
MAT 545: Complex Geometry
Fall 2008

Notes on Lefschetz Decomposition

1 Statement

Let (M,J, ω) be a Kahler manifold. Since ω is a closed 2-form, it induces a well-defined homomor-
phism

L : Hk(M) −→ Hk+2(M), L
(
[α]
)

= [ω ∧ α].

Hard Lefschetz Theorem: If (M,J, ω) is a compact Kahler m-manifold, the homomorphism

Lr : Hm−r(M) −→ Hm+r(M) (1)

is an isomorphism for all r≥0.

Since ω is a (1, 1)-form, by the Hodge decomposition theorem the above claim is equivalent to the
statement that each of the homomorphisms

Lm−(p+q) : Hp,q(M) −→ Hm−q,m−p(M)

with p+q≤m is an isomorphism. In the Hodge diamond, L corresponds to moving up 1 step along
the vertical lines; the above isomorphisms take the (p, q)-slot to its reflection about the horizontal
diagonal. Thus, the Hodge diamond of a compact Kahler manifold is symmetric about the hor-
izontal diagonal. This fact also follows from the Hodge theorem (which implies that the Hodge
diamond is symmetric about the vertical diagonal) and the Kodaira-Serre duality (symmetry about
the center of the diamond). Furthermore, the Hard Lefschetz Theorem provides a relative restric-
tion on the numbers along each of the vertical lines in the Hodge diamond: these numbers are
non-decreasing in the bottom half and non-increasing in the top half (see (2) below).

For each r=0, 1, . . . ,m, let

PHm−r(M) ≡
{
α∈Hr(M) : Lr+1α=0

}
be the primitive cohomology of M . By the Hard Lefschetz Theorem, r+1 is the smallest value of s
such that the homomorphism

Ls : Hm−r(M) −→Mm−r+2s(M)

may have a kernel; furthermore,

Hm−r(M) = PHm−r(M)⊕ L
(
Hm−r−2(M)

)
.
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Thus, the Hard Lefschetz Theorem implies that

Hk(M) =
⊕
s≥0

k−2s≤m

Ls
(
PHk−2s(M)

)
. (2)

On the other hand, (2) implies (1) immediately.

Let H∈H2(M) be the Poincare dual of [ω] and denote by

·M : Hk(M)⊗Hl(M) −→ Hk+l−2m(M)

the homology intersection product on M (the Poincare dual of the cup product). Via Poincare
Duality, the Hard Lefschetz Theorem is equivalent to the statement that

(H·M )r : Hm+r(M) −→ Hm−r(M), η −→ H ·M . . . H·M︸ ︷︷ ︸
r

η,

is an isomorphism for all r≥0. Furthermore,

PDM

(
Lr(PHm−r(M))

)
= PDM

(
{α∈Hm+r(M) : L(α)=0}

)
=
{
η∈Mm−r(M) : H ·M η=0

}
.

Thus, the primitive k-th cohomology of M , with k ≤ m, corresponds to the k-cycles that are
“disjoint” from H; thus, it is the image of the homomorphism

Hk(M−V ) −→ Hk(M)

induced by inclusion.

The Poincare dual of the Fubini-Study symplectic form ωFS on Pn is the hyperplane class H≈Pn−1,
since ∫

P1

ωFS = 1 = P1 ·Pn Pn−1

and H2(Pn) is one-dimensional. If M⊂Pn is a compact Kahler submanifold of dimension m,

PDM

(
ωFS |M

)
= H ∩M.

Thus, the Hard Lefschetz Theorem in this case is equivalent to the statement that

Pn−r∩ : Hm+r(M) −→ Hm−r(M)

is an isomorphism. The primitive k-th cohomology of M , with k≤m, corresponds to the k-cycles
in M that are “disjoint” from H. Thus, they lie in

M−H ⊂ Pn−H = Cn .
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2 Proof

The Hard Lefschetz Theorem is a consequence of Hodge identities and the Hodge theorem. Let
(M,J, ω) be a Kahler m-manifold and

Λ: Ak(M) −→ Ak−2(M)

the adjoint of the homomorphism L = ω∧ with respect to the inner-product induced by (ω, J).
Denote by

∆ ≡ ∆d ≡ dd∗ + d∗d : Ak(M) −→ Ak(M)

be the corresponding d-Laplacian and let

Hp ≡
{
α∈Ap(M) : ∆α=0

}
.

Hodge Identities: If (M,J, ω) is a Kahler m-manifold

L∆ = ∆L, Λ∆ = ∆Λ , (3)

LΛ− ΛL = (m−k) Id: Ak(M) −→ Ak(M). (4)

Hodge Theorem: If (M,J, ω) is a compact Kahler m-manifold, the homomorphism

Hk −→ Hk(M), α −→ [α],

is well-defined and is an isomorphism.

The second statement is valid for any Riemannian manifold, while (4) is a point-wise statement
and thus follows from a direct check for Cn. The identities (3) imply that L and Λ restrict to
homomorphisms

L : Hk −→ Hk+2, Λ: Hk −→ Hk−2 .

By Hodge theorem, it is sufficient to prove the analogue of the Hard Lefschetz Theorem for H∗.
From (4), we obtain the following lemma.

Lemma 1 If α∈Hk, then for all s≥1

ΛLsα = Ls−1
(
Ck,sα+ LΛα

)
for some Ck,s∈Z such that Ck,s=0 if and only if s=m−k+1.

Corollary 2 If k≤m, α∈Hk, and Lm−k+1α=0, then
(a) Λα=0;
(b) Lsα 6=0 for all s=0, 1, . . . ,m−k if α 6=0.
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Proof: Both statements hold for k < 0. Suppose 0≤ k≤m and both statements are valid for all
k′<k. By Lemma 1,

0 = ΛLm−k+1α = Lm−k
(
Ck,m−k+1α+ LΛα

)
= Lm−k+1(Λα).

Thus, Λα= 0 by the k−2, s=m−k+1 case of (b). The s= 0 case of (ii) clearly holds. Suppose
1≤s≤m−k and (ii) holds for all s′<s. By Lemma 1,

ΛLsα = Ls(Λα) + Ck,sL
s−1α = Ck,sL

s−1α 6= 0 if α 6= 0,

since Λα=0 by (a) and Ck,s 6=0.

Corollary 3 For all k≤m,

Hk = kerLm−k+1|Hk ⊕ LHk−2 , H2m−k = Lm−kHk .

Proof: (1) Suppose α∈Hk; then Lm−k+sα= 0 for some s≥ 1. If s= 1, there is nothing to prove.
Suppose s≥2 and

ker
(
Lm−k+s−1 : Hk −→ H2m−k+2s−2

)
⊂ kerLm−k+1|Hk ⊕ LHk−2 .

By Lemma 1,
0 = ΛLm−k+sα = Lm−k+s−1

(
Ck,m−k+sα+ LΛα

)
.

Thus, Ck,m−k+sα+ LΛα ∈ kerLm−k+1|Hk ⊕ LHk−2; since Ck,m−k+s 6=0, it follows that

α ∈ kerLm−k+1|Hk ⊕ LHk−2.

(2) If k=m, there is nothing to prove. Suppose k <m and the statement holds for all k′>k. If
α∈H2m−k, then Lsα=0 for some s≥0. If s=0, α=Lm−k0. Suppose s≥1 and

ker
(
Ls−1 : H2m−k −→ H2m−k+2s−2

)
⊂ Lm−kHk .

By Lemma 1,
0 = ΛLsα = Ls−1

(
C2m−k,sα+ LΛα

)
.

Thus, C2m−k,sα+ LΛα ∈ Lm−kHk; since C2m−k,s 6=0, it follows that

α ∈ Lm−kHk + LH2m−k−2 .

On the other hand, by the k′=k+2 cases of the first and second statements,

LH2m−k−2 = Lm−kHm−k.

Corollaries 2 and 3 imply the analogue of the Hard Lefschetz Theorem for H∗, since the homomor-
phism in (1) is injective by the former and surjective by the latter.
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3 Applications

The Hodge theorem provides restrictions on topological and complex manifolds that admit a Kahler
structure. One of the standard invariants of a topological manifold M is the k-th Betti number,

hk(M) ≡ dimRH
k(M ; R) = dimCH

k(M ; C) = dimRH
k
deR(M ; R);

the last equality holds if M admits a smooth structure. If M is a compact 2m-dimensional topo-
logical manifold that admits a Kahler structure, then h2r+1(M) is even for all r∈Z and h2r(M)>0
for all r= 0, 1, . . . ,m. Furthermore, H2(M ; R) contains an element α such that αm 6= 0. If (M,J)
is a compact complex manifold that admits a compatible Kahler structure, then

hp,q(M) ≡ dimCH
p,q
d (M) = dimCH

p,q

∂̄
(M) ∀ p, q,

hp,q(M) = hq,p(M) ∀ p, q, hk(M) =
∑
p+q=r

hp,q(M) ∀ r.

Furthermore, the homology class of any analytic subvariety in (M,J) is non-zero in the homology
of M , as is every holomorphic p-form in Hp(M).

The Hard Lefschetz Theorem provides additional restrictions. If M is a compact 2m-dimensional
topological manifold that admits a Kahler structure, then H2(M ; R) contains an element α such
that the homomorphisms

Hm−r(M) −→ Hm+r(M), β −→ αr ∧ β, r ≥ 0,

are isomorphisms. If (M,J) is a compact complex m-manifold that admits a compatible Kahler
structure, then H1,1

d (M)∩H2(M ; R) contains an element α such that the homomorphisms

Hp,q
d (M) −→ Hm−q,m−p

d (M), β −→ αm−p−q ∧ β, p+q ≤ m,

are isomorphisms.

If M is a compact topological oriented 4k-dimensional manifold, the pairing

Q : H2k(M ; R)⊗H2k(M ; R) −→ R, α⊗ β −→
〈
α ∪ β, [M ]

〉
.

is non-degenerate by Poincare duality and is symmetric. Thus, H2k(M ; R) admits a basis with
respect to which this pairing is diagonal with each of the non-zero entries equal to +1 or −1. Let
λ±(M)=λ±(Q) denote the number of ±1 entries; this number is determined by the bilinear form Q
and thus by the topology and the orientation of M . So, is the number

σ(M) = λ+(M)− λ−(M),

which is known as the signature of M . If in addition J is a complex structure on M , Q restricts to
a non-degenerate symmetric pairing Qk,k on Hk,k(M)∩H2k(M ; R). Let λp,p± (M)=λ±(Qp,p).
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Index Theorem for Surfaces: If (M,J) is a compact connected complex surface (dimCM =2)
that admits a compatible Kahler structure, then λ1,1

+ (M)=1.

Proof: Let ω be a symplectic form on M compatible with J and H1,1 the corresponding space of
harmonic (1, 1)-forms. By the Hard Lefschetz Theorem,

H1,1 = Cω ⊕
{
α∈H1,1 : ω∧α=0

}
≡ V+ ⊕ V0.

This decomposition is Q-orthogonal, and Q restricted to V+∩H2(M ; R) is positive-definite. Thus,
it is sufficient to show that

Q(α, α) ≤ 0 ∀α ∈ V0∩H2(M ; R).

Given p∈M , let (z1, z2) be holomorphic coordinates around p on M so that

ω|p = −1
2

Im
(
dz1 ∧ dz̄1 + dz2 ∧ dz̄2

)
|p = dx1 ∧ dy1 + dx2 ∧ dy2 ,

where zj =xj+iyj . If α∈H1,1∩H2(M ; R),

α|p =
(
Adx1 ∧ dy1 +B dx2 ∧ dy2 + C(dx1 ∧ dx2 + dy1 ∧ dy2) +D(dx1 ∧ dy2 − dy1 ∧ dx2)

)
|p

for some A,B,C,D∈R. If in addition ω ∧ α = 0, A=−B and

α|p ∧ α|p = −2(A2+C2+D2)dx1 ∧ dy1 ∧ dx2 ∧ dy2

∣∣
p
.

Thus, α|p∧α|p is a non-positive multiple of the volume form on M for all p∈M and thus Q(α, α)≤0
as needed.

If (M,J) is a compact complex 2k-manifold that admits a compatible Kahler structure, then

σ(M) =
∑

p+q≡0(mod 2)

hp,q(M).

This is deduced from the Hodge-Riemann bilinear relations (a single formula) in Griffiths&Harris,
pp123-126. As explained in the top half of p124, these relations follow from the Hard Lefschetz
Theorem and quite a bit of representation theory (a classical subject).

There is an important typo on p123, in the line before the statement of the Hodge-Riemann bilinear
relations: “k = p+ q” should in fact be “n− k = p+ q”.
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