Problem 1 (5 pts)

Let $U \rightarrow \mathcal{M}_{1,1}$ be the universal family of stable genus 1 1-marked curves with section s; see Hain’s Section 5.2. Let

$$L_1 \equiv s^*(TU^\text{vert})^*, \ L_1 \rightarrow \mathcal{M}_{1,1}$$

be the universal cotangent line bundle at the (first) marked point and the line bundle defined in Hain’s Section 4, respectively.

(a) Show that L_1 is indeed a line bundle in the orbifold category (i.e. describe equivariant trivializations over the charts and the isomorphism on the overlap).

(b) Show that $L_1 \approx L_1$ in the orbifold category.

Problem 2 (10 pts)

Fix any 8 general points, p_1, \ldots, p_8, in \mathbb{P}^2.

(a) Show that the space of cubics passing through the 8 points is a linearly embedded \mathbb{P}^1 in $\mathbb{P} H^0(\mathbb{P}^2; \mathcal{O}(3)) \approx \mathbb{P}^9$.

(b) Show that

$$X \equiv \{([f], q) \in \mathbb{P}^1 \times \mathbb{P}^2 : f(q) = 0\}$$

is a smooth submanifold of $\mathbb{P}^1 \times \mathbb{P}^2$. What is its Hodge diamond?

(c) Show that $\pi : X \rightarrow \mathbb{P}^1$ with the holomorphic section

$$s : \mathbb{P}^1 \rightarrow X, \quad [f] \rightarrow ([f], p_1),$$

is a family of stable genus 1 1-marked curves (i.e. $(\pi^{-1}(b), s(b))$ is a stable genus 1 1-marked curve for every $b \in \mathbb{P}^1$) and the generic fiber is smooth. Show that the number of singular fibers is 12.

Hint: the set of nodes of the fibers is a subset of X which can be written as the zero set of a holomorphic section of a rank-two vector bundle over X.

(d) Let $L_1 = s^*(TX^\text{vert})^* \rightarrow \mathbb{P}^1$. Show that $L_1 \approx \mathcal{O}(1) \rightarrow \mathbb{P}^1$ and $L_1 \approx \Phi^* L_1$, where $\Phi : \mathbb{P}^1 \rightarrow \mathcal{M}_{1,1}$ is the morphism corresponding to the family in (c). Conclude that

$$\int_{\mathcal{M}_{1,1}} \psi_1 = \frac{1}{24},$$

where $\psi_1 = c_1(L_1) \in H^2(\mathcal{M}_{1,1})$.
Problem 3 (5 pts)
Let $f: C \to \mathbb{P}^2$ be an immersion with only simple normal crossing singularities (thus, $|f^{-1}(p)| \leq 2$ for all $p \in \mathbb{P}^2$; if $f^{-1}(p) = \{z_1, z_2\}$ with $z_1 \neq z_2$, $d_{z_1}f(T_{z_1}C) \neq d_{z_2}f(T_{z_2}C)$). Let S be the blowup of \mathbb{P}^2 at the double points of $f(C)$ (the singular values of f).
(a) Show that f lifts to an embedding $\tilde{f}: C \to S$.
(b) Use Adjunction Formula in S to show that if $C \subset \mathbb{P}^2$ is of degree d and has δ double points, then

$$g(C) = \binom{d-1}{2} - \delta.$$

Problem 4 (5 pts)
Let X be the blowup of \mathbb{P}^2 at one point and $E \subset X$ the exceptional divisor. Show that
(a) X is not biholomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$;
(b) the blowup of X at a point of $X - E$ is biholomorphic to the blowup of $\mathbb{P}^1 \times \mathbb{P}^1$ at a point;
(c) \mathbb{P}^2 and $\mathbb{P}^1 \times \mathbb{P}^1$ are minimal surfaces (contain no exceptional curves).

Problem 5 (5 pts)
Let $\pi: S \to \mathbb{P}^2$ be the blowup at k general points, $p_1, \ldots, p_k \in \mathbb{P}^2$, with the corresponding exceptional divisors E_1, \ldots, E_k. Let

$$D = dH - \sum_{i=1}^{i=k} m_i E_i, \quad m_i \in \mathbb{Z},$$

and $L_{i,j}$ be the proper transform of the line $p_i p_j$, with $i \neq j$. Suppose $|D| \neq \emptyset$ (i.e. there is an effective divisor linearly equivalent to D). Show that
(a) E_i is a fixed component of every curve in $|D|$ iff $m_i < 0$;
(b) $L_{i,j}$ is a fixed component of every curve in $|D|$ iff $d < m_i + m_j$.

Problem 6 (10 pts)
Let $\pi: S \to \mathbb{P}^2$ be the blowup at k general points, $p_1, \ldots, p_k \in \mathbb{P}^2$.
(a) Determine the number of exceptional curves for $k \leq 8$.
(b) Show that there are infinitely many exceptional curves for $k \geq 9$.