
MAT 531: Topology&Geometry, II
Spring 2006

Midterm Solutions

Problem 1 (15 pts)

Suppose M is a smooth manifold and X and Y are smooth vector fields on M . Show directly from
definitions that

[X, Y ] = −[Y, X].

(You can assume that [X, Y ] is whatever object it is supposed to be, but do state what you are taking
it to be).

By definition, the Lie bracket [X, Y ] of two vector fields X and Y is another vector field on M ,
i.e. an element of Γ(M ; TM). In particular,

[X, Y ], [Y, X] : C∞(M) −→ C∞(M)

are linear maps. They are given by

[X, Y ]f = X(Y f) − Y (Xf) ∀ f ∈C∞(M) =⇒

[Y, X]f = Y (Xf) − X(Y f) = −
(

X(Y f) − Y (Xf)
)

= −
(

[X, Y ]f
)

≡
{

− [X, Y ]}f ∀ f ∈C∞(M)

=⇒ [X, Y ] = −[Y, X] ∈ Γ(M ; TM).

Problem 2 (20 pts)

Show that the topological subspace

{(x, y)∈R
2 : x3+xy+y3 =1

}

of R
2 is a smooth curve (i.e. admits a natural structure of smooth 1-manifold with respect to which

it is a submanifold of R
2).

Define
f : R

2 −→ R by f(x, y) = x3+xy+y3.

Then, f is a smooth map and

P ≡ {(x, y)∈R
2 : x3+xy+y3 =1

}

= f−1(1).

We show below that 1 is a regular value for f . By the Implicit Function Theorem, P is then a
smooth submanifold of R

2 and

dimP = dim R
2 − dim R = 1,

as needed.
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We need to show that df |(x,y) is surjective for all (x, y)∈f−1(1). Since the target space for f is R,
we can view df |(x,y) as a linear map into R (instead of Tf(x,y)R). It is given by

df |(x,y) =
∂f

∂x
dx +

∂f

∂y
dy = (3x2+y)dx + (x+3y2)dy.

Since dx and dy are linearly independent in T ∗

(x,y)R
2,

df |(x,y) = 0 =⇒

{

3x2+y = 0

x+3y2 = 0
=⇒

{

y = −3x2

x+27x4 = 0
=⇒

(x, y) = (0, 0) or (x, y) = (−1/3,−1/3) =⇒ f(x, y) ∈ {0, 1/27} =⇒ (x, y) 6∈ f−1(1).

We conclude that 1 is a regular value for f .

Problem 3 (5+15 pts)

Let X be a non-vanishing vector field on R
3, written in coordinates as

X(x, y, z) = f
∂

∂x
+ g

∂

∂y
+ h

∂

∂z
for some f, g, h ∈ C∞(R3).

(a) Find a one-form α on R
3 so that at each point of R

3 the kernel of α is orthogonal to X, with
respect to the standard inner-product on R

3.
(b) Find a necessary and sufficient condition on X so that for every point p ∈ R

3 there exists a
surface S ⊂ R

3 passing through p which is everywhere orthogonal to X (i.e. S is a smooth two-
dimensional submanifold of R

3 and TmS⊂TmR
3 is orthogonal to X(m) for all m∈S).

(a) Every element of T(x,y,z)R
3 can be written as

v = a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z
for some a, b, c ∈ R

and

〈X(x, y, z), v〉 = f(x, y, z)a + g(x, y, z)b + h(x, y, z)c

=
{

f(x, y, z)dx+g(x, y, z)dy+h(x, y, z)dz}v = α|(x,y,z)v,

where α is the one-form on R
3 defined by

α|(x,y,z) = f(x, y, z)dx+g(x, y, z)dy+h(x, y, z)dz.

For each (x, y, z)∈R
3, the kernel of α is the subspace of T(x,y,z)R

3≈R
3 orthogonal to X(x, y, z).

(b) Let
J (Rα) = J (α) =

{

α∧β : β∈E∗(R3)
}

⊂ E∗(R3)

be the ideal generated by α. By part (a), we need to find a necessary and sufficient condition on
α so that for every point p∈R

3 there exists a surface S⊂R
3 passing through p such that

T(x,y,z)S = kerα|(x,y,z) ⊂ T(x,y,z)R
3.
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Since X is a nowhere-vanishing vector field on R
3, α is a nowhere-vanishing one-form on R

3 and
Rα is a vector subbundle of T ∗

R
3 of rank one. Thus, by the second version of Frobenius Theorem

the necessary and sufficient condition is that the ideal J(α) be differential, i.e. closed under d so
that

dγ ∈ J (α) ∀ γ ∈ J (α).

Since R
3 is a three-dimensional manifold, by Problem 5 on PS5 this is the case if and only if

α ∧ dα = 0.

Since α=fdx+gdy+hdz,

dα = df ∧ dx + dg ∧ dy + dh ∧ dz

=
(∂f

∂x
dx+

∂f

∂y
dy+

∂f

∂z
dz

)

∧dx +
(∂g

∂x
dx+

∂g

∂y
dy+

∂g

∂z
dz

)

∧dy +
(∂h

∂x
dx+

∂h

∂y
dy+

∂h

∂z
dz

)

∧dz

= fydy∧dx + fzdz∧dx + gxdx∧dy + gzdz∧dy + hxdx∧dz + hydy∧dz

= (gx−fy)dx∧dy + (hx−fz)dx∧dz + (hy−gz)dy∧dz

=⇒ α ∧ dα = h(gx−fy)dz∧dx∧dy + g(hx−fz)dy∧dx∧dz + f(hy−gz)dx∧dy∧dz

=
(

f(hy−gz) − g(hx−fz) + h(gx−fy)
)

dx∧dy∧dz.

Thus, the necessary and sufficient condition on X is

〈

X, ~∇×X
〉

≡ det





f g h
∂x ∂y ∂z

f g h



 ≡ f(hy−gz) − g(hx−fz) + h(gx−fy) = 0.

Problem 4 (20 pts)

Let S2⊂R
3 be the unit sphere with its standard smooth structure and orientation. Find

∫

S2

(

x1dx2∧ dx3 + x2dx1∧ dx3 + x3dx1∧ dx2

)

.

With its standard orientation, S2 is the oriented boundary of the unit ball

B3 ≡
{

(x1, x2, x3)∈R
3 : x2

1+x2
2+x3

3 ≤1
}

about the origin, with its standard smooth structure and orientation. Thus, by the second version
of Stokes’ Theorem,

∫

S2

(

x1dx2∧dx3 + x2dx1∧dx3 + x3dx1∧dx2

)

=

∫

∂B3

(

x1dx2∧dx3 + x2dx1∧dx3 + x3dx1∧dx2

)

=

∫

B3

d
(

x1dx2∧dx3 + x2dx1∧dx3 + x3dx1∧dx2

)

=

∫

B3

(

dx1∧dx2∧dx3 + dx2∧dx1∧ dx3 + dx3∧dx1∧dx2

)

=

∫

B3

(

dx1∧dx2∧dx3 − dx1∧dx2∧ dx3 + dx1∧dx2∧dx3

)

=

∫

B3

1 dx1∧dx2∧dx3.
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Since B3 with its standard orientation is a regular subspace of R
3,

∫

B3

1 dx1∧dx2∧dx3 =

∫

B3

1 dx1dx2dx3 =
4π

3
.

Problem 5 (25 pts)

Suppose M and N are smooth manifolds. Show that
(a) if M and N are orientable, then M×N is orientable;
(b) if M is orientable and nonempty and N is not orientable, then M×N is not orientable;
(c) if M and N are not orientable, then M×N is not orientable.

(a) Since M and N are orientable, the line bundles

ΛtopTM −→ M and ΛtopTN −→ N

are trivial. On the other hand, let

π1, π2 : M×N −→ M, N

be the two projection maps. Then,

T (M×N) = π∗

1TM ⊕ π∗

2TN −→ M×N

=⇒ Λtop
(

T (M×N)
)

= Λtop
(

π∗

1TM⊕π∗

2TN
)

= Λtop(π∗

1TM) ⊗ Λtop(π∗

2TN)

= π∗

1(Λ
topTM) ⊗ π∗

2(Λ
topTN).

Since the line bundles ΛtopTM and ΛtopTN over M and N , respectively, are trivial, so are their
pullbacks to M×N and their tensor product. Since the line bundle

Λtop
(

T (M×N)
)

= π∗

1(Λ
topTM) ⊗ π∗

2(Λ
topTN) −→ M×N

is trivial, the manifold M×N is orientable.

Alternatively, since M and N are orientable, there exist nowhere-vanishing top forms on M and N :

α ∈ Etop(M) and β ∈ Etop(N).

Then, π∗

1α ∧ π∗

2β is a nowhere-vanishing top form on M×N . Since M×N admits such a form,
M×N is orientable. To see that π∗

1α ∧ π∗

2β does not vanish on M×N , suppose x∈M , y∈N , and

{v1, . . . , vk} ⊂ TxM and {w1, . . . , wn} ⊂ TyN

are bases for TxM and TyN . Since

α|x ∈ ΛtopT ∗

xM and β|y ∈ ΛtopT ∗

y N

are not zero,
α|x(v1, . . . , vk) 6= 0 and β|y(w1, . . . , wn) 6= 0.
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On the other hand,

T(x,y)(M×N) = TxM ⊕ TyN =⇒ v1, . . . , vk, w1, . . . , wn ∈ T(x,y)(M×N).

Furthermore,
{

π∗

1α∧π∗

2β
}

|(x,y)(v1, . . . , vk, w1, . . . , wn) = {π∗

1α}|(x,y)(v1, . . . , vk) · {π
∗

2β}|(x,y)(w1, . . . , wn)

= α|x
(

dπ1(v1), . . . , dπ1(vk)
)

· β|y
(

dπ2(w1), . . . , dπ2(wn)
)

= α|x
(

v1, . . . , vk

)

· β|y
(

w1, . . . , wn

)

6= 0,

as claimed. Note that a priori the expression on RHS of the first line above should be a sum over
all possible permutations of {v1, . . . , vk, w1, . . . , wn}. However, since dπ1(wj) = 0, the only such
permutations that yield nonzero terms are the permutations that preserve the subsets {v1, . . . , vk}
and {w1, . . . , wn}.

(b) By part (a),

Λtop
(

T (M×N)
)

= π∗

1(Λ
topTM) ⊗ π∗

2(Λ
topTN) −→ M×N.

Since M is orientable, the line bundle π∗

1(Λ
topTM) is again trivial and

Λtop
(

T (M×N)
)

= π∗

1(Λ
topTM) ⊗ π∗

2(Λ
topTN) ≈ π∗

2(Λ
topTN).

Since N is not orientable, the line bundle ΛtopTN −→N is not trivial. This does not mean that its
pullback by every map is not trivial, but we will show that its pullback by π2 is indeed not trivial.
In turn, since

Λtop
(

T (M×N)
)

≈ π∗

2(Λ
topTN)

and π∗

2(Λ
topTN) is not trivial, it follows that M×N is not orientable. To see that π∗

2(Λ
topTN) is

not trivial, pick any x∈M and define

ιx : N −→M×N by ιx(y) = (x, y).

Since π2◦ ιx = idN ,

ι∗x
(

π∗

2(Λ
topTN)

)

= ι∗xπ∗

2(Λ
topTN) = {π2◦ιx}

∗ΛtopTN = id∗

NΛtopTN = ΛtopTN.

Thus, ι∗x(π∗

2(Λ
topTN)) is not trivial, which implies that π∗

2(Λ
topTN) is not trivial either.

Here is another approach. Suppose M ×N is orientable, i.e. there exists a nowhere-vanishing
γ ∈ Etop(M ×N). We will construct a nowhere-vanishing β ∈ Etop(N) by restricting γ to the
vertical slice x×N and contracting the M -part of γ. Denote by k and n be the dimensions of M
and N . Let

v1, . . . , vk ⊂ TxM

be a basis. For each i=1, . . . , k, let

Xi ∈ Γ
(

x×N ; T (M×N)|x×N

)

be the (horizontal) vector field along x×N defined by

Xi(x, y) = vi ∈ T(x,y)(M×N) = TxM⊕TyN.
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These are smooth vector fields and thus

βx ≡ ιXk
. . . ιX1

γ = γ(X1, . . . , Xk, ·, . . . , ·) ∈ Γ
(

x×N ; ΛnT (M×N)|x×N

)

is a smooth n-form. If y∈N and
w1, . . . , wn ⊂ TyN

is a basis for TyN , then

v1, . . . , vk, w1, . . . , wn ⊂ T(x,y)(X×Y ) = TxX⊕TyY

is a basis. Since γ does not vanish at (x, y),

βx|y(w1, . . . , wn) = γ(v1, . . . , vk, w1, . . . , wn) 6= 0.

Thus, βx does not vanish along x×N . Furthermore, ιvi
βx|y =0 for all i, i.e.

βx|y ∈ ΛnT ∗

y N ⊂ Λn
(x,y)T

∗(M×N) =
⊕

p+q=n

ΛpT ∗

xM⊗ΛqT ∗

y N.

This means that
β ≡ ι∗xβx ∈ Γ

(

N ; ΛnT ∗N
)

= En(N)

is a nowhere-zero top form on N , i.e N is orientable. Note that this argument also implies part (c),
since the only fact we used about M is that it is nonempty.

Here is a third approach. We can assume that N is connected. Let

p : Ñ −→ N

be the orientable (connected) double cover of N . It can be obtained by choosing a metric on
ΛtopTN and taking

Ñ = S
(

ΛtopTN);

see more below. Let g be the nontrivial deck transformation for p, so that

N = Ñ
/

{id, g}.

Since Ñ is orientable and N is not orientable, the diffeomorphism g : Ñ −→Ñ must be orientation-
reversing. By part (a), M×Ñ is an orientable manifold. Furthermore,

M×N = M×Ñ
/{

idM×id, idM×g
}

.

Since idM is orientation-preserving and g is orientation-reversing,

idM×g : M×Ñ −→ M×Ñ

is orientation-reversing. Thus, M×N is not orientable.

We now show that the total space Ñ of the double cover

p : Ñ ≡S
(

ΛtopTN) −→ N
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is orientable. Since p is a local diffeomorphism,

dp : TÑ −→ p∗TN

is an isomorphism of vector bundles. Thus,

ΛtopTÑ ≈ Λtop(p∗TN) ≈ p∗
(

ΛtopTN
)

.

To show that the line bundle p∗(ΛtopTN) is trivial (and thus Ñ is orientable), we construct a
nowhere-vanishing section of

p∗
(

ΛtopTN
)

≡
{

(e, v)∈Ñ×ΛtopTN : p(e)=π(v)
}

−→ Ñ ,

where π : ΛtopTN −→N is the bundle projection map. By definition,

Ñ =
{

e∈ΛtopTN : |e|=1
}

=⇒

p∗
(

ΛtopTN
)

≡
{

(e, v)∈ΛtopTN ×ΛtopTN : π(v)=π(e)
}

−→ Ñ =
{

e∈ΛtopTN : |e|=1
}

.

We define a section of p∗(ΛtopTN) over Ñ by

s(e) = (e, e).

This section does not vanish.

(c) We will show that the line bundle

Λtop
(

T (M×N)
)

= π∗

1(Λ
topTM) ⊗ π∗

2(Λ
topTN) −→ M×N

is not trivial by showing that its pullback by ιx is again not trivial. This implies that M×N is not
orientable. Given x∈M , let

fx : N −→M, fx(y) = x,

be the constant map sending N to x. Since π1◦ιx =fx,

ι∗xπ∗

1(Λ
topTM) =

{

π1◦ιx
}

∗

(ΛtopTM) = f∗

x(ΛtopTM) = N × (ΛtopTM)x

is the trivial line bundle. Thus,

ι∗x
(

π∗

1(Λ
topTM) ⊗ π∗

2(Λ
topTN)

)

= ι∗x
(

π∗

1(Λ
topTM)

)

⊗ ι∗x
(

π∗

2(Λ
topTN)

)

= (N×R) ⊗ ΛtopTN ≈ ΛtopTN.

Since N is not orientable, the line bundle ΛtopTN is not trivial as needed.

Alternatively, we can assume that M is connected. Let

p : M̃ −→ M

be the orientable (connected) double cover of M similarly to part (b). Then,

p×id : M̃×N −→ M×N

is a covering projection. Since M̃×N is not orientable by part (b), M×N is not orientable either (a
nowhere-vanishing top form on the base induces a nowhere-vanishing top form on the total space
of a covering map (but not conversely)).
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