MAT 531: Topology&Geometry, II Spring 2006

Problem Set 1 Due on Thursday, 2/2, in class

Give concise, but complete, solutions. The entire problem set should not require more than a few pages.

Please read Notes on Vector Bundles, posted on the website, before starting on Questions 4-6.

- 1. Chapter 1, #2 (p50)
- 2. Verify that the differential $d\psi$ of a smooth map $\psi: M \longrightarrow N$, as defined in 1.22 (p16), is indeed well-defined. In other words, $d\psi(v)$ is a derivation on $\tilde{F}_{\psi(m)}$ for all $v \in T_m M$ and $m \in M$.
- 3. Chapter 1, #5 (p50)
- 4. (a) Show that the quotient topologies on CPⁿ given by (Cⁿ⁺¹-0)/C* and S²ⁿ⁺¹/S¹ are the same (i.e. the map S²ⁿ⁺¹/S¹ → (Cⁿ⁺¹-0)/C* induced by inclusions is a homeomorphism).
 (b) Show that CPⁿ is a compact topological 2n-manifold. Furthermore, it admits a structure of a complex (in fact, algebraic) n-manifold, i.e. it can be covered by charts whose overlap maps, φ_α ∘ φ_β⁻¹, are holomorphic maps between open subsets of Cⁿ (and rational functions on Cⁿ). Note: you can do this with n+1 charts.
 (c) Show that CPⁿ contains Cⁿ, with its complex structure, as a dense open subset.
 (d) Show that the tautological line bundle γ_n → CPⁿ is indeed a complex line bundle (describe its trivializations). What is its transition data?
- 5. Show that the tangent bundle TM of a smooth *n*-manifold is a real vector bundle of rank *n* over *M*. What is its transition data?
- Show that the tangent bundle TS¹ of S¹, defined as in 1.25 (p19), is isomorphic to the trivial real line bundle over S¹.
 Hint: Use a lemma from Notes on Vector Bundles.