MAT 531: Topology & Geometry, II
Spring 2011

Problem Set 3
Due on Thursday, 2/24, in class

1. Chapter 1, #5 (p50)

2. Show that the tangent bundle TM of a smooth n-manifold M is a real vector bundle of rank n over M. What is its transition data?

3. Show that the tangent bundle TS^1 of S^1, defined as in 1.25 (p19), is isomorphic to the trivial real line bundle over S^1. Hint: Use Lemma 8.5 in Lecture Notes.

4. Suppose that $f : X \to M$ is a smooth map and $\pi : V \to M$ is a smooth vector bundle. The pullback of V by f, $\pi^1 : f^*V \to X$, is the vector bundle defined by taking
 \[f^*V = \{(x,v) \in X \times V : f(x) = \pi(v)\} \subset X \times V. \]
 Show that f^*V is indeed a smooth submanifold of $X \times V$.

5. Show that the tautological line bundle $\gamma_n \to \mathbb{C}P^n$ is indeed a complex line bundle (describe its trivializations). What is its transition data? Why is it non-trivial for $n \geq 1$? (not isomorphic to $\mathbb{C}P^n \times \mathbb{C} \to \mathbb{C}P^n$ as line bundle over $\mathbb{C}P^n$). Hint: See proof of Lemma 8.4 in Lecture Notes.

6. Suppose $k < n$. Show that the map
 \[\iota : \mathbb{C}P^k \to \mathbb{C}P^n, \quad [X_0, \ldots, X_k] \mapsto [X_0, \ldots, X_k, 0, \ldots, 0], \]
 is a complex embedding (i.e. a smooth embedding that induces holomorphic maps between the charts that determine the complex structures on $\mathbb{C}P^k$ and $\mathbb{C}P^n$). Show that the normal bundle to this immersion, \mathcal{N}_ι, is isomorphic to
 \[(n-k)\gamma_k^* \equiv \underbrace{\gamma_k^* \oplus \cdots \oplus \gamma_k^*}_{n-k}, \]
 where $\gamma_k \to \mathbb{C}P^k$ is the tautological line bundle (isomorphic as complex line bundles).

7. Let $\Lambda^n_T \mathbb{C}P^n \to \mathbb{C}P^n$ be the top exterior power of the vector bundle $T \mathbb{C}P^n$ taken over \mathbb{C}. Show that $\Lambda^n_T \mathbb{C}P^n$ is isomorphic to the line bundle
 \[\gamma_n^* \otimes (n+1) \equiv \underbrace{\gamma_n^* \otimes \cdots \otimes \gamma_n^*}_{n+1}, \]
 where $\gamma_n \to \mathbb{C}P^n$ is the tautological line bundle (isomorphic as complex line bundles).

Hint on the next page
Hint for 6 and 7: There are a number of ways of doing these, including:

(i) construct an isomorphism between the two line bundles;

(ii) show that there exists a short exact sequence of vector bundles

\[0 \rightarrow \mathbb{C}P^n \times \mathbb{C} \rightarrow (n+1)\gamma_n^* \rightarrow T\mathbb{C}P^n \rightarrow 0 \]

and this implies the claim (exact means that at each position the kernel of the outgoing map equals to the image of the incoming map over every point of \(M \));

(iii) use Problems PS1-3b and 2 and 5 above to determine transition data for the two bundles. However, you will need to modify trivializations for one of the line bundles in Problem 7 to arrive at the same transition data;

(iv) show that there exists a holomorphic diffeomorphism between \((n-k)\gamma_k^*\) and a neighborhood of \(\iota(\mathbb{C}P^k) \) in \(\mathbb{C}P^n \) and that this implies the claim in Problem 6.