Overview

- Smooth manifolds, tangent vectors, differentials, immersions, etc.
 - PS1 #1-4c; PS2 #1-3

- Vector Bundles
 - PS1 #4d-6; PS2 #4; PS4 #4; PS6 #4a

- Differentials, Inverse FT, Slice Lemma, Implicit FT (I&II)
 - PS3 #1-3; MT #2

- Flows of Vector Fields, Lie Bracket, Lie Derivative
 - PS3 #4-6; PS4 #1,2; PS5 #3,4; PS6 #7a; MT #1

- The Differential $d: E^p(M) \to E^{p+1}(M)$, Frobenius Theorem (I&II), Strong Slice Statement
 - PS4 #4; PS5 #1,2,5; MT #3

- de Rham Cochain Complex, Poincare Lemma, Stokes’ Theorem (I&II), and Group Actions
 - PS6 #1,2,6,8; PS6 #5b; PS7 #5; MT #4; PS10 #3

- Orientability of Manifolds and Vector Bundles, Relations with Topology and Covering Maps
 - PS4 #3; PS6 #3-6,7bc; MT #5

- Singular Chain Complex, Hurewicz Theorem
 - PS7 #1
• (Co)Chain Complexes and (Co)homology, Duals, Coefficient Changes
 ○ Mayer-Vietoris for de Rham Cohomology and Singular Homology: PS7 #2-4
 ○ Sheafs and Čech Cohomology: PS7 #6,7; PS8 #2,3
 ○ Cohomology from Fine Resolutions: de Rham Theorem
 ○ Compactly Supported Cohomology

• Geometric Analysis
 ○ Differential Operators, Symbol, Elliptic Operators
 ○ Sobolev Lemma, Rellich Lemma, Fundamental Inequality: PS 10, #4,5

• Hodge Theory
 ○ Laplacian: PS3 #3; PS10 #1,2
 ○ Hodge Decomposition Theorem
 ○ Poincare Duality, Finite-Dimensionality of de Rham Cohomology
 ○ Kunneth Formula: PS10 #5

• de Rham Cohomology in special cases
 ○ $H^0_{\text{deR}}(M)$; $H^{\text{top}}_{\text{deR}}(M)$ (M orientable/non-orientable, compact/non-compact): PS10 #3
 ○ $H^*_{\text{deR}}(\mathbb{R}^n)$, $H^*_d(\mathbb{R}^n)$: PS7 #3