MAT 531 Geometry/Topology Homework 6

1. Consider a complex polynomial \(f : \mathbb{C} \to \mathbb{C} \). Prove that it has only finitely many critical values. Deduce that the mapping degree of \(f \) is independent of the choice of a regular value.

2. Prove the Fundamental Theorem of Algebra: any nonconstant complex polynomial has at least one complex root. Find the mapping degree of a complex polynomial in terms of its algebraic degree.

3. Let \(X \) be a smooth manifold of dimension \(m \) and \(Y \) a smooth manifold of dimension \(n \leq m \). Consider a smooth map \(f : X \to Y \). A point \(x \in X \) is called a critical point of \(f \) if the differential \(df_x \) is not onto (i.e., it does not have the maximal rank). The image of any critical point is called a critical value. A regular value of \(f \) is any point \(y \in Y \) that is not a critical value. Prove that for any regular value \(y \in Y \), the subset \(f^{-1}(y) \subseteq X \) is a smooth submanifold of dimension \(m - n \). Hint: use the Implicit Function Theorem.

4. Let \(X \) and \(Y \) be smooth manifolds. A smooth homotopy between two smooth maps \(f, g : X \to Y \) is defined as a smooth map \(F : X \times [0, 1] \to Y \) such that \(F(x, 0) = f(x) \) and \(F(x, 1) = g(x) \) for all \(x \in X \). Suppose that both \(X \) and \(Y \) are oriented, and that smooth maps \(f, g : X \to Y \) are smoothly homotopic. Prove that \(f \) and \(g \) have the same mapping degree. You can use the following fact without proof: there exists a point \(y \in Y \) that is a regular value of \(F, f \) and \(g \).

5. Let \(f, g : X \to Y \) be two diffeomorphisms of a smooth manifold \(X \) to a smooth manifold \(Y \). A smooth homotopy \(F \) connecting \(f \) with \(g \) is called a smooth isotopy if the map \(F(\cdot, t) : x \in X \mapsto F(x, t) \in Y \) is a diffeomorphism for each \(t \in [0, 1] \). Prove that the time 1 flow \(\phi^1_t : X \to X \) of any smooth vector field \(v \) on \(X \) is smoothly isotopic to the identity map.

6*. Let \(X \) be a connected smooth manifold. Prove that for any pair of points \(y_1, y_2 \in Y \), there exists a smooth self-map \(h : Y \to Y \) smoothly isotopic to the identity and such that \(h(y_1) = y_2 \). Deduce that the mapping degree of a smooth map \(f : X \to Y \) does not depend on the choice of a regular value in \(Y \), i.e. \(\text{mdeg}_{y_1}(f) = \text{mdeg}_{y_2}(f) \).

\(\text{Hint:} \) define a smooth vector field on \(X \), whose time 1 flow maps \(x_1 \) to \(x_2 \). It may be convenient first to define this vector field on a neighborhood of the path connecting \(x_1 \) to \(x_2 \).