1. Let V be a vector space of dimension n and $\Omega \in \Lambda^n V^*$ a nonzero element. Show that the homomorphism

$$V \rightarrow \Lambda^{n-1} V^*, \quad v \mapsto i_v \Omega,$$

where i_v is the contraction map, is an isomorphism.

2. Suppose M is a smooth n-manifold.

 (a) Let Ω be a nowhere-zero n-form on M. Show that for every $p \in M$ there exists a chart $(x_1, \ldots, x_n): U \rightarrow \mathbb{R}^n$ around p such that

 $$\Omega|_U = dx_1 \wedge \ldots \wedge dx_n.$$

 (b) Let α be a nowhere-zero closed $(n-1)$-form on M. Show that for every $p \in M$ there exists a chart $(x_1, \ldots, x_n): U \rightarrow \mathbb{R}^n$ around p such that

 $$\alpha|_U = dx_2 \wedge dx_3 \wedge \ldots \wedge dx_n.$$

3. Let M be a smooth manifold and $X, Y \in \Gamma(M; TM)$ smooth vector fields on M. Show that the Lie derivative satisfies

$$L_{[X,Y]} = [L_X, L_Y] \equiv L_X \circ L_Y - L_Y \circ L_X$$

as homomorphisms on $\Gamma(M; TM)$ and $E^k(M)$. Hint: use 1.44,1.45d, 2.25abe.

4. Let α be a k-form on a smooth manifold M and X_0, X_1, \ldots, X_k smooth vector fields on M. Show directly from the definitions that

$$d\alpha(X_0, X_1, \ldots, X_k) = \sum_{i=0}^{i=k} (-1)^i X_i(\alpha(X_0, \ldots, \hat{X}_i, \ldots, X_k))$$

$$+ \sum_{i<j} (-1)^{i+j} \alpha([X_i, X_j], X_0, \ldots, \hat{X}_i, \ldots, \hat{X}_j, \ldots, X_k).$$

Hint: first show that the values of LHS and RHS at any $p \in M$ depend only on the values of X_0, X_1, \ldots, X_k at p.

5. Let $V \rightarrow M$ be a smooth vector bundle of rank k and $W \subset V$ a smooth subbundle of V of rank k'. Show that

$$\text{Ann}(W) \equiv \{ \alpha \in V^*_p: \alpha(w) = 0 \forall w \in W, p \in M \}$$

is a smooth subbundle of V^* of rank $k-k'$.
6. Suppose M is a 3-manifold, α is a nowhere-zero one-form on M, and $p \in M$. Show that

(a) if there exists an embedded 2-dimensional submanifold $P \subset M$ such that $p \in P$ and $\alpha|_{TP} = 0$, then $(\alpha \wedge d\alpha)|_p = 0$.

(b) if there exists a neighborhood U of p in M such that $(\alpha \wedge d\alpha)|_U = 0$, then there exists an embedded 2-dimensional submanifold $P \subset M$ such that $p \in P$ and $\alpha|_{TP} = 0$.

Note: If the top form $\alpha \wedge d\alpha$ on M is nowhere-zero, α is called a contact form. In this case, it has no integrable submanifolds at all.

7. A two-form ω on a smooth manifold M is called symplectic if ω is closed (i.e. $d\omega = 0$) and everywhere nondegenerate\(^1\). Suppose ω is a symplectic form on M.

(a) Show that the dimension of M is even and the map

$$TM \rightarrow T^*M, \quad X \mapsto i_X \omega,$$

is a vector bundle isomorphism (i_X is the contraction w.r.t. X, i.e. the dual of $X \wedge$).

(b) If $H : M \rightarrow \mathbb{R}$ is a smooth map, let $X_H \in \Gamma(M; TM)$ be the preimage of dH under this isomorphism. Assume that X_H is a complete vector field, so that the flow

$$\varphi : \mathbb{R} \times M \rightarrow M, \quad (t, p) \mapsto \varphi_t(p),$$

is globally defined. Show that for every $t \in \mathbb{R}$, the time-t flow $\varphi_t : M \rightarrow M$ is a symplectomorphism, i.e. $\varphi_t^* \omega = \omega$.

Note: In such a situation, H is called a Hamiltonian and φ_t a Hamiltonian symplectomorphism.

\(^1\)This means that $\omega_p \in \Lambda^2 T^*_p M$ is nondegenerate for every $p \in M$, i.e. for every $v \in T_p M = 0$ there exists $v' \in T_p M$ such that $\omega_p(v, v') \neq 0.$