MAT 531: Topology&Geometry, II Spring 2006

Problem Set 8 Due on Thursday, 4/6, in class

1. Suppose X is a topological space and $\mathcal{P} = \{S_{\mathcal{U}}; \rho_{\mathcal{U}, V}\}$ is a presheaf on X. Let

$$\begin{split} \tilde{S}_{\mathcal{U}} &= \left\{ (\mathcal{U}_{\alpha}, f_{\alpha})_{\alpha \in \mathcal{A}} \colon \mathcal{U}_{\alpha} \subset \mathcal{U} \text{ open}, \ \mathcal{U} = \bigcup_{\alpha \in \mathcal{A}} \mathcal{U}_{\alpha}; \\ & f_{\alpha} \in S_{\mathcal{U}_{\alpha}}, \ \rho_{\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}, \mathcal{U}_{\alpha}} f_{\alpha} = \rho_{\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}, \mathcal{U}_{\beta}} f_{\beta} \ \forall \alpha, \beta \in \mathcal{A} \right\} / \sim, \\ \text{where} \quad (\mathcal{U}_{\alpha}, f_{\alpha})_{\alpha \in \mathcal{A}} \sim (\mathcal{U}_{\beta}', f_{\beta}')_{\beta \in \mathcal{A}'} \quad \text{if} \quad \forall \alpha \in \mathcal{A}, \ \beta \in \mathcal{A}', \ p \in \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}' \\ & \exists W \subset \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}' \ \text{ s.t. } \ p \in W, \ \rho_{W,\mathcal{U}_{\alpha}} f_{\alpha} = \rho_{W,\mathcal{U}_{\beta}'} f_{\beta}'. \end{split}$$

Whenever $\mathcal{U} \subset V$ are open subsets of M, the homomorphisms $\rho_{\mathcal{U},V}$ induce homomorphisms

$$\bar{\rho}_{\mathcal{U},V} \colon \bar{S}_V \longrightarrow \bar{S}_{\mathcal{U}}$$

- so that $\bar{\mathcal{P}} \equiv \{\bar{S}_{\mathcal{U}}; \bar{\rho}_{\mathcal{U},V}\}$ is a presheaf on M.
- (a) Show that if \mathcal{P} is a complete presheaf, then $\overline{\mathcal{P}}$ is isomorphic to \mathcal{P} .
- (b) Show that $\overline{\mathcal{P}}$ is necessarily a complete presheaf.
- (c) If \mathcal{R} is a subsheaf of \mathcal{S} , show that

$$\alpha(\mathcal{S}/\mathcal{R}) \approx \overline{\alpha(\mathcal{S})/\alpha(\mathcal{R})}.$$

Hint: You may want to use Chapter 5, #2,5 (p216). *Note:* The presheaf $\overline{\mathcal{P}}$ is isomorphic to $\alpha(\beta(\mathcal{P}))$, where α and β are as in Subsection 5.6.

2. We have defined Čech cohomology for sheafs or presheafs of K-modules. All such objects are abelian. The sets \check{H}^0 and \check{H}^1 can be defined for sheafs or presheafs of non-abelian groups as well. The main example of interest is the sheaf \mathcal{S} of germs of smooth (or continuous) functions to a Lie group G.¹ If $\underline{\mathcal{U}} = \{\mathcal{U}_{\alpha}\}$ is an open cover, $f \in \check{C}^0(\underline{\mathcal{U}}; \mathcal{S})$, and $g \in \check{C}^1(\underline{\mathcal{U}}; \mathcal{S})$, define

$$\partial_0 f \in \check{C}^1(\underline{\mathcal{U}}; \mathcal{S}) \quad \text{by} \quad (\partial_0 f)_{\alpha_0 \alpha_1} = f_{\alpha_0} \big|_{\mathcal{U}_{\alpha_0} \cap \mathcal{U}_{\alpha_1}} \cdot f_{\alpha_1}^{-1} \big|_{\mathcal{U}_{\alpha_0} \cap \mathcal{U}_{\alpha_1}},$$
$$\partial_1 g \in \check{C}^2(\underline{\mathcal{U}}; \mathcal{S}) \quad \text{by} \quad (\partial_1 g)_{\alpha_0 \alpha_1 \alpha_2} = g_{\alpha_1 \alpha_2} \big|_{\mathcal{U}_{\alpha_0} \cap \mathcal{U}_{\alpha_1} \cap \mathcal{U}_{\alpha_2}} \cdot g_{\alpha_0 \alpha_2}^{-1} \big|_{\mathcal{U}_{\alpha_0} \cap \mathcal{U}_{\alpha_1} \cap \mathcal{U}_{\alpha_2}} \cdot g_{\alpha_0 \alpha_1} \big|_{\mathcal{U}_{\alpha_0} \cap \mathcal{U}_{\alpha_1} \cap \mathcal{U}_{\alpha_2}},$$

where for all $\alpha_0, \alpha_1, \alpha_2 \in \mathcal{A}, f \in \check{C}^0(\underline{\mathcal{U}}; \mathcal{S}), g \in \check{C}^1(\underline{\mathcal{U}}; \mathcal{S}), \text{ and } h \in \check{C}^2(\underline{\mathcal{U}}; \mathcal{S}),$

$$f_{\alpha_0} \in \Gamma(\mathcal{U}_{\alpha_0}; \mathcal{S}), \qquad g_{\alpha_0 \alpha_1} \in \Gamma(\mathcal{U}_{\alpha_0} \cap \mathcal{U}_{\alpha_1}; \mathcal{S}), \qquad h_{\alpha_0 \alpha_1 \alpha_2} \in \Gamma(\mathcal{U}_{\alpha_0} \cap \mathcal{U}_{\alpha_1} \cap \mathcal{U}_{\alpha_2}; \mathcal{S}).$$

Define an action of $\check{C}^0(\underline{\mathcal{U}};\mathcal{S})$ on $\check{C}^1(\underline{\mathcal{U}};\mathcal{S})$ by

$$\{f*g\}_{\alpha_0\alpha_1} = f_{\alpha_0}\big|_{\mathcal{U}_{\alpha_0}\cap\mathcal{U}_{\alpha_1}} \cdot g_{\alpha_0\alpha_1} \cdot f_{\alpha_1}^{-1}\big|_{\mathcal{U}_{\alpha_0}\cap\mathcal{U}_{\alpha_1}} \in \Gamma(\mathcal{U}_{\alpha_0}\cap\mathcal{U}_{\alpha_1};\mathcal{S}).$$

- (a) Show that under this action $\check{C}^0(\underline{\mathcal{U}};\mathcal{S})$ maps ker ∂_1 into itself.
- (b) Show that for every Čech 1-cocycle g (i.e. $g \in \ker \partial_1$) for an open cover $\underline{\mathcal{U}} = \{\mathcal{U}_\alpha\}_{\alpha \in \mathcal{A}}$,

 $g_{\alpha\alpha} = e|_{\mathcal{U}_{\alpha}}, \quad g_{\alpha\beta}g_{\beta\alpha} = e|_{\mathcal{U}_{\alpha}\cap\mathcal{U}_{\beta}}, \quad g_{\alpha\beta}g_{\beta\gamma}g_{\gamma\alpha} = e|_{\mathcal{U}_{\alpha}\cap\mathcal{U}_{\beta}\cap\mathcal{U}_{\gamma}}, \qquad \forall \, \alpha, \beta, \gamma \in \mathcal{A},$

¹This means that G is a smooth manifold and a group so that the group operations are smooth. Examples include O(k), SO(k), U(k), SU(k).

where e is the "zero" (or "identity") section of S (i.e. e(m) is the identity element of the group S_m for every $m \in M$).

By part (a), we can define

 $\check{H}^0(\underline{\mathcal{U}};\mathcal{S}) = \ker \partial_0 \quad \text{and} \quad \check{H}^1(\underline{\mathcal{U}};\mathcal{S}) = \ker \partial_1 / \check{C}^0(\underline{\mathcal{U}};\mathcal{S}).$

The first set is a group being the kernel of a group homomorphism. If $\underline{\mathcal{U}}' = {\mathcal{U}'_{\alpha}}_{\alpha \in \mathcal{A}'}$ is a refinement of $\underline{\mathcal{U}} = {\mathcal{U}_{\alpha}}_{\alpha \in \mathcal{A}}$, any refining map $\mu : \mathcal{A}' \longrightarrow \mathcal{A}$ induces group homomorphisms

$$\mu_p^* \colon \check{C}^p(\underline{\mathcal{U}}; \mathcal{S}) \longrightarrow \check{C}^p(\underline{\mathcal{U}}'; \mathcal{S})$$

which commute with ∂_0 , ∂_1 , and the action of $\check{C}^0(\cdot; \mathcal{S})$ on $\check{C}^1(\cdot; \mathcal{S})$, similarly to Section 5.33. Thus, μ induces a group homomorphism and a map

$$R^0_{\mathcal{U}',\mathcal{U}} \colon \check{H}^0(\underline{\mathcal{U}};\mathcal{S}) \longrightarrow \check{H}^0(\underline{\mathcal{U}}';\mathcal{S}) \quad \text{and} \quad R^1_{\mathcal{U}',\mathcal{U}} \colon \check{H}^1(\underline{\mathcal{U}};\mathcal{S}) \longrightarrow \check{H}^1(\underline{\mathcal{U}}';\mathcal{S}).$$

(c) Show that these maps are independent of the choice of μ .

Thus, we can again define $\check{H}^0(M; \mathcal{S})$ and $\check{H}^1(M; \mathcal{S})$ by taking the direct limit of all $\check{H}^0(\underline{\mathcal{U}}; \mathcal{S})$ and $\check{H}^1(\underline{\mathcal{U}}; \mathcal{S})$ over open covers of M. The first set is a group, while the second need not be (unless \mathcal{S} is a sheaf of abelian groups). These sets will be denoted by $\check{H}^0(M; G)$ and $\check{H}^1(M; G)$ if \mathcal{S} is the sheaf of germs of smooth (or continuous) functions into a Lie group G. As in the abelian case, $\check{H}^0(M; \mathcal{S})$ is the space of global sections of \mathcal{S} . (d) Show that there is a natural correspondence

{isomorphism classes of rank-k real vector bundles over M} $\longleftrightarrow \check{H}^1(M; O(k))$.

(e) What are the analogues of these statements for complex vector bundles? (state them and indicate the changes in the argument; do not re-write the entire solution).

Hint: For (d) and (e), you might want to look over Sections 3 and 5 in Notes on Vector Bundles. Do not forget that $\check{H}^1(M; \mathcal{S})$ is a *direct limit*.

- 3. (a) Show that the set of isomorphism classes of line bundles on M forms an abelian group under the tensor product (i.e. satisfies 3 properties for a group and another for abelian). Show that in the real case all nontrivial elements are of order two.
 - (b) Show that the correspondence

$$\{\text{isomorphism classes of real line bundles over } M \} \longleftrightarrow H^1(M; \mathbb{Z}_2)$$

of the previous problem is a group isomorphism.

(c) Show that there is a natural group isomorphism

{isomorphism classes of complex line bundles over M} $\longleftrightarrow \check{H}^2(M;\mathbb{Z})$.

Hint: ses/les

Note: The groups $\check{H}^1(M; \mathbb{Z}_2)$ and $\check{H}^2(M; \mathbb{Z})$ are naturally isomorphic to the singular cohomology groups $H^1(M; \mathbb{Z}_2)$ and $H^2(M; \mathbb{Z})$. The image of a real line bundle L

$$w_1(L) \in H^1(M; \mathbb{Z}_2)$$

is the first Stiefel-Whitney class of L; the image of a complex line bundle

$$c_1(L) \in H^2(M;\mathbb{Z})$$

is the first Chern class of L. However, this is not how these characteristic classes are normally defined.