MAT 531: Topology& Geometry, 11
Spring 2011

Solutions to Problem Set 6

Problem 1 (10pts)

0

ox;

(a) Determine the time t-flow X;: R — R” ofX (give a formula).

(b) Use (a) to show directly from the definition of the Lie derivative Lx that the homomorphism
defined by

Let X be the vector field on R™ given by X = sz

1
Ry, : E*¥(R") — E*(R"™), fdzy, Ao ANdry, — </ sk_lf(s;r)ds> dzi, Ao A day,
0

is a left inverse for Lx if k>1 (this is used in the proof of the Poincare Lemma).
(¢) Is Ry also a right inverse for Lx for k>1% What happens for k =07

(a) For each p=(p1,...,pn) ER™, we need to solve the initial-value problem
Zi(t)=xi(t) i=1,...,n, z;(0)=p; i=1,...,n.
The solution is z;(t) =pse’ for all i=1,...,n; so
X;: R" — R, X (p)=pe'.
(b) We need to show that (RyLx(fdxr)),= f(p)dpxs for all feC>®(R"™), dey =dz;, A...Adz;, with
k>1, and peR"™. By definition,
t0)>p'
Since x;0X; =elx;, for all g€R"
(Xt*(fdm]))q = foXi(q)dg(zi o Xe) N ... Adg(zs,0Xy) = f(et q)dq (el )AL A dq(et:cik)
=M felq)dyxi, A ... Adgzi, = e felq)dyxr.

(ReLx(fdar)), = (Rk (tht (fdzr)

By the above two equations and the definition of Ry,

_d k—1_k
tzods)dpxj— dt(/o 1 e f(e'sp)ds >

dprr = (f(eop) ' eo)dpl‘f = f(p)dpzr,
t=0

dpxj
t=0

1
(Rka(fdajj))p = </O Sk’—l%ektf(etsp)

t

= i</oe sk‘lf(sp)d8>

(c) If f is continuous function on R™ which is not everywhere zero, then for any k> 1 there exists
x €R"™ such that

as needed.

/1 sP7Lf(sz)ds # 0.
0



Thus, Ry is injective. Since RipLx =id on Ek(Rn), it follows that Ry is an isomorphism and thus
LxRy=id. In the k=0 case, Ry.f is not defined for f€ E°(R")=C>(R") such that f(0)#0 because
the function 1/s is not integrable near s=0. The map Ry is defined on the subspace

C(R") = {feCX(R™): f(0)=0} C E°(R"),

mapping it injectively to itself. The image of the homomorphism Ly on E°(R™) is also contained in
Ce°(R™). Since the argument of part (b) applies when restricted to Cg°(R™), Ry is a left inverse of
Lx on C3°(R™) and by injectivity also the right inverse.

Problem 2: Chapter 4, #19 (10pts)
Show that if f,g: M — N are smooth maps that are smoothly homotopic, then
[ ="t Hiun(N) — g (M).
Let 1=]0,1]. For k=0, 1, define
ig: M — IxM by ir(p) = (k,p).
In the next paragraph we will construct a homomorphism

h: EX(IxM) — E*"Y(M)  st. if—it=hod+doh: E*(IxM) — E*(M).

d , h d
i
Y E——r 210}
i
d ~ h d
o
EMIxM) " T BA(M)
i
d ) h d
i
(S E——F 01y
i
d h d
If o€ E*(Ix M) is closed, then
ija —iga = hoda+ doha = d(ha) — [ila] = [ige] € Hiog(M)

Suppose F': I x M — N is a smooth homotopy from f to g, i.e.

F(0,p) = f(p), F(1,p)=g(p) VYpeM = f=Foip, g=Foi
= ff=(Foig) =igoF*=ijoF*"=(Foi1)" " =¢": Hieg(N) — Hj.r(M),

as needed.



If « is a differential form on I x M, then o = 8 + dt A  for some 5,7 € F(IXM;?T;A*T*M). Define

1
h: E*(IXM) — E*_l(M) by h(ﬁ) = 0, {h(dt/\’y)}p(Xl, ce ,Xk) = /Ov(t’p)(Xh ce ,Xk) dt

if  B,yeT(IxM;mANT"M), Xi,..., Xy € T,M.
Suppose pe M and x=(z1,...,x,): U—R" is a smooth chart near p. If a is a k-form on I x M,

a\U:ZaIde—i—ZaJthda:J for some ar,ay € C>(U),
1 J

where the first sum is taken over all increasing k-tuples I and the second over all increasing (k—1)-
tuples J. Then,

0, if a|y = ardx s;
h(a)|U: ( 1 . o
Jo as(t,x)dt)dzy, if aly = aydt Adzy.
Thus,
{hod+dohagdzr) = h( 2 dt A da +Za‘”dx A da
1dxy) = 5 I Bz, O I

—< 161(t )dt>d (ar(1,x) — ar(0,x))dx; = {i} —ig}(ardzr);
= ; at X rr = (ar(l,x ar X Ty =19 'LO ardry

1
od—+do ajdt N\ xJ = tANdx; Ndxy | + aj(t,x)dt)dz s
hod+doh dt A d =h 6 Jdtnd d d dt)d
€Ty 0

i=n

1
:—Z< 8(1] x)dt)dxﬂ\dx;—kZ(/ an(t,X)dt)dl‘i/\d]?]
0 = \Jo Omi
=0={i]—ip}t(asdt Adzy).
The last equality holds because ¢;dt=0.

Problem 3 (5pts)

Show that a one-form o on S' is exact if and only if

ffa=0
[0,1]

for every smooth function f:[0,1] — S such that f(0)=f(1).

Suppose « is an exact one-form on S', i.e. a=dg for some g€ C>®(S). If f: [0,1] — S is a smooth
function such that f(0)=f(1), then

/ Fra=[ fdg= / d(f*g) = /
[0,1] [0,1] [0,1] [0,1
/1

d(go f)

] 9o
WD gy = go g™ = gtr1)) ~ atr0)) =0

0



Conversely, let ¢: R— S, t — e?™ be the standard covering map and suppose

/ ¢ a=0.
[0,1]

¢
g:R—R by g(t):/ q*a.
0

Define

Since ¢*« is a smooth one-form on R, § is a smooth function on R. Furthermore, for all t€R,

t+1

1 1
g(t+1) —g(t) = / ¢ a= / qgia = / ¢'a=0, where qi(s) = q(t+s).
0 0

t

Thus, g is constant along the fibers of the quotient projection map ¢ and descends to a continuous
map g from the quotient:

R
L\
Slfgf>]R

Since ¢ is a local diffeomorphism and g is smooth, so is g. Furthermore,
d t

= (& [ o)) @)= 0oy ()

Since ¢ is a local diffeomorphism, it follows that dg=q, i.e. « is an exact one-form.

dt = ¢"aly.
=t

S

Problem 4 (5pts)

(a) Suppose ¢ : M — RN is an immersion. Show that M is orientable if and only if the normal
bundle to the immersion @ is orientable.

(b: Chapter 4, #1) Suppose ¢: M? — R s an immersion. Show that M is orientable if and only
if there exists a nowhere-vanishing normal vector field along (M, p).

(a) By Section 10 in Lecture Notes, the normal bundle N, is given by

N, = ¢*TRY /Im dy — P*TRY =~ Tmdp N, ~ TM & N,
— M xR = o*(RVxR) ~ ¢*AP(TRY) ~ A™Pu*(TRY) ~ A™P(TM) @ A™PN, .

The vector bundles A'P(T'M) and A*PN,, are line bundles. By (4) of Lemma 12.1 in Lecture Notes,
a line bundle is orientable if and only if it is trivial. Since the tensor product of any line bundle L
with the trivial line bundle is L again, by the above if A*P(T'M) is trivial, then so is A*PAN,, and vice
versa. Thus, the line bundle A*PA/, is orientable if and only if the line bundle A*P(T'M) is orientable.
On the other hand, by (3) of Lemma 12.1, a vector bundle V' — M is orientable if and only if the
line bundle A*™PV is orientable. We conclude that the vector bundle N, is orientable if and only if
the vector bundle T'M is orientable, i.e. M is orientable.



(b) By part (a), M is orientable if and only the normal bundle N, is orientable. Since N, is a line
bundle in this case, by (4) of Lemma 12.1 and by Lemma 8.5 in Lecture Notes N, is orientable if
and only if NV, admits a nowhere-vanishing section. Since TR™ has a natural metric, such a section
corresponds to a vector field Y along (M, ) which is everywhere normal to Imdy, i.e.

Y(p) € TR and (Y(p),dpp(X))=0 VX eT,M peM.
Thus, M is orientable if and only if there exists a nowhere-vanishing normal vector field along (M, ).
Problem 5 (10pts)

Let M be a smooth manifold.

(a) Show that every real vector bundle V.— M admits a Riemannian metric and every complex vector
bundle admits a hermitian metric.

(b) Show that if M is connected and there exists a mnon-orientable vector bundle V.— M, then M

admits a connected double-cover (2:1 covering map).
(c) Show that if the order of wi (M) is finite and odd, then M is orientable.

(a) Let V. — M be a real vector bundle of rank k. Choose a locally finite open cover of M by
trivializations {(Uq, ha)}aca of V, ie.

ha: Vg, — Uy xR

is a diffeomorphism commuting with the projections maps to U, which is linear on each fiber. Such
a cover exists because M is paracompact. Let {pn}aca be a partition of unity on M subordinate

to {Ua}aeA7 i.e.

Pa € C™(M), Pa(M) C [0,1], Z‘Pa(p)zl VpeM,
acA

and SUPDP Yo = Ya {(R—0) C U, Ya € A
For each a€ A, define a symmetric bilinear form (, ), on V' by

Va(P)(ha(X1), ha(X2)), if X1,Xs €V, peUy;
0, if X1,Xo €V, p€ M—supp @,

(X1, X2)a = {

where (hq(X1), ha(X2)) denotes the standard inner-product on R¥. Since (, ), is smooth over the open
sets U, and M —supp ¢, and agrees on the overlap, (,), is a well-defined smooth bilinear symmetric
form on all of M. We define a symmetric bilinear form (,) on M by

(X1, X2) =) (X1, Xo)a ¥V X1,X2 €V}, peM.
acA

Since for every p e M there exists a neighborhood U of p that intersects only finitely many of the open
sets Uy, the above sum is a finite sum of smooth bilinear forms, and therefore is smooth. Furthermore,

(X, X)=> (X, X)a VXEeEV, peM.
acA



By construction, (X, X), >0 for all a« € A. Since for every pe M there exists 3 €A such that pg(p) >0,

(X,X)g>0 VXeV,-0 — D X X)a = (X, X)5>0 VXeV,—0,
acA

i.e. (,) is nondegenerate. Thus, (,) is a Riemannian metric in V. The construction in the complex case
is analogous: simply replace R* with its standard inner-product by C* with its standard hermitian
inner-product.

(b) Suppose M is connected and V' — M is a non-orientable vector bundle. By (3) of Lemma 12.1 in
Lecture Notes, the line bundle APV — M is non-orientable. Choose a Riemannian metric in APV,
By (5) of Lemma 12.1, w: S(A*PV)—V is connected. It is a 2:1 covering map.

(c) We assume that M is connected (otherwise, 71 (M) depends on the choice of component). If M is
non-orientable, the vector bundle T'M — M is not orientable. By part (b), there exists a connected
2:1-covering map 7: M — M. By Theorem 54.6 in Munkres,

T (Wl(M)) c m (M)

is a subgroup of index two, i.e. the corresponding set of cosets consists of two elements. Since all
cosets have the same cardinality, the index of every subgroup must divide the order of the group (if
it is finite). Thus, if (M) is finite and odd, M does not admit a connected 2: 1-covering map and
must then be orientable.

Problem 6 (15pts)

(a) Show that the antipodal map on S™ CR™! (i.e. x — —x) is orientation-preserving if n is odd and
orientation-reversing if n is even.

(b) Show that RP™ is orientable if and only if n is odd.

(c) Describe the orientable double cover of RP™ x RP™ with n even.

(a) Denote by ¢: S™ — R™*! the inclusion map, by @: R**! — R"*! the antipodal map, and by
a: 8™ — S™ its restriction to S™:

ogn 4 . gn

I
R+ a R7+1

Let Q=dziA...dx,4+1 be the standard volume form on R and

X = sz

)-

Since the function
n+1

1 2
fiR"™ R, (xl,...,:rn+1)—>2xi,
is constant on S CR™"1, d, f vanishes on 7,5" CR™*1. Since

n+1 n+1

Zml@x :2256,?,
i=1



X(f)p#0 for all p€ S™ and thus X, ¢7,S". Since (2 is a volume form on R"*1, it follows that
a = (ixQ) = (ixQ)|rsn

is a volume form on S™ (€, is nonzero on any set of n+1 linearly independent vectors in R+
in particular if the first one of them is X, and the remaining are n linearly independent vectors in
T,5" CR" ). Since a*Q=(—1)""1Q and da(X)=X on R""!,

a*a=a"(ixQ) =a* (ida(X)Q) =" (ix(d*Q)) = (—1)"+1L*(iXQ) = (—1)"“04.
Thus, a: ™ — S™ is orientation-preserving if and only if n+1 is even.

(b) We first make the following general observation. Suppose M is a smooth manifold and G is a
group that acts on M by diffeomorphisms and properly discontinuously; see Section 81 in Munkres.
By Problem 2 on PS1, M = M /G is a smooth manifold, with smooth structure induced from that
of M via the quotient projection map q: M —s M. We claim that

{¢fa:acE* (M)} = EX(M)Y = {dGE*(M): g'a=aVgeG}. (1)
Since qo g = q, for all a€ E*(M)
ga=(gog)a=g"(¢"0) =  {daiacE*(M)}C E*(M)".

Conversely, suppose & € E*(M)%; define o € E*(M) as follows. If p € M, choose § € ¢—*(p) and
neighborhoods U and U of p and § in M and M, respectively, such that ¢: U — U is a diffeomorphism.
Define

ap € N T, M by {dlg}" (ap) = a5.
If i € ¢~'(p) is another point, there exists g € G such that gp/ =p. We can then take U’ = g~ }(U).
Since q o g=g,
{alg}* (ap) = {dlgo g} (ap) = g*(al5 () = 9" (&) = a,
i.e. a is well-defined. Since q|; is a diffeomorphism, « is smooth. We have now proved (1). One

consequence of (1) is that a volume form (and thus an orientation) on M corresponds to a volume
form for M which is preserved by G.

Let a be the volume form on S™ defined in (a) and a: S™ — S™ the antipodal map. By definition,
"= 8"/, where (—Dx =a(z) Vx e S".

By part (a), a*a = (—1)"*'a. Thus, if n is odd, then a € E*(S™)?2 and defines an orientation
on RP™; so RP" is orientable in this case. On the other hand, if n is even there exists no non-

vanishing 3 € E™(S™)%?2 and thus RP™ is not orientable in this case by the previous paragraph. For if
BEE™(S™)%2, then B= fa for some f€C>(S™) and therefore

fa=B=a"B=(foa)a*a=—(foa)« - foa=—f.

Thus, f and S must vanish somewhere on S™.

(c) By Theorem 60.1 in Munkres,

Wl(RPnXRPn) ~ Wl(RPn) X ﬂl(RPn) = Zo D Zo.



The universal cover of RP" xRP™ is S x.S™ and
RP"xRP™ = (S"x5") /m (RP"xRP"™) = (5" x S™) | Ly ®Zo;
see Section 81 in Munkres. The group Zyo®Zo~{+1} x{£1} acts on (5™ x.S™) by

((=DPx(=1)7) - (zxy) = a”(x) x a’(y).

By Section 82 in Munkres, the connected double covers of RP™ x RP™ correspond to (the conjugacy
classes) of the subgroups of m1(RP™xRP"™) of index two. The cover corresponding to a subgroup G
of Zo®Zs is

(S™x S")/G — (8" x S”)/ZQ@ZQ.
There are three index-two subgroups of Zs@®Zs: those generated by (—1,1), (1,—1), and (=1, —1).
The covering spaces corresponding to the first two groups are RP™ x S™ and S™ x RP"; neither is
orientable. Thus, the covering space corresponding to the third subgroup is

(5" x5™) /G = (5" x5")/ZLa, (1) - (wxy) = da(2,y) = (—2) X (=y),

must be orientable (this is called the diagonal Zs-action on S™ x.S™). This can also be seen directly.
If « is the volume form on S™ as above, then f=7]aAm5a is a volume form on S™x.S™. Furthermore,

d;f=d;miaNd,m5a = (mrody) a A (maody) e = (aom) A (aom) a
=nfa*a Amiata =} ((—1)"Ta) Ami((—1)"Ta) = rfa ATia = B.

Thus, 8 € E'P(S" x S™)?2 is a volume form on S™ x S™ preserved by the diagonal Zs-action and
therefore induces a volume/orientation form on the corresponding quotient.

Problem 7 (10pts)

(a) Show that every diffeomorphism f: S™ — S™ that has no fized points is smoothly homotopic to
the antipodal map (x is a fized point of f if f(x)=z).

(b) Show that if w: 8™ — M is a covering projection onto a smooth manifold M and |mi(M)|+#2,
then M 1is orientable.

(a) Define

F:IxS"— S" by F(t,xz) =
This map is well-defined, since

A-0f@) +H-0) =0 = (A-Hf@)=te = [1—f =]
= t=1/2 = f(z)==.

However, f has no fixed points. The map F is smooth, since it is smooth as a map into R**! and its
image lies in S™, which is an embedded submanifold of R™*+!.

(b) The group m (M) acts on S™ properly discontinuously by diffeomorphisms and M = S™ /71 (M).
Since S™ is compact, 71 (M) is a finite group. Let
1
8= g*OéEEn(Sn)ﬂl(M),
|1 (M)] 2
g€m (M)

8



where « is the standard volume form on S™, as in Problem 6. If g€ (M) is orientation-preserving,
then g*a = fyja for a smooth positive-valued function f, on S™. Thus, if g: S" — S™ is orientation-
preserving for all g, then /3 is a nowhere-vanishing top form on S™ preserved by (M) and thus
induces an orientation on M; see Problem 6b.

By the previous paragraph, it is sufficient to show that every element of 71 (M) is orientation-preserving
if |m(M)| #2. If g € m (M) is not the identity, g has no fixed points and thus homotopic to the
antipodal map by part (a). Then,

g-=a"=(-1)""" Hig(S") — Hi.r(S")

by Problems 2 and 6. In particular, if n is odd, then all elements of 7 (M) act by orientation-preserving
diffeomorphisms (no matter what w1 (M) is). Suppose n is even. We will show that w1 (M) contains
at most 2 elements. Suppose g1, g2 €71 (M) are different from the identity. Since 71 (M) acts without
fixed points,

gh=a" = (-1 = <1 HY(S") — Hig(S") k=12
— g =14 Hg(S") — Hjup(S™).

Thus, g192 is not homotopic to a and must then have a fixed point by part (a). Since 71 (M) acts
without fixed points, it follows that g; g2 =id. Since this holds for any pair of elements of 71 (M)—id,
it follows that 71 (M) contains at most 2 elements.

Problem 8 (10pts)

(a) Show that if X is a smooth nowhere-vanishing vector field on a compact manifold M, then the
flow Xy: M — M of X has no fized points for some t €R.

(b) Show that S™ admits a nowhere vanishing vector field if and only if n is odd.

(c) Show that the tangent bundle of S™ is not trivial if n>1 is even.

Note: In fact, T'S™ is trivial if and only if n=1,3,7.

(a) Suppose not, i.e. there exists a sequence t; € R* converging to 0 and a sequence px € M such that
X1 (pk) =pi for all k€Z™. Since M is compact, after passing to a subsequence we can assume that
Pk converges to some p* € M. If X, # 0, there exists t* € R* such that X« (p*) # p*. Since M is
Hausdorff, there exist disjoint open neighborhoods U and V' of p* and Xy«(p*), respectively. By (d)
and (h) of Theorem 1.48, there exist a neighborhood U’ of p* in U and € >0 such that

Xi(p) eV VpelU', te (t —et'+e).
Since (tg, px) converges to (0,p*), there exist k, N €Z™ such that
pkEU/ and NtkE(t*—e,t*—i-E) - XNtk(pk)GV — XNtk(pk)#kaU/CU.

However, this is impossible, since Xy, (pr) = Xt]Z (pr) =pr because Xy, (pr)=pk.

(b) If X is a nowhere-vanishing vector field on S™, by part (a) there exists t € R such that the
diffeomorphism X;: S™ — S™ has no fixed points. Thus, by part (a) of Problem 7, X; is homotopic
to the antipodal map a and

X{=a" = (-1)""": Hjoq(S") — Hir(S")



by Problems 2 and 6. On the other hand, s — X,; is a homotopy from Xg=id to X;. Thus,
X =id" =id: HLg(S") — Hi.r(S™).
It follows that 1=(—1)"*1 i.e. n is odd.

On the other hand, if n=2k+1 is odd, let

k+1
0

0
X(901,$2,---,562k+1,$2k+2) = E _3321'87"‘5321'—187 .
o1 T2i—1 T2

This is a vector field on R?**2 (it corresponds to rotations in k41 coordinate 2-planes) that does not
vanish on R?¥+2 0> 52+ We show

X|gontr € T(SHHL TS  T(SHHL TRH*H2 | g 10).

Since S2**1 is defined by f(x)=|x|?=1 and dyf#0 for all x € S?**1 it is sufficient to show that X
lies in the kernel of dy f:

2k+2 ktl
Af =23 widn; = df(X) =2 (= mawai1 + T2 172:) = 0.
i=1 =1

Thus, X |ge2r+1 is a nowhere-vanishing vector field on S2++1,

(c) If TS™ is isomorphic to S xR"™, S admits a nowhere-vanishing vector field X (in fact, n vector
fields that are linearly independent at every point of S™). By part (b), if this is the case, then n is
odd. In other words, if n>1 is even, the vector bundle T'S™ — S™ is not trivial.

Problem 9 (5pts)
Suppose M is a compact oriented 3-manifold with boundary and OM = T? = S'x S'. Let
T, M T2 — S1

be the two projection maps. Show that it is impossible to extend both (as opposed to at least one of)
a1 =77d0 and ax=m5d0 to closed forms on M.

Suppose 31 and s are closed one-forms on M such that oy = S1]on and ag = Ba|onr. Then,
d(B1 A Be) =dBi AB+ (=1)'B1 AdBs =0+0=0.

Thus, by the second version of Stokes’” Theorem, Theorem 4.9,

[ sins=[ agns)= [ 0-o
oM M M
On the other hand,

,6’1/\,6’2:/ al/\agz/ Wfd@/\ﬂ’ﬁd@z/d@-/ df =27 - 2w # 0.
oM oM Slx St g1 g1

This is a contradiction.
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