Appendices

A Cech cohomology

This appendix contains a detailed review of Cech cohomology, including for sheaves of non-abelian
groups, describes its connections with singular cohomology and principal bundles, and classifies
oriented vector bundles over bordered surfaces. We carefully specify the assumptions required in
each statement.

We generally follow the perspective of [32, Chapter 5]. In particular, a sheaf S over a topological
space Y is a topological space along with a projection map 7 : § — Y so that 7 is a local
homeomorphism. For a sheaf § of modules over a ring R as in [32] and in Section A.1 below,
Sy = 7~1(y) is a module over R for every y €Y and the module operations are continuous with
respect to the topology of 8. For a sheaf § of groups (not necessarily abelian), as in Sections A.2-
A 4 below, §, is a group for every y€Y and the group operations are continuous with respect to
the topology of 8. For a collection {Ug}aeq of subsets of a space Y and ag, a1, ..., apedd, we set

Uaoay...ap = UagNUay N .0Uq, € Y.

A.1 Identification with singular cohomology

For a sufficiently nice topological space Y and a module M over a ring R, the Cech cohomology
group HP (Y; M) of Y with coefficients in the sheaf Y x M of germs of locally constant functions
on Y with values in M is well-known to be canonically isomorphic to the singular cohomology
group HP(Y; M) of Y with coefficients in M. Proposition A.1 below makes this precise in the
M =7, case relevant to our purposes, making use of the locally H*-simple notion of Definition 3.2.
The statement and proof of this proposition apply to an arbitrary module M over a ring R. The
p=1 case of the isomorphism of Proposition A.1 is described explicitly at the end of this section.

Proposition A.1. Let k€ ZZ°. For every paracompact locally H*-simple space Y, there exist
canonical isomorphisms

Dy: HP(Y;Zo) = HP(Y;Zy),  p=0,1....k. (A1)

If Y is another paracompact locally H*-simple space and f:Y — Y is a continuous map, then
the diagram

HP(Y'; Zy) v HP(Y'; Zy)
- l x (A.2)

be >~

HP(Y'; Zs)

HP(Y'; Zs)
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commutes for every p<k.

Proof. Let p e ZZ° and Y be a topological space. Denote by 8} — Y the sheaf of germs of
Zs-valued singular p-cochains on Y as in [32, 5.31], by

dp: 8E — S (A.3)
the homomorphism induced by the usual differential in the singular cohomology theory, and by
dp;y F(Y5 S{;) - F(Y38€+1)

the resulting homomorphism between the spaces of global sections. Let Z}. < 8} be the kernel of
the sheaf homomorphism (A.3) so that

(0} — Fp — sp 2> 2! (A4)
is an exact sequence of sheaves. If Y is locally path-connected, 37?/ =Y xZo.

From now on, we assume that Y is paracompact. By the exactness of (A.4),

kerd,y = [(Y;ZP) = H(Y; ZP). (A.5)
By [32, p193], each sheaf 8} is fine. By [32, p202], this implies that

HIY;82) =0  VpeZ®, qeZ™". (A.6)

Each Zy-valued singular p-cochain w on Y determines a section (pyy (w@))yey of 8V over Y. By
[32, 5.32], the induced homomorphism

HP(Y;Zg) — HP(D(Y387),duy),  [@w] — [(pyy (@))yer]; (A7)

is an isomorphism. Combining the p=0 cases of this isomorphism and of the identification (A.5),
we obtain an isomorphism (A.1) for p=0.

Suppose Y is locally H*-simple and peZ* with p<k. The sequence
(0} — FL T b L gPTe () (A.8)

of sheaves is then exact for every ¢ Z>° with ¢ <p. From the exactness of the associated long
sequence in Cech cohomology, (A.5), and (A.6), we obtain isomorphisms

ker d.y _ ﬁO(Y;zp) i}ﬁl(y.zp—l)
Imd, 1.y dp_l(j;/[O(Y;gp—1>) Ly )

Sy HI(Y;FEL ) 25 I (Y;Z0797Y) Y geZt, g<p.

Sy : HP(D(Y;8%), duy)

Putting these isomorphisms together, we obtain an isomorphism
3 HP(D(Y;8), duy) — HP (YY) = HP (Y Zs). (A.9)

Combining (A.7) with this isomorphism, we obtain an isomorphism as in (A.1) with p>0.
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Suppose Y is another paracompact locally H*-simple space. A continuous map f: Y — Y” induces
commutative diagrams

HP(Y'; Zo) —=> HP(D(Y'; %)), duyr) {0} —=FP97 807071 gbrd . (0}

. E P |

HP(Y; 7o) —== HP (F(Y;S;’;), d*;y) (0} —= z{;—q—l *)S{;_q_l S p—

for all p,qe Z*° with ¢ <p <k. Combining the p =0 cases of the first diagram above and of the
identifications (A.5) for Y and for Y’, we obtain a commutative diagram (A.2) for p = 0. The
second commutative diagram above induces a commutative diagram

Hp(F(Y” S;‘,,)’ d*;Y/) ~ }vlp (Yv/7 Zg)

|

HP(D(Y;8%), duy ) —— HP(Y;Zy)

with the horizontal isomorphisms as in (A.9). Combining this with the first commutative diagram
in this paragraph, we obtain (A.2) with p>0. O

Let Y be a paracompact locally H'-simple space. We now describe the p = 1 case of the iso-
morphism (A.1) explicitly. Suppose w is a Zg-valued singular 1-cocycle on Y. Since Y is locally
H'-simple, there exist an open cover {Us}aea of Y and a Zs-valued singular 0-cochain p, on U,
for each aed so that

do.v, o = w|U‘l Yaed.

We define a Cech 1-cocycle 7 on Y by
Nap = “5‘%;; - “a‘w €8y (Ung)  Va,Bed. (A.10)

Since do,u,5Map = 0 and Y is locally path-connected, 7,4 is a locally constant function on Ugg.
Thus, n takes values in the sheaf of germs of Zs-valued continuous functions on Y and so defines
an element [n] of H(Y;Zs). This is the image of [c] under the p=1 case of the isomorphism ®y
in (A.1).

Suppose Y is a CW complex and w is a Zs-valued singular 1-cocycle on Y as above. For each
vertex a €Yy of Y, let U, c Y denote the (open) star of «, i.e. the union of all open cells é of Y
so that « is contained in the closed cell e. In particular, U, is an open neighborhood of o and the
collection {Uy}aey, covers the 1-skeleton YicY. We take

{Ua}aesﬂ = {Ua}aeYo (] {Y_Yl};

this is an open cover of Y. By adding extra vertices to Y71, we can ensure that no closed 1-cell is a
cycle. This implies that every closed 1-cell e of Y runs between distinct vertices o and 8 with

e c UyuUp, enUypg = é, enU, =g Vyed—{a,p}. (A.11)
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For every aedl, there then exists a Zo-valued singular 0-cochain u, on U, so that
d();Ua/.La = w‘(]gv /-La(a) =0 Y aed.

Every closed 1-cell e of Y is cobordant to the difference of a singular 1-simplex e, running from
a point x € € to § and a singular 1-simplex e, running from z to a. By (A.11), ezq < U, and
ez3 < Upg. Since w is a cocycle, it follows that

w(e) = w(ewp—era) = w(ewp) — W(ewa) = {dowstis} (exs) — {dovatia} (€sa)
= (up(B)—pp(x)) = (tal@) = pa(x)) = pal)—ps(z).

Along with (A.10), this implies that the Cech cohomology class [n] = ®y ([@]) corresponding to [w]
under the isomorphism (A.1) is represented by a collection {1y}, geq associated with an open cover
{Us}aea of Y such that

é C Uypg, nag‘é =w(e) € Zy

for all a, BeYy and every closed 1-cell e with vertices o and S.

A.2 Sheaves of groups

Cech cohomology groups HP are normally defined for sheaves or presheaves of (abelian) modules
over a ring. The sets H° and H' can be defined for sheaves or presheaves of non-abelian groups as
well. The first set is still a group, while the second is a pointed set, i.e. it has a distinguished ele-
ment. A short exact sequence of such sheaves gives rise to an exact sequence of the corresponding
Cech pointed sets, provided the kernel sheaf R lies in the center Z (8) of the ambient sheaf §; see
Proposition A.3. The main examples of interest are the sheaves § of germs of continuous functions
over a topological space Y with values in a Lie group G, as in Section A.3.

We denote the center of a group G by Z(G). We call a collection

. +1 .0 Al 1
((5p.C’p—>C’p )p:07172,*.0 xCt'—C")
consisting of maps ¢, between groups C? with the identity element 1, and a left action * a short

cochain complex if

Splp =1pi1, Opr100, = Lpyo, 61(fxg) =019 V feC®, gedi(2(C?)), (A.12)
So(f-f") = f=(bof"), frg=(00f)g V[ ['eC’ geZz(Ch), (A.13)
6p(g-g/) = (5pg) (5pg’) VgeCP, g'eZ(CP), p=1,2. (A.14)

By the second condition in (A.13),
CO{g} = (Imdp)-{g} V geZ(Ch). (A.15)
By both conditions in (A.13),
H°(C*) = H°((C?, 6p)p=0,1,2, %) = ker 6y = 65" (11) (A.16)

is a subgroup of CV. By the last property in (A.12), * restricts to an action on ker d; = 51_1(12).
We can thus define
HY(C*) = H'((C?,6p)p=0,1,2, %) = ker §; /C°; (A.17)
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this is a pointed set with the distinguished element given by the image of Im §y31; in H(C*).

By (A.13) and the p =1 case of (A.14), dp and §; are group homomorphisms if the group C? is
abelian and = is the usual action of the 1-coboundaries on the 1-cochains via the group operation. In
this case, (A.17) agrees with the usual definition and the last condition in (A.12) is automatically
satisfied. If in addition the group C? is also abelian, as happens for the kernel complex B* in
Lemma A.2 below, then the map s is a group homomorphism as well and

H?(C*) = H*((CP,6p)p=0,1,2, *) = ker 85 /Im 6
is a well-defined abelian group.

A morphism of short cochain complexes

v=(tp)p=01,2,3 (B?,0p)p=0,1,2,%) — ((C?,6p)p=0,1,2, *)

is a collection of group homomorphisms ¢, : B? — C? that commute with the maps d, and the
actions #. Such a homomorphism induces morphisms

ts: H?(B*) — HP(C*), p=0,1,

of pointed sets, i.e. 14 takes the distinguished element of the domain to the distinguished element
of the target; the map ¢g is a group homomorphism. The kernel of such a morphism is the preimage
of the distinguished element of the target. The next lemma is an analogue of the Snake Lemma
[32, Proposition 5.17] for short cochain complexes of groups.

Lemma A.2. For every short exact sequence

{1} — ((BP,6,)p=0,12: %) == ((C?,8)p01.2,%) == ((DP,0p)po,1,2, %) — {1}
of short cochain complexes of groups such that v,(B?)c Z(CP) for p=1,2, there exist morphisms
dp: HP(D*) — HP*Y(B*), p=0,1, (A.18)
of pointed sets such that the sequence

{1} — H(B*) “% H(C*) 2 H(D*) %

, L ‘ ; (A.19)
o {Y(BT) L HY(CF) A5 5 (D7) L B (BY)

of morphisms of pointed sets is exact. The maps 0, are natural with respect to morphisms of short
exact sequences of short cochain complexes of groups.

Proof. We proceed as in the abelian case. Given d,ekerd, < DP, let ¢, € CP be such that j,(c,) =d,,.
Since

ip+1(0p(cp)) = 0y (ip(cp)) = p(dp) = Lps1 € DPTY,

there exists a unique by 1€ BPT! such that ¢p41(bp11) =0,(cp). By the second condition in (A.12),
bp+1€ker é,1. We set
ap([dp]) = [bp+1] e H'*1(BY).
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By the first condition in (A.13), [b1] is independent of the choice of coe CY such that jo(co) = dp.
By the p=1 case of (A.14) and the assumption that ¢,(B?)c Z(CP) for p=1,2, [b2] is independent
of the choice of ¢ € C! such that ji(c;)=d;. By the last condition in (A.12) and the assumption
that 12(B?) < Z(C?), [ba] does not depend on the choice of representative dy for [di]. Thus, the
maps (A.18) are well-defined. By the first condition in (A.12), d,([1,]) = [1p+1], i-e. J, is a mor-
phism of pointed sets. By the construction, the maps 0, are natural with respect to morphisms of
exact sequences of short cochain complexes.

It is immediate that (A.19) is exact at H%(B*) and H°(C*) and that
jsote=[11]: HY(B*)— HY(D*), 0,0ix=[1p41]: HP(C*)—> HPT(B*).

The exactness of (A.19) at H'(B*) is immediate from (A.15) with g=1;€ Z(C'). The exactness at
HY(C*) follows from (A.15) with g=1; € Z(D"), the second condition in (A.13), and the assumption
that ¢1(B') < Z(C'). The exactness at H°(D*) follows from (A.15) with g = 1; € Z(B'), both
conditions in (A.13), and the assumption that ¢1(B') = Z(C'). The exactness at H'(D*) follows
from the assumption that ¢,(BP)c Z(CP) for p=1,2 and the p=1 case of (A.14). O

We next review the definitions and key properties of the group HO° and pointed set H! for a sheaf 8
of groups over a topological space Y. We denote by Z(S)c 8 the subsheaf consisting of the cen-
ters Z(8,) of the groups 8, with yeY and by 1,€8, the identity element of S,.

Let U={Uq}aeca be an open cover of Y. As in the abelian case, the set

CP(U;8) = [[T(Uagar.apiS)

aQ,o,...,opEA
of Cech p-cochains is a group under pointwise multiplication of sections:

L CP(U;8) x OP(U;S) — CP(U;S),
{h ’ h/}aom...ap (y) = haoal...ozp (y) ) h,aooqmak (y) Vag, ai, ..., apegﬂ, yeUaoal”'a” ’

The identity element ]lper'p (U;8) is given by

(]lp)aoal...ap(y) = ]ly VOéo, Qp,y..., O‘peda yeUaoal...ap .

Define the boundary maps by

(503 éﬂ(g, 8) - él(g’ 8)7 (&)f)aoal = fOco‘Uaoal ' fojll‘UaOal )

01: él(g; S) - éQ(Q; S)a (5lg)a0a1a2 = Gaias o

"Gagas " Yoy

|U°‘00‘10‘2 |UO‘OD‘10‘2 Ua0&1a2 ’

We also define a left action of CO(U;8) on C1(U;8) by

«: COU;8) x CHU;8) — CHU;8),
{f*g}aoar = fao‘Ua()a1 " Japar fojllanoale I'(Uagar; S)-
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We now construct a short cochain complex. Let

CP(U;S), if p=0,1,2;
Cp(Q; ) _ (fav) 1 p
Abel(CP(U;S)) if p=3.
For p=0,1, we take
Op: CP(Q;S) — C'pH(Q;S)
to be the maps defined above. We take d5 to be the composition of the map
82: CHU;8) — C3(U;8),

(62h) = ha1a2a3| a_la @ | ha0a1a3| a?la o | s
Qo 23 Ua0a1a2a3 0203 Ua0a1a2a3 Ua0a1a2a3 012 Ua0a1a2a3

with the projection 5’3(Q; S)—C3 (Q; 8) The tuple

((6,: CP(U;8)— CPTH(U; 8)) x: COU; 8)x CH(U; 8) — CH(U; 8))

p:07172,
is then a short gochain complgx of groups. We denote the associated group (A.16) and the pointed
set (A.17) by H(U;S8) and H'(U;S), respectively.

Let U'={U!}4eq be an open cover of Y refining U, i.e. there exists a map pu: o4’ —> ol such that
U,cU u(a) for every aed’. Such a refining map induces group homomorphisms

pi: CP(U;S) — CP(U;8), (A.20)
v heép(Q;S), Qg, ..., aped’.

(H51) ...y = Prsteo).omten oy

These homomorphisms commute with &g, d1, and the action of 5’0(-;8) on Cv'l(,S) Thus, u
induces maps

Ry HU;8) — HO(U';S) and Ry, : HY(U;8) — H'(U';S) (A.21)

of pointed sets; the first map above is a group homomorphism.

If y': ' —> ol is another refining map, then U}, c U, () () for every aedd’ and thus

:U’El;|ker50 = M6*|ker50 : ker(50 — ker 50 c CO(QI’ S)

For ge C1(U;8), define
hige COUS) by  (M9)a = Gu(ayu(lur-

If geker 6, C1(U;S), then

"9y (an) |U g_} ‘U
an)u(a) U, o) u(ag)ntar) (@) u(@o) U, (o) u(ag)utar)’

@O)‘U "9 } )}U =9 } ) ( ’U
W (app! (agiu(ag) M (@1)(@0) U, a1yl (ag)u(ag) 1 (@) (@0) WU, a1y (ag)u(ag)

Iutaoyutan)ly W () (e ) u(ery)
9! (o)
for all ag, a1 €. From this, we find that

g = (hig) * (utg) ¥ gekerd, ¢ CLU;S).
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By the previous paragraph, the pointed maps (A.21) are independent of the choice of refining map
p: i’ —> . We can therefore define the group H(Y;8) and the pointed set H'(Y'; 8) as the direct
limits of the groups HO (U;8) and of the pointed sets H L(U;8), respectively, over open covers of Y.
The map -

PY;8) — HY8),  f— (flva)eu (A.22)

is a group isomorphism.

If § is a sheaf 9f abelian groups, as happens for the kernel sheaf & in Proposition A.3 below, the
definitions of H°(Y';8) and H'(Y;8) above reduce to the ones in [32, Section 5.33]. Furthermore,

2 s) = Ker(02: Ui S) — CUU; )
= Im(6;: él(Q;S)%éQ(QHS))

is a well-defined abelian group for every open cover U of Y. The group homomorphisms
Ri,,gz H*(U;S) — H*(U;S)

induced by refining maps still depend gnly on the covers U and U’. The abelian group H 2(v;8)
is again the direct limit of the groups H?(U;S8) over all open covers U of Y.

A homomorphism ¢: R — 8§ of sheaves of groups over Y induces maps
L DY R) — T(Y:S), e HY(Y;R) — HOY;S), 1 HY(Y:R) — H(Y;S)

between pointed spaces. The first two maps are group homomorphisms which commute with the
identifications (A.22).

Proposition A.3. Let Y be a paracompact space. For every short exact sequence
1 —* 585 — {1} (A.23)
of sheaves of groups over'Y such that L(R)c Z(S), there exist morphisms
Sp: HP(YV;T) — HPYY(Y;R), p=0,1, (A.24)
of pointed sets such that the sequence
(1) — HO(Y3 ) 5 FO(Y38) 25 [10(v:9) 25
S0, FUYLR) s Y S) S BY(Y:T) L B2y %) |

of morphisms of pointed sets is exact. The maps (5vp are natural with respect to morphisms of short
exact sequences of sheaves of groups overY .

Proof. Let U={Uy}aea be an open cover of Y,

BY(U) = CP(U; %), CP(U) = CP(U;S), DP(U) = C"(U;9).
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Since t(R) < Z(8), tx(BP(U))< Z(CP(U)) for all p. By the exactness of (A.23), the sequence
{1} — B'(U) - C(U) - D" (U)

of groups is exact. For p=0,1,2,3, we denote by D (U)ch(U) the image of J- For p=0,1, let
H”(U;7) be the Cech pointed sets determined by the short cochain complex D (U).

The sequence A
{1} — B(U) > CP(U) > D" (U) — {1} (A.26)

of short cochain complexes is exact. By Lemma A.2, there thus exist morphisms
Sp: H'(U;T) — HPY'(UsR), p=0,1, (A.27)

of pointed sets such that the sequence

(1} — BOU; R) > HOWU; 8) 25 B (U; ) 2% (429
0 HYUsR) - HYUS) 25 HYU;T) 25 AU R)

of morphisms of pointed sets is exact.

Let U’ = {U.}oear be an open cover of Y refining U and p: 4’ —>d be a refining map. By
the naturality of the morphisms (A.27), the group homomorphisms (A.20) induce commutative
diagrams

~

H'(U;9) P\ (U; )
" |t
. 3. -

oU;J) HPHY(U; R)

of pointed sets. Taking the direct limit of the morphisms (A.27) over all open covers of Y, we thus
obtain morphisms

bp: H'(Y;T) — HP*Y(Y;R), p=0,1, (A.29)

of pointed sets such that the sequence (A.25) with H*(Y;J) replaced by FPH(Y; T) is exact.

The inclusions i,: D"(U) —> DP(U) of short cochain complexes commute with the refining homo-
morphisms (A.20) and induce morphisms

i, H(U;T) — HP(U;F) and  ix: H(Y;9) — HP(Y;T) (A.30)

of pointed sets. By the paracompactness of Y and the reasoning in [32, p204], for every open
cover U= {Up}aea of Y and every element d,, of DP(U) there exist an open cover U’ = {U/}acar
refining U, a refining map ji: ' — o, and an element dj, of DP(U’) such that ip(dy) =y (dp). This
implies that the second map in (A.30) is a bijection. Composing (A.29) with this bijection, we
obtain a morphism as in (A.24) so that the sequence (A.25) is exact.

A morphism of short exact sequences of sheaves of groups over Y as in (A.23) induces morphisms of
the corresponding exact sequences of short cochain complexes as in (A.26) and of the inclusions i,
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above. Thus, it also induces morphisms of the corresponding maps as in (A.27) and as on the
left-hand side of (A.30). These morphisms commute with the associated maps (A.21) and thus
induce morphisms of the maps as in (A.24). This establishes the last claim. O

A.3 Sheaves determined by Lie groups

For a Lie group G and a topological space Y, we denote by Sy (G) the sheaf of germs of continuous
G-valued functions on Y and let

OP(Y;G) = H*(Y;8y(G)) ¥ p=0,1.

If G is abelian, we use the same notation for all peZ. We begin this section by applying Proposi-
tion A.3 to short exact sequences of sheaves arising from short exact sequences

(1} — K- G-5HqQ— {1} (A.31)

of Lie groups. For certain kinds of exact sequences (A.31), the topological condition on Y of Defi-
nition A.4 appearing in the resulting statement of Corollary A.5 reduces to the locally H'-simple
notion of Definition 3.2. For such exact sequences of Lie groups and topological spaces, we combine
Proposition A.1 and Corollary A.5 to obtain an exact sequence mixing Cech and singular cohomol-
ogy; see Proposition A.6.

A homomorphism ¢: K — G of Lie groups induces a homomorphism
t: Sy (K) — Sy (GQ)
of sheaves over every topological space and thus morphisms
Lt HP(Y: K) — HP(Y;G)

of pointed sets for p=0, 1; the p=0 case of ¢, is a group homomorphism.

A continuous map f:Y — Y’ induces group homomorphisms
f5: CP(U; 8y/(@Q)) — CP(fLU); Sy (@),  peZ,

for every open cover U of Y’ that commute with the Cech coboundaries and group actions for the
sheaves 8y/(G) and Sy (G) constructed in Section A.2 and with the refining homomorphisms as
in (A.20). Thus, f induces morphisms

F5HP(Y'G) — HP(Y;G)

of pointed sets for p =0, 1; the p=0 case of f* is a group homomorphism. If G is abelian, then
f induces such a morphism for every p € Z and this morphism is a group homomorphism. If in
addition ¢ is a homomorphism of Lie groups as above, then the diagram

~

HP(Y'; K) —*— HP(Y";G)

- ,

H?(Y; K) o HP(Y;G)

commutes.
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Definition A.4. Let (A.31) be a short exact sequence of Lie groups. A topological space Y is
locally simple with respect to (A.31) if it is locally path-connected and for every neighborhood U cY
of a point y€Y and a continuous map fy: U — @ there exist a neighborhood U’ c U of y and a
continuous map f{;: U'— G such that fy|p=jof};.

For any topological space Y, a short exact sequence (A.31) of Lie groups induces an exact sequence
{1} — Sy (K) — 8y (G) = 8v(Q)

of sheaves over Y. The last map above is surjective if and only if Y is locally simple with respect
to (A.31). If the restriction of j to the identity component Gy of G is a double cover of (Qy and
71(Qo) is (possibly infinite) cyclic, then the condition of Definition A.4 is equivalent to Y being
locally H!'-simple. This follows from the lifting property for covering projections [27, Lemma 79.1],
Hurewicz isomorphism for 7; [31, Proposition 7.5.2], and the Universal Coefficient Theorem for
Cohomology [26, Theorem 53.3].

Corollary A.5. LetY be a paracompact space and (A.31) be a short exact sequence of Lie groups
such that oK) Z(G). If Y is locally simple with respect to (A.31), then there exist morphisms

SP: ﬁp(Y7Q) - ﬁ—p+1(Y;K)7 b= Oa 17 (A32)

of pointed sets such that the sequence

(1) — HOY; K) 5 HO(Y:G) 25 HO(Y: Q) = (A3
= HN Y K) 5 H'(Y;G) 25 HY(Y:Q) =5 B (Y K)

of morphisms of pointed sets is exact. The maps Sp are natural with respect to morphisms of short
exact sequences of Lie groups and with respect to continuous maps between paracompact spaces that
are locally simple with respect to (A.31).

Proof. Since Y is locally simple with respect to (A.31), the sequence
{1} — 8y(K) == 8y(G) > sv(Q) — {1} (A.34)

of sheaves over Y is exact. Since «(K) < Z(G), «(Sy(K)) < Z(Sy(G)). The existence of mor-
phisms (A.32) so that the sequence (A.33) is exact thus follows from the first statement of Propo-
sition A.3.

A morphism of short exact sequences of Lie groups as in (A.31) satisfying the conditions at the
beginning of the statement of the proposition induces a morphism of the corresponding short exact
sequences of sheaves as in (A.34). Thus, the naturality of (A.32) with respect to morphisms of
short exact sequences of Lie groups follows from the second statement of Proposition A.3.

A continuous map f:Y — Y’ between paracompact spaces that are locally simple with respect
to (A.31) induces a morphism of the corresponding exact sequences of short cochain complexes
as in (A.26) and of the inclusions i, as in the proof of Proposition A.3. Thus, it also induces
morphisms of the corresponding maps as in (A.27) and as on the left-hand side of (A.30). These
morphisms commute with the associated maps (A.21) and thus induce morphisms of the maps as
in (A.32). This establishes the naturality of (A.32) with respect to continuous maps. O
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Proposition A.6. Let Y be a paracompact locally H'-simple space and
(1} —Z, 5 G 1> Q — {1} (A.35)

be an exact sequence of Lie groups such that «(Z2) < Z(G) and w1 (Qo) is cyclic. Then there exist

morphisms o o 5
bo: HY(Y;Q) — HYY;Zy) and 6: H(Y;Q) — H*(Y;Zs), (A.36)

of pointed sets such that the sequence

Oy e, 0y @) 5 FO(Y: 0) %0,
{1} — H(Y;Zy) — H(Y;G) — H'(Y;Q) (A.37)

0 HY(Y: Zy) 5 HY(Y;G) 25 HY(Y;Q) 25 H(Y:Zo)

of morphisms of pointed sets is exact. If in additionY is locally H?-simple, then the same statement
with fIQ(Y; Zs) replaced by H?(Y;Z3) also holds. The maps b0 and &, are natural with respect to
morphisms of exact sequences of Lie groups as in (A.6) and with respect to continuous maps between
paracompact locally H'-simple spaces.

Proof. Since Y is locally H'-simple, it is locally simple with respect to the exact sequence (A.35)
in the sense of Definition A.4. Thus, this proposition with all HP(Y’; Zs) replaced by HP(Y;Zs) is a
specialization of Corollary A.5. By Proposition A.1, we can then replace HO (Y Zs) by HO(Y;Zs)
and H'(Y;Zy) by H*(Y;Zy). If in addition Y is locally H2-simple, then H2(Y;Zs3) can also be
replaced by H%(Y; Zs). O

A.4 Relation with principal bundles

Let G be a Lie group and Y be a topological space. We recall below the standard identification of the
set Priny (G) of equivalence (isomorphism) classes of principal G-bundles over Y with the pointed
set H L(Y;G). This identification is key for applying Proposition A.6 to principal G-bundles, in-
cluding to study Spin- and PinT-structures in the classical perspective of Definition 1.1.

Suppose p: P —>Y is a principal G-bundle. Let U = (U, )aeq be an open cover of Y so that
the principal G-bundle P|y, is trivializable for every a e sl. Thus, for every av€ o there exists a
homeomorphism

Oo: Pl — UaxG st
7Toc;lo(poz =Tp, T2 ((poz(pu» = (7To¢;2 (q)a(p)))u VPEP|UQ7 ueG@,

where .1, Ta2: Uy x G —U,, G are the two projection maps. Thus, for all a, fedl there exists
a continuous map

9op: Uag — G st ma(®a(p)) = gas(mp(p) - (ms2(Ps(p)) YpeP|,
These continuous maps satisfy

92ly, . 9 vy, G08ly,,, =1 VouByest.
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Therefore, gp=(9a8)a,peq lies in ker §; cél(g; Sy (G)) and thus defines an element
lgp] € H'(Y;G).
We show below that [gp] depends only on the isomorphism class of P.

Suppose U’ ={U/ }peq is a refinement of U. If y: ' —>d is a refining map, then

b, =P P

—>U&XG

M(a)}P|U/ oy,

is a trivialization of the principal G-bundle P]U& for every a€ o’. The corresponding transition
data is

9p ={Gu@u@ vy, Vap— G}, e = H19P-

Since 5
lgp] = [wigr] € H'(Y;G),

it is thus sufficient to consider trivializations of isomorphic vector bundles over a common cover
(otherwise we can simply take the intersections of open sets in the two covers).

Suppose ¥: P— P’ is an isomorphism of principal G-bundles over Y and the principal G-bundle
P'|y, is trivializable for every aed. Thus, for every aedl there exists a homeomorphism

O, P, — UaxG st
Ta10®), = pr,  Ta(®L(P'0) = (Tay2(PL(P") v Vp'ePly,, ueG.
For every aed, there then exists a continuous map

foils— G st man(®, (V) = fu(mp(®) - (moa(®a(p)) YpEP|,, .

The transition data gpr = (g(/lﬁ)a,ﬁeﬂ determined by the collection {®/ },cq of trivializations of P’
then satisfies

g::y,B:fa’Uaﬁ'gaﬁ'fﬂ_lanﬂ Va,ﬁesﬂ.
Thus, gp :f*gpa where fE(fa)aesﬂa and

lop] = [9p] € H'(Y;G).

We conclude that the element [gp]e H'(Y;G) constructed above depends only on the isomorphism
class of the principal G-bundle P over Y.

Conversely, suppose [g]e H(Y; G). Let U= (Ug)qes be an open cover of Y and 9={9ap}a,peq be
an element of ker 5 = C1(U; Sy (G)) representing [g]. Define

mp,: Py = (U{a}anxG> ~g—Y,

aed

(Y, gap(W)u) ~¢ (B,y,u) Va,Bed, (y,u)eUsxG.
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This is a principal G-bundle over Y with trivializations
d,: Pg’Ua —s Uy xG@G, @a([a,y,u)]) = (y,u),
for aedl and the associated transition data g. Thus,
lop,] = 9] € H'(Y; Q). (A.38)

We show below that the isomorphism class [Py of P, depends only on [g].

Suppose U’ ={U/ }peqr is a refinement of U and pu: 9’ —> ol is a refining map. The map
Ui Py = ( | [{apx U G) ~ kg Py= ( | [fa)xUax G) ~
aed’ aed
U ([, y,u]) = [p(a),y, ul,
is then an isomorphism of principal G-bundles. Thus, it is sufficient to show that if
9.9 ekerdy = C'(Us8y(G))  and 9] = [¢'] € H' (UsSv(G)),
then the principal G-bundles P, and P, are isomorphic. By definition, there exists
= (Ja)aca € CO(UsSv(G)) st g = [xg
The map
U: Py= ( |_|{a}>< Uq x G>/~g—> Py = ( |_|{a}>< Uq x G) ~g
aed aed
\P([a7y’u]) = [avyafoc(y)'u]v
is then an isomorphism of principal G-bundles.

Let P be a principal G-bundle over Y, {®,}qea be a collection of trivializations of P over an open
cover U= (Uq)aed, and gp=(gas)a,pes be the corresponding transition data. The map

V: P — Py, = ( | [ta)xUs XG)/~9, U(p) = [a, ®a(p)] YpePly,, aed,

aed

is then an isomorphism of principal G-bundles. Along with (A.38), this implies that the maps

Priny (G) — FII(Y; G), [P] — [gr],

- ) (A.39)
H(Y;G) — Priny (G), 9] — [Py],
are mutual inverses that identify Priny (G) with H'(Y;G).

If f:Y—Y"is a continuous map and P—Y" is a principal G-bundle, then
[9p+p] = f*[gp] € H(Y:G).

Thus, the identifications (A.39) are natural with respect to continuous maps.
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Corollary A.7. LetY be a paracompact locally H'-simple space and ®y be as in (A.1). For every
real line bundle V over Y,

HY(Y;Z5) 2 @y (wi(V)) = [goan] € H(Y;0(1))
under the canonical identification of the groups Zs and O(1).

Proof. By the Universal Coefficient Theorem for Cohomology [26, Theorem 53.5], the homomor-
phism
Kt HI(Y;ZQ) — Hom(wl(Y)jHl(Sl;Zg)), {/i(n)}(f S’l—>Y) = f*n,

is injective. By the naturality of wy, ®y, and (A.39), it is thus sufficient to show that
HY(RPY; Zy) 2 gpr (wi(f*V)) = [go(svy] € H' (RPY; O(1)) (A.40)

for every continuous map f: RP! — Y. Since every line bundle over the interval [0, 1] is trivializ-
able, the line bundle f*V is isomorphic to either the trivial line bundle 7 or the real tautological
line bundle ~g,;. Both sides of (A.40) vanish in the first case. Since (A.39) is a bijection, this
implies that the right-hand side of (A.40) does not vanish in the second case. The left-hand side
of (A.40) does not vanish in this case by the Normalization Aziom for Stiefel-Whitney classes [24,
p38|. O
A.5 Orientable vector bundle over surfaces

We now combine the description of complex line bundles in terms of Cech cohomology and the
identification of some Cech cohomology groups with the singular ones to characterize orientable
vector bundles over surfaces and their trivializations.

Lemma A.8. Let Y be a paracompact locally contractible space. The homomorphism
c1: LBe(Y) — H*(Y;Z), L — ci(L),
from the group of isomorphism classes of complex line bundles is an isomorphism.
Proof. By Section A.4, there is a natural bijection
LBc(Y) — H'(Y;C*);

it is a group isomorphism in this case. By the proof of Proposition A.1, there are natural isomor-
phisms
HP(Y;Z) ~ HP(Y;Z) VpeZ.

By the reasoning in [32, Section 5.10], Sy (C) is a fine sheaf. Along with [32, p202], this implies that
HP(Y;8y(C)) = {0}  VpeZ™.
Since Y is locally contractible, it is locally simple with respect to the short exact sequence

exp

(0} —2Z—C 2B — {0}
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of abelian Lie groups in the sense of Definition A.4. Thus, we obtain a commutative diagram

{0} = HY(CP®; C) — > LB¢(CP®) 21~ H2(CP®;Z) —> H?(CP*;C) = {0}

lf* if* v lf* lf* (A.41)

{0y=H'(Y;C) LBc(Y) —2~ HX(Y;2) H2(Y;C)= {0}

of group homomorphisms for every continuous map f: Y — CP®.

Let y¢ —> CP® be the complex tautological line bundle. By [24, Theorem 14.5], H?(CP®;Z) is
freely generated by c;(yc). Along with the exactness of the top row in (A.41), this implies that
51 = ey in this row. By [24, Theorem 14.6], for every complex line bundle L over Y there exists a
continuous map f: Y —> CP® such that L= f*y¢. Along with the commutativity of (A.41), these
statements imply that 81 =+c; in the bottom row in (A.41) as well. The claim now follows from
the exactness of this row. O

Remark A.9. The statement and proof of Lemma A.8 apply to any paracompact space Y satis-
fying the k=2 case of Definition 3.2 with HP(-;Zs) replaced by HP(-;Z).

Corollary A.10. Let Y be a CW complex with cells of dimension at most 2. If H*(Y;Z)={0},
then every orientable vector bundle V' over Y is trivializable.

Proof. Let n=rkV. If n=1, then V is an orientable line bundle and is thus trivializable. Suppose
n>2. Since the cells of Y are of dimension at most 2, there exists a rank 2 orientable vector bundle
L over Y such that

VaLe(YxR"?). (A.42)

The real vector bundle L admits a complex structure i. It can be obtained by fixing an orientation
and a metric on L and defining ive L for ve L nonzero to be the vector which is orthogonal to v
and has the same length as v so that v,iv form an oriented basis for a fiber of L. By Lemma A.8,
(L,1) is trivializable as a complex line bundle. Along with (A.42), this establishes the claim. [

Corollary A.11. Let 3 be a surface, possibly with boundary, and n>=3. The map
OVB,(X) — H*(%;Zy), V — wy(V),
from the set of isomorphism classes of rank n oriented vector bundles over X is a bijection.
Proof. We can assume that > is connected. If 3 is not compact or has boundary, then
H (Y3 Z), H (%5 Zs) = {0}.
By Corollary A.10, we can thus assume that ¥ is closed and so H?(X; Zso) ~ Zo.

Let C'c X be an embedded loop separating > into two surfaces, 31 and ¥, with boundary C.
By Corollary A.10, a rank n oriented vector bundle V' over ¥ is isomorphic to the vector bundle
obtained by gluing ¥ x R™ and ¥ x R™ along C'x R™ by a clutching map ¢: C'—> SO(n). Since
n =3, m1(SO(n)) ~ Zy. It thus remains to show that there exists an orientable vector bundle V'

239



over 3 with wq (V') #0.

Let yc.1 —> CP! be the complex tautological line bundle. Since wa(yc.1) is the image of ¢1(yc1)
under the reduction homomorphism

H?*(CP';Z) — H*(CP";Zs),

wa(yc1) # 0 by the proof of Lemma A.8. If f:% — CP! is a degree 1 map with respect to the
Zo-coefficients, then

{wa(f*yve), [Elzsy = {wa(ven), f[S]z, » = (wa(ve;1), [CPz, » # 0.

Thus, ws of the orientable vector bundle
V=Ff"v® (E XR"_2) — )
is nonzero. [

Corollary A.12. Suppose Yisa compact surface with two boundary components and S s a closed
surface obtained from > by identifying these components with each other. Let neZ* and V—3
be the orientable vector bundle obtained from 3 x R" by identifying its restrictions to 0% via a
clutching map ¢: St —SO(n). IfE is connected and n>=3, then ¢ is homotopically trivial if and
only if wg(f/) =0.

Proof. By Corollary A.10, every rank n orientable vector bundle over 3 is trivializable. Thus, every
rank n orientable vector bundle V' over X is obtained from X xRR™ by identifying its restrictions to
the two components of 0¥ via a clutching map ¢: S —SO(n). Since

m1(SO(n)) ~ Z, and H2(§];Z2) ~ 7o,
the claim thus follows from Corollary A.11. O

Corollary A.13. Let ¥ be a compact connected surface with boundary components C,C1,...,Cy
and V' be an orientable vector bundle over X. If rkV = 3, then every trivialization of V' over
Cru...uUCy extends to a trivialization ¥ of V' over ¥ and the homotopy class of the restriction
of ¥ to V|c is determined by the homotopy class of its restriction to V|cyo...ucy -

Proof. Let n=rkV and choose an orientation on V. Denote by S the connected surface with one
boundary component C' obtained from Y by attaching the 2-disks Di2 along the boundary compo-
nents C;. Let V be the oriented vector bundle over 3 obtained by identifying each D?xR™ with V/
over C; via the chosen trivialization ¢;. By Corollary A.10, the oriented vector bundle V admits a
trivialization W. Since there is a unique homotopy class of trivializations of YA/| p2, the restriction
of ¥ to V¢, is homotopic to ¢; and thus can deformed to be the same. '

Suppose ¥, ¥’ are trivializations of V — X restricting to the same trivializations ¢; of Ve, for

everyi=1,...,k. Denote by 3 (resp. &) the closed (resp. compact) surface obtained from two copies
of ¥, ¥ and E’ , by identifying them along the boundary components corresponding to C, C1, ..., Cy
Q“esp. Cy,...,Ck). Thus, ¥ has two boundary components, each of which corresponds to C, and

> can be obtained from ¥ by identifying these two boundary components. Let

:¥—Y and §:¥X-—X
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be the natural projections. The trivializations ¥ and ¥’ induce a trivialization T of q*V over )
which restricts to ¥ and ¥ over &, 5, 5. The bundle §*V over 3 is obtained from §*V by
identifying the copies of V¢ via the clutching map ¢: S'—SO(n) determined by the difference
between the trivializations of V| induced by ¥ and ¥’. Since

w2 (T*V) = FFwa(V) = 0 € H2(S; Zy),

Corollary A.12 implies that ¢ is homotopically trivial. Thus, ¥ and ¥’ determine the same homo-
topy class of trivializations of V|c. O]

For an oriented vector bundle V.— Y, let Triv(V) denote the set of homotopy classes of trivial-
izations of V. For an oriented vector bundle V' over a surface X, we define the map

ev: Triv(Vips) — Zs (A.43)

by setting ey (¢) =0 for the trivializations ¢ of V|sy that extend to trivializations of V' over ¥ and
ey (¢)=1 for the trivializations ¢ that do not.

Corollary A.14. Let X3 be a compact connected surface with 0X# & and V' be an oriented vector
bundle over . If tkV =3, then the map (A.43) is surjective and changing the homotopy class of
a trivialization ¢ over precisely one component of 0% changes the value ey ().

Proof. This follows from m1(SO(n))~ Zs and Corollary A.13. O

B Lie group covers

This appendix reviews basic statements concerning covers of Lie groups by Lie groups that are
Lie group homomorphisms. Lemma B.1 describes the structure of connected Lie group covers.
Lemma B.2 and Proposition B.3 do the same for covers of disconnected Lie groups with connected
restrictions to the identity component of the base. We conclude with examples involving the groups
Spin(n) and Pin™(n) defined in Sections 2.1 and 2.2, respectively.

B.1 Terminology and summary

We call a covering projection q: G—@G a Lie group covering 1fNC~¥ and G are Lie groups and ¢ is a
Lie group homomorphism. We call such a cover connected if G is connected; this implies that so
is G. Lie group coverings

q:é—>G and q’:CN}”—>G

are equivalent if there exists a Lie group isomorphism p : G — G’ such that qg=qop. For a
connected Lie group G, we denote by Cov(G) the set of equivalence classes of connected Lie group
coverings of G and by 7 (@) its fundamental group based at the identity 1. For any group H, we
denote by SG(H) the set of subgroups of H. The next lemma is established in Section B.2.

Lemma B.1. (a) Let G be a connected Lie group. The map

~

Cov(G) — SG(m(G),  [¢: G—G] — ¢um1(G),

is a bijection. For every [q]e Cov(G) as above, ¢~ (1) is contained in the center of G.
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