MAT 545: Complex (Geometry
Fall 2008

Notes on Connections

1 Connections in real vector bundles

1.1 Connections and splittings

Suppose M is a smooth manifold and 7: £ — M is a vector bundle. Trivializations of M induce
a bundle inclusion 7*E — T FE so that the sequence of vector bundles over E

0— m*E — TE 2% 2T M — 0 (1.1)
is exact. For each fe(C°(M), define
my: B — F by mys(v) = f(n(z))-v VveEE. (1.2)
We then have a commutative diagram

dm

0 B TE TTM —> 0 (1.3)
lﬁ*mf \Ldmf ljd
0 B miTE 275 poppf — 0

of bundle maps over E.

A connection in E is an R-linear map

V:I'(M;E) — T'(M;T"M®E) s.t.
V(f§) =df@&+ fVE V feCP(M), (eT(M;E). (1.4)

The Leibnitz property implies that any two connections in F differ by a one-form on M. In other
words, if V and V are connections in E there exists

9 e T(M;T*M@Homg(E,E)) st
Vol =V +{0()}¢  VEET(ME), veT, M, € M. (1.5)

A connection V in F is necessarily a local differential operator, i.e. the value of V& at a point
x € M depends only on the restriction of ¢ to any neighborhood U of z. If f is a smooth function
on M supported in U and such that f(z)=1, then

ve|, = V(fe), — df|, @& () (1.6)
by (1.4). The right-hand side of (1.6) depends only on &|y.



In fact, a connection V in F is a first-order differential operator. Suppose U is an open subset of
M and &,..., &, €T(U; E) is a frame for E on U, i.e.

§1(z), ..., &n(z) € By
is a basis for F, for all x €U. By definition of V, there exist
k=n k=n
0f eD(M;T*M) st V=Y &GIF=> 0/04 Vi=1,...n
k=1 k=1
We will call
0= (6)

the connection one-form of V with respect to the frame (). For an arbitrary section

ki=1,..m I(3; T*M @Mat,R)

l=n
=Y flaeru;p),

=1
by (1.4) we have

k=n l=n
ve=Sa(ar+ D0, e V(S =¢-{d+0}S (1.7)
k=1 =1
where &= (&,....&), f=(f' .. ).

Thus, V is a first-order differential operator. It is immediate from (1.4) that the symbol of V is
given by
UV:T*M—>Hom(E,T*M®E), {av(n)}(f) =R f.

Since M C E as the zero section, there is a natural splitting
TE|y~TM & E (1.8)
of the exact sequence (1.1) restricted to M. If x€ M and £ €I'(M; E) is such that {(x) =0, then
Vé|, = malz 0 d€]., (1.9)

where |, : T F — E, is the projection onto the second component in (1.8). This observation
follows from (1.5), as well as from (1.7).

Lemma 1.1 Suppose M is a smooth manifold and 7w: E— M is a vector bundle. A connection V
i E induces a splitting

TE ~ m*'TM ® °E (1.10)
of the exact sequence (1.1) extending the splitting (1.8) such that
Vé|, =mls0dél, VY EET(M;E), zeM, (1.11)

where mo|y: Ty FE— E, is the projection onto the second component in (1.10), and
dmy ~ 7*id & 7 my vV teR, (1.12)

i.e. the splitting is consistent with the commutative diagram (1.3).



Proof: For each x € M and ve E,, choose { €I'(M; E) such that {(z)=v and let
T,E" = Im{d¢-V¢} C T,E.
Since wo& =idjy,
dr|y 0 {d6—VE} = idr,m — T,E~T,E"® E, ~ T,M & E,.

If v=0, then by (1.9)
T,E" = T,M.

If v#0, (eI'(M; E) is another section such that {(x)=wv, and U is sufficiently small, then (= f¢
for some feC>(U) with f(x)=1 and thus

{d¢—V ¢}, ={d(fO) -V (£O)}|, = {dfl@&(x)+ f(2)dE e } — {df |- @&(x)+ f(2) VE . }
= d¢—Ve.

The second equality above is obtained by considering a trivialization of E near z. Thus, T, E" is
independent of the choice of £ in either case and we obtain a well-defined splitting (1.10) of (1.1)
that satisfies (1.11) and extends (1.8).

It remains to verify (1.12). Since mom;=m, drodm;=dm, i.e. the first component of dm; vanishes
on TE and is the identity on 7*T M. On the other hand, if £€T'(M; E) and x € M, then

Ttg(x)Eh = {d(mtof)—V(tﬁ)}‘m = {dmtodﬁ—mtV§}‘$ =dmy o {d{—Vﬁ}‘x
= dmt (Tté(I)Eh)

The last equality on the first line follows from (1.3). These two observations imply (1.12).

1.2 Metric-compatible connections
Suppose £ — M is a smooth vector bundle. Let g be a metric on F, i.e.

g (M;E*®FE") s.t. g(v,w) = g(w,v), g(v,v) >0 YovwekE;, v#£0, zeM.
A connection V in E is g-compatible if

d(9(¢,0) = 9(VE,¢) +9(§, VO eT(M;T*M) V&, € T(M; E).

Suppose U is an open subset of M and &1, ...,&, €T'(U; E) is a frame for E onU. Fori,j=1,...,n,
let

9i5 = 9(&, ;) € C=(U).
If V is a connection in F and 6y is the connection one-form for V with respect to the frame {&}x,
then V is g-compatible on i/ if and only if

b
Il

(9ik0F + gn0)) = dgi; Vi, j=1,2,....n. (1.13)
1

>
I



1.3 Torsion-free connections

If M is a smooth manifold, a connection V in T'M is torsion-free if

VxY - Vy X = [X,Y].

If (z1,...,2y): U —R"™ is a coordinate chart on M, let
0 0
e T T™M
ox1 0xy, ( )

be the corresponding frame for TM on U. If V is a connection, the corresponding connection
one-form 6 can be written as

i=n 9 k=n P
k __ k ] _ k

The connection V is torsion-free on T'M | if and only if

I =Th  Vijk=1..,n (1.14)

Lemma 1.2 If (M,g) is a Riemannian manifold, there exists a unique torsion-free g-compatible
connection V in TM.

Proof: (1) Suppose V and V are torsion-free g-compatible connections in TM. By (1.5), there
exists

0 € I'(M;T*M®@Homg(TM,TM))  s.t.
VxY —VxY ={0(X)}Y VYel(M;TM), X€T,M, z€M.

Since V and V are torsion-free,
{0(X)}Yy ={0(Y)}X VXY eT,M, zeM. (1.15)

Since V and V are g-compatible,

g({0(X)}Y, Z) + g(Y,{6(X)}Z) = 0
g({00)}X, 2) + g(X,{6(Y)}Z) =0 VXY, Z € T,M, z€M. (1.16)
g({0(2)}X,Y) + g(X,{6(2)}Y) =0

Adding the first two equations in (1.16), subtracting the third, and using (1.15) and the symmetry
of g, we obtain

20{6(X)}Y,Z) =0 VXY, ZeT,M, zeM — 6=0.
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Thus, V=V.
(2) Let (x1,...,2,) : U — R™ be a coordinate chart on M. With notation as in the paragraph
preceding Lemma 1.2, V is g-compatible on T'M |, if and only if

l=n

> (guThy + gjiThi) = 0,915 (1.17)
=1

see (1.13). Define a connection V in T'M |y by
1 l=n
]-_‘Z = 5 ngl (8J:Lg]l + 890]-.91'[ - a@Q’L]) v /i7j7 k= 1) s
=1

where g% is the (i, j)-entry of the inverse of the matrix (gi;)ij=1..n. By direct computation, Ffj
satisfies (1.14) and (1.17). Therefore, V is a torsion-free g-compatible connection on T'M|y. In
this way, we can define a torsion-free g-compatible connection on every coordinate chart. By the
uniqueness property, these connections agree on the overlaps.

2 Complex structures

2.1 Complex linear connections
Suppose M is a smooth manifold and 7: (E,i) — M is a complex vector bundle. Similarly to
Subsection 1.1, there is an exact sequence of vector bundles over F

0— m*E — TE 2% 2T M — 0 (2.1)

is exact. If fe C>®(M;C) and my: E — E is defined as in (1.2), we then have a commutative
diagram
dm

0 B TE T TM —0 (2.2)
lﬂ*mf J{dmf J{id
0 ™ E miTE s o —— 0

of bundle maps over E.

Suppose
V:TI'(M;E) — T'(M;T*M g E)

is a C-linear connection (with respect to the complex structure in E on both sides). If ¢/ is an open
subset of M and &;,...,&, €T (U; E) is a C-frame for E on U, then there exist

k=n k=n
0f eT(M;T*M) st V=) &I\ =D 674 Vi=1,...n
k=1 k=1

We will call
0=(07),,_, , €L (5T MegMat,C)

!



the complex connection one-form of V with respect to the frame ()x. For an arbitrary section

l=n
=Y flaerTu;p),

=1
by (1.4) and C-linearity of V we have
k=n l=n
Ve=Sa(dt+ 300, te V(- f) =€ {d+o}f, (2.3)
k=1 =1
where €= (&,...,&), f=(f" o f"). (2.4)

Let h be a hermitian metric on F, i.e.
h € F(M;HomC(EQQCE,(C)) st. h(v,w) = g(w,v), h(v,v) >0 Yov,we E,, v#0, M.
A C-linear connection V in F is h-compatible if
d(h(€.Q)) = h(VE, Q) +h(€, V() € T(M;T*M®gC) ¥ &,¢ € D(M;E).
With notation as in the previous paragraph, let
hij = h(&,&5) € C°(U;R) Vi,j=1,...,n.

Then V is h-compatible on U if and only if
k=n B B
> (hinbf + hjbf) = dhi; Vi j=1,2,...,n. (2.5)
k=1
2.2 Generalized 0-operators
If (M,j) is an almost complex manifold, let
7MY = {neT*M®grC:noj=in},
T*M% = {neT*MarC:noj=—in}

be the bundle of C-linear and C-antilinear 1-forms on M. If (M,j) and (E,J) are smooth almost
complex manifolds and u: M — FE is a smooth function, define

_ = 1
Osu €D(M; T" M @cu'TE) by Oy5u = (du+Joduoj).
A smooth map u: (M,j) — (E, J) will be called (J,j)-holomorphic if 05u=0.

Definition 2.1 Suppose (M,]j) is an almost complex manifold and w: (E,i) — M is a complex
vector bundle. A O-operator on (F,i) is a C-linear map

O:T(M;E) — T(M; T*M*' ¢ E)

such that
A(fe) = 0f)ee+ f(05) ¥ feC™(M), £eT(M;E), (2.6)

where 5f:51,jf is the usual O-operator on complex-valued functions.
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Similarly to Subsection 1.1, a J-operator on (F, i) is necessarily a first-order differential operator.
If U is an open subset of M and &1,...,&, €T'(U; E) is a C-frame for E on U, then there exist

k=n k=n
Of eTU;T"M™) st 9= &0F =) 6fog Vi=1,...n
k=1 k=1

We will call

0 = (67) € D'(U; T* M @cMat,C)

kl=1,...,n

the connection one-form of O with respect to the frame (&;);. For an arbitrary section

l=n
=Y flgeru;p),
=1
by (2.6) we have
~ k=n ~ l=n ~ B
o= (0 + 3001, e Blg-f) =& {040}, (2.7)
k=1 =1
where ¢ and f are as in (2.4). It is immediate from (2.6) that the symbol of 9 is given by

o5: T"M — Hom(E,T*MO’1®CE), {Ug(n)}(f) = %(77—1—1770)') ®f= 770’1 ® f.

In particular, 9 is an elliptic operator (i.e. o5(n) is an isomorphism for n#£0) if (M,j) is a Riemann
surface.

Lemma 2.2 Suppose (M,j) is an almost complex manifold and w: (E,i) — M is a complex vector
bundle. If B
0:T'(M;E) — T(M; T*M*"' ¢ E)

is a O-operator on (E,1i), there exists a unique almost complex structure J=Jz on (the total space
of) E such that m is a (j,J)-holomorphic map, the restriction of J to the vertical tangent bundle
TE~n*E agrees with i, and

916 =0 T(U; T*M*" @c&*TE) = 06 =0ecTU;T*M*' @cE) (2.8)
for every open subset U of ¥ and E€T(U; E).

Proof: (1) With notation as above, define

k=n

(x) - =) Fe(a) € E,.

k=1

o: UXC" — Ely by o(z,cty...c") =

[y

The map ¢ is a trivialization of E over Y. If J; is an almost complex structure on E with the
desired properties, let J be the almost complex structure on U x C" given by

~ 1 n
J|(x’g) = {d<p|(x’g)} o Jg‘gp(w&) @ dg0|(x’g) YV (x,c) e UxC™. (2.9)
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Since Jj restricts to i on TE",

J’(Lg)w =iw € TQ(CTL C T(:Jc,g) (Z/{X(Cn) Ywe TQC". (2.10)
Since the projection map 7 is (j, J5)-holomorphic, there exists
Jo1 € I (U; Hom (7 TU, wgen TC™)) s.t.
Jwow =jw+ gw Y we Tl C Tpp o (UxXT). (2.11)

If €eT(U; E), let

E=¢ ot = (idy, f), where  f e C®U;C").
By (2.9)-(2.11),
25J,j§‘x = dgo‘é(x) o 25j,jg‘x = dSO‘g(m) o { (Idru, df2) + j|5~(r) o (Idr,u, df]z) ©jla} .12)

On the other hand, by (2.7),
%le =0 )], = &) - {040},
= ‘P(éﬂx + 0 - f(w)t)

By (2.12) and (2.13), the property (2.8) is satisfied for all £ €T'(U; F) if and only if

(2.13)

Jotl(we) =200 - ) o (ils) =210, -V (z,¢) €UXT™.

In summary, the almost complex structure J=J5 on E has the three desired properties if and only
if for any trivialization of E over an open subset U of %

j‘(m,g) (w1, wa) = (jwy, iwa + 20, (w1) - ¢) (2.14)
A (.CC,Q) eUxC", (wl, wg) € TxZ/IEBTQ(C” = T(:t,g) (Z/[X(Cn),

where J is the almost complex structure on 2 xC" induced by J via the trivialization and 0 is the
connection-one form corresponding to @ with respect to the frame inducing the trivialization.

(2) By (2.14), there exists at most one almost complex structure J satisfying the three properties.
Conversely, (2.14) determines such an almost complex structure on E. Since
=12 = L . i . g
J‘(x,g) (w1, ws) = J\( (w1, iws + 205 (w1) - ") = (JPwr,i(iws + 2i0, (w1) - ') + 2i0, (jwr) - &)

z,c)

= —(wi,w2),

J is indeed an almost complex structure for d-operator on (E,i). The almost complex structure
induced by Jon E |r must satisfy the three properties by part (a). By the uniqueness property, the
almost complex structures on F induced by the different trivializations must agree on the overlaps.
Therefore, they define an almost complex structure J=.J5 on the total space of E with the desired
properties.



2.3 Connections and J-operators
Suppose (3,j) is an almost complex manifold, 7: (E,i) — X is a complex vector bundle, and
9:T(%E) — I(Z; T 2®E)

is a d-operator on (FE,i). A C-linear connection V in (E, 1) is -compatible if
- = 1
0 = Ové = 5(Vg +iVE0j) Ve (M;Y). (2.15)

Lemma 2.3 Suppose (M,j) is an almost complex manifold, w: (E,i) — M is a complez vector
bundle, B
O:T(M;E) — T(M; T*M*' ¢ E)

is a O-operator on (E,i), and J5 is the complex structure in the vector bundle TE — E provided
by Lemma 2.2. A C-linear connection V in (E,i) is 0-compatible if and only if the splitting (1.10)
determined by V respects the complex structures.

Proof: Since Jg=n*i on 7*E CTE by definition Jg, by the construction of the splitting (1.10) it
is sufficient to check that

Jalv o {d¢ = VEY| = {dE = VEY 0je: TuM — T, E
for all re M, ve E;, and {€T'(M; E) such that £(x)=v. This identity is equivalent to
Dy =0vE  VEET(M;E). (2.16)
On the other hand, by the proof of Lemma 2.2,
0556 = 0¢ VeEel(M;E), (2.17)
see (2.12)-(2.14). The lemma follows immediately from (2.16) and (2.17).

2.4 Holomorphic vector bundles
Let (3,j) be a complex manifold. A holomorphic vector bundle (E,i) on (3,j) is a complex vector

bundle with a collection of trivializations that overlap holomorphically.

A collection of holomorphically overlapping trivializations of (£, ) determines a holomorphic struc-
ture J on the total space of E and a 0-operator

0:T(Z;E) — I(L; THE®E).

The latter is defined as follows. If &1,...,&, is a holomorphic complex frame for £ over an open
subset U of M, then

k=n k=n
o) ffa=) 0ff'w& V[ ffeC™UC)
k=1

k=1
In particular, for all £€T'(M; E)

976 =0 = o0& = 0.
Thus, J=Jg; see Lemma 2.2.



Lemma 2.4 Suppose (¥,j) is a Riemann surface and w: (E,i) — X is a complex vector bundle.

If
:T(Z;FE) — T(Z; T E®E)

is a O-operator on (E, 1), the almost complex structure J=Jg on E is integrable. With this complex
structure, w: E—3 is a holomorphic vector bundle and O is the corresponding 0-operator.

Proof: By (2.8), it is sufficient to show that there exists a (.J,j)-holomorphic local section through
every point v € F, i.e. there exist a neighborhood U of xt=7(v) in ¥ and £ €T'(U; E) such that

E(x)=w and d7;€ = 0.
By Lemma 2.2 and (2.13), this is equivalent to showing that the equation
{5 + e}ft -0, f(x)=v, feC®U;CM), (2.18)
has a solution for every v€C". We can assume that I/ is a small disk contained in S2. Let
n: 5% — [0,1]
be a smooth function supported in I/ and such that n=1 on a neighborhood of z. Then,
nh e T(5?;, 71 5? @ Mat,,C).
Choose p>2. The operator
©: LY(S*C") — LP(S%H T S*eC") & C",  O(f) = (0iif, f(2)),

is surjective. If n has sufficiently small support, so is

O, : LY(S* C") — LP(S*,T71S?@C") @ C",  O,(f) = ({0i;+n0}f, f(2)).

Then, the restriction of @;1(0, v) to a neighborhood of x on which n=1 is a solution of (2.18). By
elliptic regularity, ©,1(0,v) € C*(5%;C").
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