every compact subset K C X there exists C € R with the following
property. If a€ C™(SY; X) is such that Ina C K and £, €T (o E), then

[(Vo&, ON| < IVe€ll2lVoCl2 + Crx min ([ldally, [[da]3) [€]|2.ll< ]2,

where Vo= 5, U the covariant derivative with respect to the oriented unit field on S and all the
norms are computed with respect to the standard metric on S*.

Proof. Identify E,) with R* (or CF), preserving the metric. Denote by s0(Eq)) =~ soy (or
u(Eq(0)) = ug) the Lie algebra of the Lie group SO(Eqyg)) = SO (or of U(E,())~ Ug). For each
X €50(Eq()) (or x €u(Ey0))), let eX€SO(Eg)) (or eX€U(Ey())) be the exponential of x. Let

Hg: Ea(O) — Ea(g)

be the parallel transport along the curve ¢t — «(t) with ¢ € [0,60]. By Corollary C.2, there exists
X €50(Eq(0)) (or x €u(Ey(g))) such that

Iy, = eX and x| < Ck min (||de|1, Hda”%) . (C.11)
By the first statement in (C.11),

Ui S'% By — o« E,  (0,v) — e /P Iy (v),
is a smooth isometry. Let ®o=mooW¥~!: o*E — Eq(0) and

1

21
(= o J, {@20}(0)d0 € Ey)-

By Holder’s inequality and Lemma C.5,

[(Vo&, ¢ =W | < [IVol]l2ll¢—PC]l2

z C.12
V€2 2C—Clls < Vo€ 2D (C-12)

By the product rule,

ld(@20)ll2 < [|A@ O, + /27T ¢[|, = V¢l + [x/27llI<]2

. ) (C.13)
< [[Ve¢|l2 + O min (||dal|, [|dal3) [[¢]l2-

On the other hand, by integration by parts, we obtain
(Vo&, C—2Q) = (Vo&, O) + (& Vo(TQ)). (C.14)

Since W( is the parallel transport of e?X/27(,
(&, Vo(TON| < lI€ll2lVo (PO l2 = l1&ll2lx /27| T<]],
< Cx min (||dalls, [lda3) [€]12]¢]l2-
The claim follows from equations (C.12)-(C.15). O

(C.15)
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Let Br,, CRR? denote the open annulus with radii r < R centered at the origin.

Corollary C.7 (of Lemma C.5). There exists C € C*®°(R;R) such that for all RER™

re(0,R], (€C®(Bg,;RF), =0 = Il < C(R/r)R?||dC]2-

Proof. 1t is sufficient to assume that k=1. Define

R
eST SR by £(0)= / C(p.0)pdp.

By Holder’s inequality and Lemma C.5,

(o

R 2 27 2
/ 402 9)pdp‘d9> < 277/ €(0)7do < 2%/ |€'(0)] "
r 0 0
2 R 2
< 2r /0 < / yd(pﬁ)g\/ﬂdp) do (C.16)

R4

2t rR 4

2 TR

<5 / |dp)¢|"pdpdd = =I5
0 r

If the function p—((p, 0) does not change sign on (r, R), then

R R
/ \C(pﬂ)\pdp:‘/ C(pﬂ)pdp‘.

On the other hand, if this function vanishes somewhere on (r, R), then

R R n? (R
‘C(Pﬁ)\ﬁ/ [dee¢ldt Vp = /|C(P79)‘Pdﬂﬁ2/ |d@.)¢|dt

Combining these two cases and using (C.16) and Hoélder’s inequality, we obtain

27 rR 2w R R2 27 rR
L[ o 0lapan< [ <<p,e>pdp\d0+2 L[ gnclans

ﬁR2 R2 < 27 rR . )1/2

. R dpdo C.17

< YT bacl+ acla( [ ot o
= /3 (1 VR Rl

as claimed. )

Remark C.8. By Corollary D.7 below, C can in fact be chosen to be a constant function. Corol-
lary C.7 suffices for gluing J-holomorphic maps in symplectic topology, but Corollary D.7 leads to
a sharper version of Proposition D.14; see Remark D.13.
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C.3 Exponential-like maps and differentiation

Let (X, g,exp, V) be a smooth Riemannian manifold with an exponential-like map exp and con-
nection V in T X, which is g-compatible, but not necessarily torsion-free. Let

Ty (£(2).((2)) = (Ve = VeE ~ [6.C))|,  VoeX, §Cel(X;TX),
be the torsion tensor of V. If a:(—¢,€) — X is a smooth curve and £ €I'(a; TX), put

D

7&5

S:o> =Tl (f exp (£(5)) LZO) = Tl 0, ({de(o) exp}(€(0))),

where £'(0) € T¢(o)(T'X) is the tangent vector to the curve §: (—¢,e) —TX at s=0.

Pa(o) (@ (0):€(0)

Lemma C.9. If (X, g,exp, V) is a smooth Riemannian manifold with an exponential-like map and
a g-compatible connection, there exists C € C®°(TX;R) such that

P, (v; wo, wi) — (U+w1—Tv(an0))) < C(wo) (Jv]|wol*+ |wol [wr)

for allxe X and v,wo, w1 €T, X.

Proof. Let a: (—¢,€) — X be a smooth curve and £ €I'(a; TX) such that

a(0) ==z, o(0)=v, &0)=uwo,

Put
d
Fo o,y (1) = ds exXp (tf(s)) ’s:O = {dtw, exp} (dwomt(f,(o)))7
Hy o, (1) = Iy, (U+tw1 —tTy (v, wo)) ,

where m;: T X — T X is the scalar multiplication by ¢. Then,

d
Fo o1 (0) &O‘(S) s=0 =v = Hyuwyu, (0),
D D d D
o )| _ = g e (6)| |~ To(vw0) = wr = To(v,w0) = ZHuwpun )] _:

see Corollary C.3. Since
Fapo,-(t) = H. oy, (t) € Hom(T, X © T X, Toxp (twy) X ),
combining the last two equations, we obtain
| Fy o1 () — Hop g ()] < Cwo, )8 (o] +wi]) ¥ v, wo, w1 €T X, z€X, teR,
where C' is a smooth function on T X xR. Since
Fywoun () — Huwo,wr (1) = Fotwg twr (1) — Ho, gty (1),
we conclude that there exists C'€ C*°(TX) such that
|ijw07w1(1) — Hv,wmwl(l)‘ < C’(wo)(|w0]2|v\—|—\wg||w1|) Vv, wg, w1 €T, X, xeX, (C.18)

as claimed. n
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For any v, wg, w1 €T, X, let &Dx(v;wo,wl) = O, (v; wp, wy) — (v+w1—Tv(v,wo)).

Corollary C.10. If (X, g,exp, V) is a smooth Riemannian manifold with an exponential-like map
and a g-compatible connection, there exists C € C*°(TX xxTX;R) such that

5x(v;wo,w1)—5x(v;w6,wi)‘
< C(u, wh) (ol + [} o]+ wn |+ | ) [wo — | + (Jol +]ewf) oy~ |)
for all ze X and v, wo, wy, wj, wy €T X.

Proof. By the proof of Lemma C.9,
EIVJ(v;wO, wy) = %1(w0; v) + &)g(wo; w1)
for some smooth bundle sections @1, Py: TX —> w7y Hom(T X, TX) such that
B+ (wo; )| < Cr(wo)|wol®, | @a(wo;-)| < Colwo)wg| Y woeTX.
Thus,

|1 (wo; ) — B (whs )| < Cf (wo, wh) (fwol +[wp|) [wo—wp|

- =~ , , , Y wo, w{) el X.
| @2 (wo; ) — P2 (wp; )| < C3(wo, wp) [wo—wp]
From the linearity of ®1(wp;-) and ®5(wp;-) in the second input, we conclude that
|1 (wo; v) — 1 (wh v)| < C(wo, wh) (Jwol+wp|) [wo —wp o],
s (w03 wn) — B w)| < Chlwo, wh)lwo —whfwr] + Co(wp) |y —w |
This establishes the claim. O
C.4 Expansion of the J-operator
Let (X,J) and (X,j) be almost-complex manifolds. If u: ¥ — X is a smooth map, let
D(u) =T(%u'TX),  TYi(w) =TT 8" @cu'TX),
_ 1 .
Ojju = i(du +Joduoj) € Fgll(u),
as in (B.5). If V is a connection in T'X, define
1 1 .
If in addition exp: T X — X is an exponential-like map and VJ =0, define

exp ) by
{exp, ()} (2) = exp(§(2) VzeX, {0ue},(v) =Tig) ({0si(exp, ()}, (v) VzeXR, veTLY,
0u& = Osu+ DY, & + Ny ().

exp,: D(u) — C®(2;X), 9y, Nov: T'(u) — Fg:]l(u
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Lemma C.11. If (X, J, g,exp, V) is an almost-complex Riemannian manifold with an exponential-
like map and a g-compatible connection in (TX,J), there exists C € C°(TX x xTX;R) with the
following property. If (3,)) is an almost complex manifold, u: ¥ — X is a smooth map, and
£, & el (u), then

{NTH©}.(0) = (NS}, (0)] < C(62), € (2)) (€GN +E @I (IVale = )] + [T(e— €))
+{WbMWMH®umMXK@H+KT@D+UV&WHVWQ+WV£WHVWQDK&%£T@D

for all z€ ¥, veT,X. Furthermore, Ny (0)=0.

exp

Proof. Since the connection V commutes with J, so does the parallel transport II. Thus, with
notation as in Section C.3,

1/~ ~
(NGO}, 0) = 5 (P(dauv):€(2), Vi) + I (u(2)) B(douliv);£(2), Viut) ).
The claim now follows from Corollary C.10. O

Definition C.12. Let X be a smooth manifold and (F,(,),V) a normed vector bundle with
connection over X. If Cp e R", (¥,j) is an almost complex manifold, and u: ¥ — X is a smooth
map, norms || - |l,1 and || - ||, on T'(u; E) and I''(u; E), respectively, are Cp-admissible if for all
€€l (u; E), n€T(u; E), and every continuous function f: ¥ —R,

1fnllp < W fllcollnllp, — lneilly = lnllp,  1V*Ellp < I€llpas  [1€llco < Colléllp,1-

Proposition C.13. If (X, J,g,exp,V) is an almost-complexr Riemannian manifold with an
exponential-like map and a g-compatible connection in (T'X,J), for every compact subset K C X
there exists Cx € C°(R;R) with the following property. If (X,j) is an almost complex manifold,

u: ¥ — K is a smooth map, and || - |[p1 and || - ||, are Co-admissible norms on I'(w; TX) and
I'Y(u; TX), respectively, then
[N (6) = NI, < O (Cortlidully+ el +1€ 1) (Il -+ 11 1) IE—€ N

for all £,& €T (u). Furthermore, Ny (0)=0. If the g-ball Bys(u(z)) of radius & around f(z) for

exp

some z €Y is isomorphic to an open subset of C" and |{(z)| <9, then { eXpﬁ}Z—O

Proof. The first two statements follow from Lemma C.11 and Definition C.12. The last claim is

clear from the definition of Nezp O
Remark C.14. As the notation suggests, one possibility for the norms || - ||,1 and | - ||, is the

usual Sobolev L] and LP-norms with respect to some Riemannian metric on X, where p>dimg X.
Another natural possibility in the dimg ¥ =2 case is the modified Sobolev norms introduced in [26,
Section 3]; these are particularly suited for gluing pseudo-holomorphic curves. By Proposition D.10
below, in the dimg ¥ =2 case the constant Cy itself is a function of ||dul|, only for either of these
two choices of norms.

Remark C.15. By Proposition C.13, the operator Dy’j;u defined above is a linearization of the
0-operator on the space of smooth maps to X at u. If V' is any connection in TX, the connection

1
V:D(X;TX) — D(X;T* X QpTX), V&= i(vgg - Jv;(J§)> VoeTX, £el(X;TX),
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is J-compatible. If in addition V' and J are compatible with a Riemannian metric g on X, then
so is V. If V' is also the Levi-Civita connection of the metric g (i.e. Ty =0),

1
Tv(v,w):i(J(V;UJ)v—J(V;J)w) Vo,weT, X, zeX.
If the 2-form w(-,-)=g(J-,) is closed as well, then
hod = —=JVLJ  YveTX

by [29, (C.7.5)] and thus
1

4(J(V;J)w = J(Vi, v — (Vi D)w+ (Vi J)v) = —Aj(v,w) Vo,weTl, X, z€X,

Ty (v,w) = —
where A is the Nijenhuis tensor of J as in (2.3). The operator Dzj;u then becomes
DY:T(w) — T (u),  DY,& = dvuf + As(05u,6), (C.19)
where
B = 5 (V€ + V1E) € T (u),
dyju = %(du —Joduoj) € IS T*E 0 @cu*TX).

This agrees with [29, (3.1.5)], since the Nijenhuis tensor of J is defined to be —4A; in [29, p18§].

D Sobolev and elliptic inequalities

This appendix refines, in the n=2 case, the proofs of Sobolev Embedding Theorems given in [32]
to obtain a C%-estimate in Proposition D.10 and elliptic estimates for the d-operator in Proposi-
tions D.14 and D.16. If R,r€R, let

BR:{JUGR2: |l’|<R}, BR,r:BR_Brv ERJ‘:BR_BT‘

D.1 Euclidean case

If ¢ is an R¥-valued function defined on a subset B of R?, let suppg2 (&) be the closure of supp(¢) C B
in R2. If U is an open subset of R?, £ € C=(U;R*), and p>1, let

1/p
||5|rpz( / rap) €l = Nl + el

be the usual Sobolev norms of &.

Lemma D.1. For every bounded convex domain DCR?, £ € C™(D;R"), and z€D,

9 2
e — €(a)| < 7 /D dy€lly—|Ady,

where 2rq is the diameter of D, |D| is the area of D, and

& =1 [ cway)

1s the average value of & on D.
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Proof. For any yeD,

1

1
€)= 6(0) = [ Gt = [ o nely—a)ir

Putting g(z)=|d;¢| if z€ D and g(z) =0 otherwise, we obtain

1 1 o0
e )| < o7 / €@y < / B / g(z+t(y—)) [y—z|dedy.

Rewriting the last integral in polar coordinates (r, ) centered at x, we obtain

1 21 2rg oo
ép — €(2)] < = / / / g(tr, 0)r’dtdrdd
|D| 0 Jo 0
1 21 2rg poo 27% 21 oo
= — t,0)rdtdrdd = / / t,0)dtdo
o), ), ), a0 oy Jy 77

_ 21"(2) 1
= [ 1al—altay

This establishes the claim. O

Corollary D.2. For every p>2, there exists C, >0 such that

p—2
rel0,R/2], £€C™®(BrsRY) = |¢(z)—£&y)| < CR 7 [|dEll, Va,yeBr, .
Proof. For any x € Br,, put
D, = {y€Bp,: (z,|z|ly—rz)>0}.

If x #0, D, is the part of the annulus on the same side of the line (x,y—rz/|z|) =0 as x; see
Figure 14. In particular,

diam(D,) < 2R,  [Dy| > (g—{f)}z?

Thus, by Lemma D.1 and Hélder’s inequality,

€(x) — ép,| < 12 / ldyelly-=|dy
e - (D.1)

_p \ p p—2
<12 / 2 71) " Jldgll, < GRS 1€y,
yEBar(x)

since I%<2. Let

Since each of the convex regions D,, intersects D,, and D,_ and D, intersects at least one (in
fact precisely two if 7#0) of these four convex regions for every = € Bg,,

() — £(y)| < 8C,R'F ||dE]l, V,y€Ba,

by (D.1) and triangle inequality. O
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(z,y—raz/lx])=0

Figure 14: A convex region D, of the annulus Dg, containing x

Corollary D.3 (Sobolev Embedding Theorem). For every p > 2, there exists Cp, € C°(RT;R)
such that
re[0,R/2], £€C¥(BriRY) = [€lloo < Co(R)IIE]p-

Proof. By Corollary D.2 and Holder’s inequality, for every x € Br

1 p=2
g IEll + Cplt v lde]l,
|Br.r| (D.2)

_1 p—2 _2
< |Bral 7 llgllp + CoR 7 [|dEllp < (1+Cp) R ([I€llp + RdE]l).

p—2
+CpR P denp <

€(@)] < [€Ba,,

This implies the claim. O
By Example 3.15, the bound of Corollary D.3 does not hold for p=2.

Lemma D.4. For all R>0 and r€[0, R),
(€C™(BryiR¥), suppp2(()CBr, = [Cll2 < [[d¢]1.

Proof. Such a function ¢ can be viewed as a function on the complement of the ball B, in R2.
Since ¢ vanishes at infinity, for any (z,y) € Bg,,

JJE o Cs(s,y)ds, i 2 <0; S Gl t)dt,if y <O0;
Cla,y) = {—fzoo Cs(s,y)ds, if 2>0; Savy) = —fyoo Ce(z, t)dt, if y>0.

Taking the absolute value in these equations, we obtain

<o) < [ dupclds and [¢n)] < [ Jdolat (D.3)

— 00

where we formally set ( and d( to be zero on the smaller disk. Multiplying the two inequalities in
(D.3) and integrating with respect to x and y, we conclude

/_Z/_me’y)‘Zdwdy = (/_Z/_Z\d<z,y)ddwdy)2,

as claimed. n
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Corollary D.5. For all p,q>1 with 1—-2/p > —2/q, there exists Cp s €RT such that
~ _2.2
re(0,R), £€C™®(BryRY), suppee(€)CBrr = [€llg < CogR' ™7 4[]l

Proof. We can assume that k=1. For € >0, let (, = (§2+e)% — €, By Lemma D.4 and Holder’s
inequality,

l€llg < [[ce+e|[; < 201l +2e2 R = 2] 2 (62 4+) 4 ede ] + 2eBmR?
L (D.4)
< @€ +e) i 2de|f; + 227 R? < 2|l dg|2]| (€2 +€) T |° o + 237 R,
p—1
Note that
(2.2 _, a4-2p _a4-22 _4g
P q 4 p-—1 4 qg—-2 2
Thus, letting € go to zero in (D.4), we obtain
IEld < allaglZlENE™ = 11€llq < glldg]lp-
The case 1—% > —% follows by Holder’s inequality. O

Remark D.6. By Hoélder’s inequality, the constant C), , can be taken to be

1(1_2,2
Cpg = max(2, q)m* (1 p+q) .

Corollary D.7 (of Lemmas D.1, D.4). There exists C >0 such that for all RER™

rel0,R], ¢€C™®(Bgr;RY), =0 = I¢]lr < CR?||dC]Ja-
R,r

Proof. (1) If ¢ € C*°(Bg,; R¥) integrates to 0 over its domain, then so does the function
CEC™(BiymRY),  ((2) = ((Rz).
Furthermore, ||C||1=||¢||1/R? and ||d(||a=]|d(||2. Thus, it is sufficient to prove the claim for R=1.
(2) If r=0, for some open half-disk DC By
1
¢=0, [l = 3l¢lh- (D5)
D

By the first condition, Lemma D.1, and Hoélder’s inequality

4 _

I¢ln]]; < // |dylly—=|~ dyde < 16/ |dy¢ldy < 8v/2r[|dC]2 .

T JpJD D

Along with the second assumption in (D.5), this implies the claim for =0 with C'=16v/27.

(3) Let f: R— 0, 1] be a smooth function such that

1, ift<1/2;
t) = =
o) {0, if¢t>1.
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It remains to prove the claim for all >0 and R=1. By (C.17), we can assume that

= 48¢37r1||ﬁ'|co - 96\1/37 (D)
We first consider the case
¢lBar 2 5511 (D.7)
Using polar coordinates, define ZG C®(By; R¥) by
C(p.0) = B(p)S(p.0).
By Holder’s inequality and Lemma D.4,
1¢1Bor [l < VB7r[Cl2 < V3ar|dCIh < VBar ([l + 18| coll¢IB, o)
Along with the assumptions (D.6) and (D.7), this implies the bound with
=25 Vi <5
1= 243 Bllcor 48
Finally, suppose
€1,y < 551l D)

Split the annulus By, into 3 wedges of equal area; split each wedge into a large convex outer
portion and a small inner portion by drawing the line segment tangent to the circle of radius r and
with the end points on the sides of the wedges 2r from the center as in Figure 15. By (D.8),

8
A=l ]l = 551<lh (D.9)

for the outer piece D, of some wedge D. If

then by Lemma D.1, (D.6), and Holder’s inequality,

1
A<1—0A+ // |dyClly—z| "dydx
5(1- (

96/ 37r

3 9
<At o g Qm// 1dy¢ldy < 7A+ V2r|dC|s .

Along with the assumption (D.9), this implies the bound with C'=125v/27 /4. If

[ =
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Figure 15: A large convex region Dy of an annulus D
then by (D.8), (D.9), and (C.16),

1
a<letoll < letoll - | [ o]+ [7| [ ctr.0rma

0
1 3 1 0
< (a+34) - (34— 34) +[310cl = o+ [T Hacle.

Along with the assumption (D.9), this implies the bound with C' = 125v/27/4. Since [ can be
chosen so that ||3’||co <3 (actually arbitrarily close to 2), comparing with (C.17) for R/r=144+/3w
we conclude that the claim holds with C'=125/27/4 for all r. O

27

D.2 Bundle sections along smooth maps

Let (X,g) be a Riemannian manifold and (£, (,),V) a normed vector bundle with connection
over X. If ue C*®°(Bpr,; X), (€l (u; E), and p>1, let

1/p
||5sz( /| rap) el = Nl + 19 -

Lemma D.8. If (X,g) is a Riemannian manifold, (E,(,),V) is a normed vector bundle with
connection over X, and p,q>1 are such that 1-2/p > —2/q, for every compact subset K C X there
exists Cr.pq € RT with the following property. If RERT, re[0,R), ue COO(ER,T; X) is such that
ImuCK, and £€Tc(u; E), then

_2,2 ”
I€llq < CripaR ™7 (V€N + [E@dull,).

Proof. Let exp: TX — X be an exponential-like map and {U;: i € [N]} a finite open cover of K
such that the g-diameter of each set U; is at most r&,(K)/2. Let {W;: i €[N]} be an open cover
of K such that W; C U;. Choose smooth functions 7;: X — [0, 1] such that n;=1 on W; and 7;,=0
outside of U;. For each i€ [N], pick x; € W;. For each z€u™1(U;) C ERJ, define w;(z) € T, X and
fl(z) € sz by
€XPg, az(z) = U(Z)7 |az(z)‘ <Texp(xi); Hfll(z)gz('z) = f(z)

For any z€ Bg,, put &i(2) =mi(u(2))&(2). Since & € CgO(ER,T; E,.), by Corollary D.5 there exists
Ci:p,q>0 such that

, < Nillg < Cipg R # ¥ 3 |dE,. (D.10)

lehumrowpll, = 1€k wy
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Since d&; = (dn;o du)&; + (o u)d&; on u~'(U;) and vanishes outside of u=1(U;),

1481y < [|a&ilu-1wyll, + Cillés@dull,. (D.11)
On the other hand, by Corollary C.3, if u(z)€U;
V€. = Mg, oy0d.ts| < Cicldaullg(2)] (D.12)

Combining equations (D.10)-(D.12), we obtain

~ 1-242
H§|u—1(Wi)Hq < CipgR 770 (Hf“p,l + Hf@dqu).
The claim follows by summing the last inequality over all . O

Lemma D.9. If (X,g) is a Riemannian manifold, (E,(,),V) is a normed vector bundle with
connection over X, and p > 2, for every compact subset K C X there exists Cr., € C°(RT;R)
with the following property. If RERY, r€(0,R/2], u€ C®(Bg,; X) is such that Imu C K, and
¢el(u; E), then

[€llco < CK;p(R)(”fup,l + Hf®d“Hp)-

Proof. We continue with the setup in the proof of Lemma D.8. By Corollary D.3,

€l co < ll€illco < Cip(R)&llp1 < Cip(R) ([[€lu—r ||, + [1d&llp)-
As above, we obtain N
[d&ill, < Ci(IVEllp + €@ dull,),
and the claim follows. O

Proposition D.10. If (X, g) is a Riemannian manifold, (E,(,), V) is a normed vector bundle with
connection over X, and p>2, for every compact subset K C X there exists Ck,, € C°(RT xR; R)
with the following property. If RERY, r€(0,R/2], ue C®(Bg,; X) is such that Imu C K, and
£ele(u; E), then

1€llco < Crp (R, lldullp) [1€]Ip,1-

The same statement holds if Bg, is replaced by a fized compact Riemann surface (3, gs).

Proof. By Lemma D.9 applied with p = (p+2)/2 and Holder’s inequality,

l€lloo < Cr(R) (€]l + €0 dullz) < Crep(R)(€llpa + Idullpllé ). (D.13)

where ¢ = p(p+2)/(p—2). If ¢1 <p, then the proof is complete. Otherwise, apply Lemma D.8
with p1 = 2¢1/(q1+2) and Holder’s inequality:

I€llgr < Creipran (B (1€llpra + lE@dullp,) < Crcn(R)(I€llpa + Idullpli€llq.) (D.14)

where ¢2 = pp1/(p—p1). If g2 < p, then the claim follows from equations (D.13) and (D.14).
Otherwise, we can continue and construct sequences {p;}, {¢i}, {Ck.} such that

2q; ppi
;= , ] = ; D.15
Di 7+ 2 qi+1 D —p; ( )
I€llg: < CKZ(R)(|’§’ p1t HdUHprqu)- (D.16)
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The recursion (D.15) implies that

2p
1 =—— g = ifgq >0, then 0< g1 <q.
qi+1 2+ (piz)qi% 1T g; n qi+1 qi

Thus, if ¢;>2 for all i, then the sequence {g;} must have a limit ¢ >2 with

2p
g=——F—q9 — ®—2)¢q=0 = q¢=0,
2p+ (p—2)q ( )

since p > 2 by assumption. Thus, gy <p for N sufficiently large and the first claim follows from
(D.13) and the equations (D.16) with ¢ running from 1 to N, where N is the smallest integer such
that gn+1 <p. The second claim follows immediately from the first. O

D.3 Elliptic estimates
If Ay=Bg,r, and A :BRz,m are two annuli in R?, we write Ay €5 A; if Ri—Ry > and ro—r1 > 4.

Lemma D.11. For any 6 >0, p>1, and open annulus Ai, there ezists Cs,(A1) >0 such that for
any annulus Ay €5 Ay and £ € C®(Ay; CF),

el < ConlAn) (19€lL, + ld€]l2 + l1]1).

where the norms are taken with respect to the standard metric on R?.

Proof. We can assume that As is the maximal annulus such that Ay €5 A;. Let n: A} —[0,1] be
a compactly supported smooth function such that n|4, =1. By the fundamental elliptic inequality
for the J-operator on S? [29, Lemma C.2.1],

lelasll , < I€llpa < Co(An) (1B, + €]l -
< Cp(An) (10€]lp+ 1 (dm)Elp+1m€ ) -
By Corollary D.5 with (p,q)=(2,p) and (p,q)=(1,2) and Holder’s inequality,
HnﬁHp =G ( Dlldmé) 2 < Cp(Ar) (lldg]l2 + [I(dn)é]l2)
Ar)(lldgll2 + ld((dn)é) 1) < Cpo(Ar) (18]l + A&l + [I€]11) (D.18)
< CEp( 1) (lldgll2 + 1€ ]1).
Similarly,

I(dmellp < Cop(Ar) (1€l + [18]]1)- (D.19)
The claim follows by plugging (D.18) and (D.19) into (D.17). O

Corollary D.12. For any 6 >0, p>1, and open annulus Ay, there exists Csp(A1) >0 such that
for any annulus As €5 A1, and §€C(A1;C"),

€| a5 lp < Cop(A1) (10€]lp + Il dE]I2).-

Proof. With |A;| denoting the area of A, let



be the average value of £&. By Lemma D.11,

18] 4z llp = A€ =) asllp < Cop(A1) (10 =E)lp + AE=E) 2 + € —¢]Ir)

- . D.20
= Cop(A1) (10¢]lp + 1d€]l2 + 1€ =€) (D:20)

The claim follows by applying Corollary D.7 with ¢ =¢—¢. O

Remark D.13. The case 71 >0 (which is the case needed for gluing pseudo-holomorphic maps in
symplectic topology) follows from Corollary C.7; Corollary D.7 can be used to obtain a sharper
statement in this case (that Cj,(A;) does not depend on 7). The 71 =0 case requires only the
first two steps in the proof of Corollary D.7.

A smooth generalized CR-operator in a smooth complex vector bundle (E, V) with connection over
an almost complex manifold (X, J) is an operator of the form

D=0y +A:T(X;E) —I(X;T* X" ' ®@cFE),
where
- 1
IvE = 5(vg +iVy€) VEET(X;TX),  AeT(X;Hom(E;T*X'®cE)).

If in addition u: ¥ — X is a smooth map from an almost complex manifold (¥,j), the pull-back
CR-operator is given by

Dy = Oyu + Ao du:T(u; E) — TN (u; E).

Proposition D.14. If (X, g) is a Riemannian manifold with an almost complex structure J,
(E,(,),V) is a normed complex vector bundle with connection over X and a smooth generalized
CR-operator D, and p>1, then for every compact subset K C X, 6>0, and open annulus A1 CR?,
there exists Cr.5p(A1) € RT with the following property. If we C®(Ay; X) is such that Inu C K,
¢el(u; E), and Ay €5 Ay is an annulus, then

[V €], ||, < Criop(A1) (I Duéllp + VEll2 + [IE@dully),
where the norms are taken with respect to the standard metric on R?.
Proof. We continue with the setup in the proof of Lemma D.8. By Corollary D.12,

[d&ilas [, < Cirgp(AD) (10ill + [1dill2)

, i (D.21)
< Clisp (A1) ([|0&ilu-1 ], + [| A&l

Since V commutes with the complex structure in E and &=¢ on u (W;), it follows from (D.12)
and (D.21) that

“vu£’A2mu71(Wi) » S Hdgz‘\AQHp + Ckllé@dul|p

< Cisp(A1) (105 + IV E]l2 + €@ dull,) (D-22)
< Cls o (A1) (I Duklly + [IVE]l2 + [l€@dul],).

The claim is obtained by summing the last equation over all i. O
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Lemma D.15. If (X, g) is a Riemannian manifold with an almost complex structure J, (E, (,), V)
s a normed complex vector bundle with connection over X and a smooth generalized CR-operator D,
and p>2, then for every compact subset K C X and open ball B C R?, there exists Cr.Bp<€C®(R;R)
with the following property. If u€ C*°(B; X) is such that InuC K and £€T(u; E), then

I€llp1 < Cripplldullp) (1Duglly + 11E]15).

where the norms are taken with respect to the standard metric on R?.

Proof. By an argument nearly identical to the proof of Proposition D.14,

€l 1 < Creypr (B) (I Dutlly + Il + €@ dull,y)

for any p’ >1. On the other hand, by Proposition D.10,

[€llco < Crepp(lldullp)lI€

P15

where p=(p + 2)/2. Proceeding as in the proof of Proposition D.10, we then obtain

I€llp1 < Crpp(lldullp) (1 Duéllp + 1€llp + dullpliElz1),
I€ll71 < CrgB) (I1Dutllp + 181l + lldullplIE]lq ),
I€llg; < Cripia(B) ([€llpi1 + €@ dullp,)

< Cr:pillldullp) (1Dugllp + €]l + ldullpliélla. )

we stop the recursion at the same value of i= /N as in the proof of Proposition D.10. O

Proposition D.16. If (X, g) is a Riemannian manifold with an almost complex structure J,
(E,(,),V) is a normed complex vector bundle with connection over X and a smooth generalized
CR-operator D, and p > 2, then for every compact subset K C X and compact Riemann surface
(X2, 9%), there exzists Ck.xp € C®(R;R) with the following property. If uwe C*(3;X) is such that
ImuCK and €l (u; E), then

I€llp1 < Crimp(lldullp) (1Dt llp + 11€]15)-

Proof. This statement is immediate from Lemma D.15. O
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