MAT 531: Topology& Geometry, 11
Spring 2006

Midterm Solutions

Problem 1 (15 pts)

Suppose M is a smooth manifold and X andY are smooth vector fields on M. Show directly from
definitions that
(X, Y] = —[Y, X].

(You can assume that [X,Y] is whatever object it is supposed to be, but do state what you are taking
it to be).

By definition, the Lie bracket [X,Y] of two vector fields X and Y is another vector field on M,
i.e. an element of I'(M;TM). In particular,

(X, Y],[Y,X]: C°(M) — C*(M)
are linear maps. They are given by

X, Y]f=X(Y[)-Y(Xf) VfeC®(M) =
YV, X]f=Y(Xf) = X(Yf)=—(X(Yf)=Y(Xf) =—(X,Y]f) = { - [X,Y]}f V[feC™(M)
= [X,Y]=-[Y,X] e (M;TM).

Problem 2 (20 pts)
Show that the topological subspace
{(z,y)eR?: 23 +ay+1°= 1}

of R? is a smooth curve (i.e. admits a natural structure of smooth 1-manifold with respect to which
it is a submanifold of R?).

Define
f:R?—R by f(z,y) = 2® +axy+y°.

Then, f is a smooth map and
P = {(x,y)E]R2 : a:3+a:y+y3:1} = f_l(l).

We show below that 1 is a regular value for f. By the Implicit Function Theorem, P is then a
smooth submanifold of R? and

dim P = dimR? — dimR = 1,

as needed.



We need to show that df |, is surjective for all (z,y) € f~1(1). Since the target space for f is R,
we can view df|(, ) as a linear map into R (instead of T, , \R). It is given by

of of 2 2
df l(z) = %da: + 87ydy = (3z"+y)dx + (z+3y~)dy.
Since dx and dy are linearly independent in T(*x y)RQ,
3224y =0 y = —3x2
df|(cc,y) =0 = 2 = 4 =
x+3y* =0 4272 =0

(z,y) = (0,0) or (z,y)=(-1/3,-1/3) = f(z,y) €{0,1/27} = (z.y) & f (1)

We conclude that 1 is a regular value for f.

Problem 3 (5+15 pts)

Let X be a non-vanishing vector field on R3, written in coordinates as

X(z,y,2) :f% +g<;9y+h082 for some f,g,h € C®(R?).
(a) Find a one-form o on R? so that at each point of R® the kernel of a is orthogonal to X, with
respect to the standard inner-product on R3.
(b) Find a necessary and sufficient condition on X so that for every point p € R3 there exists a
surface S C R? passing through p which is everywhere orthogonal to X (i.e. S is a smooth two-
dimensional submanifold of R® and T, S C T,,R? is orthogonal to X (m) for all m€ S).

(a) Every element of T(Ly,Z)R?’ can be written as
+b 0 + fi bce R
v=a—+b—+c— or some a,b,c
or Oy Oz T

and

(X(z,y,2),0) = f(x,y, 2)a+ g(x,y, 2)b + h(z,y, z)c
= {f(z,y,2)dz+g(z,y, 2)dy+h(z,y, 2)dz}v = a1y,

where « is the one-form on R? defined by

a’(az,y,z) = f(mv Y, Z)d.%'—i-g(l’, Y, Z)dy—i-h(l‘, Y, Z)dZ
For each (z,y, z) €R3, the kernel of « is the subspace of T(x,w)]R‘g%]Ri)‘ orthogonal to X (z,y, 2).
(b) Let

J(Ra) = J(a) = {anp: e E*(R*)} C E*(R?)

be the ideal generated by a. By part (a), we need to find a necessary and sufficient condition on
« so that for every point p€R3 there exists a surface S CR? passing through p such that

T(x’y,z)S = ker Oé|(z7y’z) (- T(x’yJ)RS.
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Since X is a nowhere-vanishing vector field on R3, « is a nowhere-vanishing one-form on R? and
Ra is a vector subbundle of T*R3 of rank one. Thus, by the second version of Frobenius Theorem
the necessary and sufficient condition is that the ideal J(«) be differential, i.e. closed under d so
that

dvy € J(a) Vy e J(a).

Since R? is a three-dimensional manifold, by Problem 5 on PS5 this is the case if and only if

aNda=0.
Since a= fdx+gdy+hdz,
da=df Ndx +dg Ndy + dh N dz
_(9of af af dg dg dg oh oh oh
= (8xdw+ aydy—i— 5% dz)/\daf + (&Uda?—i-aydy—&-azdz) Ndy + <8xd$+8ydy+8zdz) Ndz

= fydyNdzx + f.dzN\dx + gzdxNdy + g.dzN\dy + hydxANdz + hydyNdz
= (92— fy)dzAdy + (hy— f.)dzNdz + (hy—g:)dyNdz
= aNdo = h(gy— fy)dzAdxNdy + g(hy— f.)dyNdzAdz + f(hy—g.)deNdyNdz
= (f(hy—gz) —g(he—f2) + h(ga;—fy))dar/\dy/\dz.

Thus, the necessary and sufficient condition on X is

B fog n
(X,VxX)=det [ 9, 0y 0. | = f(hy—9g:) — g(ha—f-) + h(gz—fy) = 0.
f g h

Problem 4 (20 pts)

Let S? CR3 be the unit sphere with its standard smooth structure and orientation. Find

/ (:Uldasg/\ dxrg + rodxi A dxs + x3dTi N dazg).
S2

With its standard orientation, S? is the oriented boundary of the unit ball
B? = {(z1,22,23) ER®: 2i+a5+23 <1}

about the origin, with its standard smooth structure and orientation. Thus, by the second version
of Stokes’ Theorem,

/ (l‘leEg/\dl'3 + zodxi ANdxs + r3dry /\d:L‘g) = / (:L‘ldl‘g/\dl‘g + xodxi ANdxs + x3dry /\d:L'z)
S2 oB3

= / d(xld:zrg/\d:cg + zodx1 ANdxg + x3dxy /\dazg)
BS

= / (da:l ANdzoANdxs + droNdx1 N dxs + drsAdxy /\d.’L'Q)
B3

= / (d.l‘l ANdzoNdxrs — dxi ANdxo N\ dxs + drq /\d.%z/\dl‘;g) = / 1dxi AdroNdxs.
B3 B3
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Since B? with its standard orientation is a regular subspace of R3,

4
/ 1dxi ANdxoNdxg = / ldzidrodxs = i
B3 B3 3

Problem 5 (25 pts)

Suppose M and N are smooth manifolds. Show that

(a) if M and N are orientable, then M x N is orientable;

(b) if M s orientable and nonempty and N is not orientable, then M x N is not orientable;
(¢) if M and N are not orientable, then M x N is not orientable.

(a) Since M and N are orientable, the line bundles
APTM — M and  A'PTN — N
are trivial. On the other hand, let
m,me: M XN — M, N
be the two projection maps. Then,

T(MxN)=mn{TM & 75TN — MxN
— A*P(T(M xN)) = AP (eiTM &73TN) = AP (r{TM) @ AP (73T N)
= 75 (APTM) ® 75 (A°PTN).

Since the line bundles A'*PTM and APTN over M and N, respectively, are trivial, so are their
pullbacks to M x N and their tensor product. Since the line bundle

AYP(T(M xN)) = a{ (A*PTM) @ 75 (A*PTN) — MxN
is trivial, the manifold M x N is orientable.

Alternatively, since M and NN are orientable, there exist nowhere-vanishing top forms on M and N:
a€ E*P(M) and (3 € E™P(N).

Then, nfa A w53 is a nowhere-vanishing top form on M x N. Since M x N admits such a form,
M x N is orientable. To see that o A 753 does not vanish on M x N, suppose x € M, y€ N, and

{vi,...,u} CTuM and {wi,...,wp} CTyN
are bases for T, M and T, N. Since
al, € NPTy M and B, € A™PT;N

are not zero,

alg(vi, ... v) #0 and Bly(wi, ..., wy) # 0.



On the other hand,
T(Ly)(MXN):TmM@TyN - ’Ul,...,’l)k,wl,...,wnET(Ly)(MXN).
Furthermore,

{TFTOZ/\WSﬁ}kCC,y)(/Ula <oy Uk, W1, - - 7wn) = {ﬂ-fa}ka:,y)(vla s 7vki) : {W;B}kl‘,y)(wla s >wn)
= alg(dmi(vr), ..., dmi(vg)) - Bly(dma(wr), ..., dma(wn))
= a‘x(vla . '7Uk) : ﬂ’y(wlv <o ,’U)n) 7é 0,

as claimed. Note that a priori the expression on RHS of the first line above should be a sum over

all possible permutations of {vi,..., v, w,...,w,}. However, since dm(w;) =0, the only such
permutations that yield nonzero terms are the permutations that preserve the subsets {vy,...,v;}
and {w1,...,wp}.

(b) By part (a),
AYP(T(M xN)) = mf (A*PTM) @ n5(A*PTN) — M xN.
Since M is orientable, the line bundle 7 (A*PT'M) is again trivial and
A*P(T(M xN)) = i (A*PTM) @ w5 (A*PTN) ~ 75 (A'PTN).

Since N is not orientable, the line bundle A**PT'N — N is not trivial. This does not mean that its
pullback by every map is not trivial, but we will show that its pullback by 5 is indeed not trivial.
In turn, since

A®P(T(M xN)) ~ m35(A*PTN)

and 75 (A*PTN) is not trivial, it follows that M x N is not orientable. To see that 75(A*PTN) is
not trivial, pick any x € M and define

to: N—MxN by  (y) = (z,y)
Since o0 1, = idp,
(T3 (APTN)) = im5 (APTN) = {mo01, }*A'PTN = idjyA™PTN = A™PTN.

Thus, ¢ (75 (A*®PTN)) is not trivial, which implies that 74(A*PTN) is not trivial either.

Here is another approach. Suppose M x N is orientable, i.e. there exists a nowhere-vanishing
v € E*P(M x N). We will construct a nowhere-vanishing § € E'*P(N) by restricting v to the
vertical slice z x N and contracting the M-part of 4. Denote by k£ and n be the dimensions of M

and N. Let
V1o, U C Ty M

be a basis. For each i=1,... k, let
X; € D(axN;T(M X N)|pxn)
be the (horizontal) vector field along xx N defined by

Xi(a:, y) =v; € T(Ly)(MXN) = TxM@TyN.
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These are smooth vector fields and thus
,31, =X, - LY = 7(X17~- . ,Xk,~,...,-) € F(m‘XN,AnT(MXN)‘xXN)

is a smooth n-form. If y€ N and
wy, ..., wy, CTyN

is a basis for TN, then
Ulyeooy Oy W1, oy Wy C Tig (X XY) = T,X®T,Y
is a basis. Since v does not vanish at (z,y),
Baly(wi, ..., wn) =y(v1,..., 05, wi,...,w,) #0.

Thus, 3, does not vanish along xx N. Furthermore, ¢, 3|, =0 for all 7, i.e.

Buly € A"Ty N C AL, )T*(MxN) = DAPT;M@AIT;N.
ptg=n

This means that
B=8, € F(N;A”T*N) = E"(N)

is a nowhere-zero top form on N, i.e N is orientable. Note that this argument also implies part (c),
since the only fact we used about M is that it is nonempty.

Here is a third approach. We can assume that N is connected. Let
p: N — N

be the orientable (connected) double cover of N. It can be obtained by choosing a metric on
A*PTN and taking )
N = S(A"PTN);

see more below. Let g be the nontrivial deck transformation for p, so that

N = N/{id,g}.

Since N is orientable and N Is not orientable, the diffeomorphism g: N — N must be orientation-
reversing. By part (a), M x N is an orientable manifold. Furthermore,

MxN = MxN/{idp xid, idy x g}
Since idjs is orientation-preserving and g is orientation-reversing,
idps xg: MxN — MxN
is orientation-reversing. Thus, M x N is not orientable.
We now show that the total space N of the double cover

p: NES(AtOpTN) — N



is orientable. Since p is a local diffeomorphism,
dp: TN — p*TN
is an isomorphism of vector bundles. Thus,
AYPTN ~ A*P(p*T'N) ~ p* (AtOPTN).

To show that the line bundle p*(A'PTN) is trivial (and thus N is orientable), we construct a
nowhere-vanishing section of

p*(APTN) = {(e,v) e NxAPTN: p(e)=7(v)} — N,

where 7: AYPT N — N is the bundle projection map. By definition,
N:{eEAtOPTN:\e\:l} —
p*(APTN) = {(e,v) EA'PTN xA*PTN: w(v)=7(e)} — N = {e€ A"PTN: |e|=1}.
We define a section of p*(A'PTN) over N by
s(e) = (e, e).

This section does not vanish.
(c) We will show that the line bundle

A"P(T(M xN)) = { (A*PTM) @ w5 (A*PTN) — MxN

is not trivial by showing that its pullback by ¢, is again not trivial. This implies that M x N is not
orientable. Given xz € M, let
Je: N— M, fa:(y):xv

be the constant map sending N to z. Since w0ty = fy,
Gt (APTM) = {mot, } (A*PTM) = fi(A*PTM) = N x (A"PTM),
is the trivial line bundle. Thus,

U (T (A'PTM) @ 73 (A'PTN)) = o (7 (A*PTM)) @ o (75 (A'PTN))
= (NxR) @ A"TN ~ A"PTN.

Since N is not orientable, the line bundle A*°PTN is not trivial as needed.

Alternatively, we can assume that M is connected. Let
p: M— M
be the orientable (connected) double cover of M similarly to part (b). Then,
pxid: MxN — MxN

is a covering projection. Since MxN is not orientable by part (b), MxN is not orientable either (a
nowhere-vanishing top form on the base induces a nowhere-vanishing top form on the total space
of a covering map (but not conversely)).



