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Solutions to Problem Set 1

Problem 1: Chapter 1, #2 (10pts)

Let F be the (standard) differentiable structure on R generated by the one-element collection of
charts F0 = {(R, id)}. Let F ′ be the differentiable structure on R generated by the one-element
collection of charts

F ′
0 ={(R, f)}, where f : R−→R, f(t) = t3.

Show that F 6=F ′, but the smooth manifolds (R,F) and (R,F ′) are diffeomorphic.

(a) We begin by showing that F 6=F ′. Since id∈F0⊂F , it is sufficient to show that id 6∈F ′, i.e. the
overlap map

id ◦ f−1 : f(R∩R)=R −→ id(R∩R)=R

from f ∈F ′
0 to id is not smooth, in the usual (i.e. calculus) sense:

R R

R ∩ R

id ◦ f−1

f id

Since f(t)= t3, f−1(s)=s1/3, and

id ◦ f−1 : R −→ R, id ◦ f−1(s) = s1/3.

This is not a smooth map.

(b) Let h : R−→R be given by h(t)= t1/3. It is immediate that h is a homeomorphism. We will
show that the map

h : (R,F) −→ (R,F ′)

is a diffeomorphism, i.e. the maps

h : (R,F) −→ (R,F ′) and h−1 : (R,F ′) −→ (R,F)

are smooth. To show that h is smooth, we need to show that it induces smooth maps between the
charts in F0 and F ′

0. In this case, there is only one chart in each. So we need to show that the
map

f ◦ h ◦ id−1 : id
(

h−1(R)∩R
)

=R −→ R

is smooth:



R

(R,F)

id

R

(R,F ′)

f

f ◦ h ◦ id−1

h

Since
f ◦ h ◦ id−1(t) = f

(

h(t)
)

= f(t1/3) =
(

t1/3
)3

= t,

this map is indeed smooth, and so is h. To check that h−1 is smooth, we need to show that it
induces smooth maps between the charts in F ′

0 and F0, i.e. that the map

id ◦ h−1 ◦ f−1 : f
(

h(R)∩R
)

=R −→ R

is smooth:

R

(R,F ′)

f

R

(R,F)

id

id ◦ h−1 ◦ f−1

h−1

Since
id ◦ h−1 ◦ f−1(t) = h−1

(

f(t)
)

= h−1(t3) =
(

t3
)1/3

= t,

this map is indeed smooth, and so is h−1. Since h and h−1 are smooth maps, we conclude that h
is diffeomorphism from (R,F) to (R,F ′).

Remarks: (1) Since we know that h is a homeomorphism, it is sufficient to show that h induces
diffeomorphisms on all charts in F0 and F ′

0. This would imply that h−1 is smooth as well, since
the maps between charts induced by h−1 are inverses of those induced by h.
(2) More generally, every topological manifold of dimension 1, 2, or 3 admits a differentiable struc-
ture and any two such structures are diffeomorphic. Up to diffeomorphism, the only connected
1-dimensional manifolds are R and S1, with their standard differentiable structures (you can find
a proof in the 2.5-page appendix in Milnor’s Topology from Differentiable Viewpoint). Starting
in dimension 4, things get more complicated. Not every topological 4-manifold admits a smooth
structure. In a seven-page paper in 1956 (cited in his Fields medal award), Milnor showed that S7

admits non-diffeomorphic smooth structures. Since then the situation for manifolds in dimensions
five and higher has been sorted out; amazingly, 4 is the hard dimension.

Problem 2 (10pts)

Suppose a group G acts properly discontinuously on a smooth n-manifold M̃ by diffeomorphisms.
Show that the quotient topological space M = M̃/G admits a unique smooth structure such that the
projection map M̃ −→M is a local diffeomorphism.

Since G acts properly discontinuously on M̃ , the quotient projection map π : M̃−→M is a covering
projection. The assumption that G acts by diffeomorphism leads to the following key property.
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Claim: If V,W are open subset of M̃ such that π|V and π|W are injective, then

πVW ≡
{

π|V
}−1

◦π :
{

π|W
}−1(

π(V )
)

−→
{

π|V
}−1(

π(W )
)

is a diffeomorphism.

Proof. By assumption, π : V −→ π(V ) and π : W −→ π(W ) are homeomorphisms; thus, so is
the map πVW (with the specified domain and range, which are open subsets of M̃). Thus, it is
sufficient to show each point p∈ {π|W }−1(π(V )) has a neighborhood Wp in {π|W }−1(π(V )) such
that πVW |Wp

is smooth. Let p′={π|V }
−1(π(p)); then p′=gp for a unique g∈G. Since g : M̃−→M̃

is continuous, Wp=g
−1(V )∩W is an open neighborhood of p in {π|W }−1(π(V )) and πVW |Wp

=g|Wp

(for each q ∈Wp, πVW (q) = gqq ∈ V for some gq ∈G, gq ∈ V , and there exists (at most) a unique
g′∈G such that g′q∈V ). Since G acts by diffeomorphisms, g|Wp

is smooth.

Let FM̃ be the smooth structure on M̃ and

F0 =
{

(π(V ), ϕ◦{π|V }
−1) : (V, ϕ)∈FM̃ , π|V is injective

}

.

Since π is a covering map, π(V )⊂M is open whenever V ⊂M̃ is. Since for every p∈M̃ there exists
(V, ϕ) ∈ FM̃ such that π|V is injective, the union of the sets π(V ) with (π(V ), ϕ◦{π|V }

−1) ∈ F0

covers M . If (π(V ), ϕ◦{π|V }
−1), (π(W ), ψ◦{π|W }−1)∈F0,

ϕ◦{π|V }
−1 ◦

(

ψ◦{π|W }−1
)−1

= ϕ ◦ πVW ◦ ψ−1 : ψ
(

{π|W }−1(π(V ))
)

−→ ϕ
(

{π|V }
−1(π(W ))

)

is smooth, because πVW is smooth by the claim and ϕ and ψ are charts. Thus, F0 satisfies (i) and
(ii) on p5 and thus gives rise to a smooth structure on M .

With respect to this smooth structure, the map π : M̃−→M is a local diffeomorphism because

ϕ◦{π|V }
−1 ◦ π|W ◦ ψ−1 = ϕ ◦ πVW ◦ ψ−1 : ψ

(

{π|W }−1(π(V ))
)

−→ ϕ
(

{π|V }
−1(π(W ))

)

is a diffeomorphism whenever (π(V ), ϕ◦{π|V }
−1), (π(W ), ψ◦{π|W }−1) ∈ F0. Conversely, if F̃ ′ is

any smooth structure on M such that π : M̃−→M is a local diffeomorphism, then

ϕ◦{π|V }
−1 ◦

(

ψ◦{π|W }−1
)−1

= ϕ◦{π|V }
−1 ◦π|W ◦ψ−1 : ψ

(

{π|W }−1(π(V ))
)

−→ ϕ
(

{π|V }
−1(π(W ))

)

is a diffeomorphism whenever (π(V ), ϕ◦{π|V }
−1), (π(W ), ψ◦{π|W }−1) ∈F0, and so F0 ⊂F ′ and

thus F ′=F by the maximality condition.

Note: this implies that the circle, the infinite Mobius band, the Lens spaces (that are important
in 3-manifold topology), the real projective space, and the tautological line bundle over it,

S1 = R/Z, s ∼ s+ 1, MB = (R× R)/Z, (s, t) ∼ (s+ 1,−t),

L(n, k) = S3/Zn, (z1, z2) ∼
(

e2πi/nz1, e
2πik/nz2

)

∈ C2,

RPn = Sn/Z2, x ∼ −x, γn = (Sn × R)/Z2, (x, t) ∼ (−x,−t),

are smooth manifolds in a natural way (k and n are relatively prime in the definition of L(n, k)).
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Problem 3 (15pts)

(a) Show that the quotient topologies on CPn given by (Cn+1−0)/C∗ and S2n+1/S1 are the same.
(b) Show that CPn is a compact topological 2n-manifold. Furthermore, it admits a structure of
a complex (in fact, algebraic) n-manifold, i.e. it can be covered by charts whose overlap maps,
ϕα◦ ϕ

−1
β , are holomorphic maps between open subsets of Cn (and rational functions on Cn).

(c) Show that CPn contains Cn, with its complex structure, as a dense open subset.

(a) Let
p : S2n+1 −→ S2n+1/S1 and q : Cn+1−0 −→ (Cn+1−0)/C∗

be the quotient projection maps. Denote by

ĩ : S2n+1 −→ Cn+1−0 and r̃ : Cn+1−0 −→ S2n+1

the inclusion map and the natural retraction map, i.e. r̃(v)=v/|v|. We will show that these maps
descend to continuous maps on the quotients, i and r,

S2n+1

S2n+1/S1

p

Cn+1−0

(Cn+1−0)/C∗

q

ĩ

i

Cn+1−0

(Cn+1−0)/C∗

q

S2n+1

S2n+1/S1

p

r̃

r

that are inverses of each other. The map q ◦ ĩ is constant on the fibers of p, since if v, w∈S2n+1

and w = g · v for some g ∈ S1, then ĩ(w) = g′ · ĩ(v) for some g′ ∈C∗ (in fact, g′ = g). Thus, q ◦ ĩ
induces a map i from the quotient space S2n+1/S1 (so that the first diagram commutes); since the
map q ◦ ĩ is continuous, so is the induced map i. Similarly, the map p ◦ r̃ is constant on the fibers
of q, since if v, w∈Cn+1−0 and w=g · v for some g∈C∗, then r̃(w)=g′ · r̃(v) for some g′∈S1 (in
fact, g′=g/|g|). Thus, p ◦ r̃ induces a map r from the quotient space (Cn+1−0)/C∗; since the map
p ◦ r̃ is continuous, so is the induced map r. Since r̃ ◦ ĩ = idS2n+1 , r ◦ i = idS2n+1/S1 . Similarly, for
all v∈Cn+1−0,

ĩ ◦ r̃(v) = (1/|v|)v, 1/|v| ∈ C∗ =⇒ q
(

ĩ ◦ r̃(v)
)

= q(v) =⇒ i ◦ r = id(Cn+1−0)/C∗ .

(b-i) Since S2n+1 is compact, so is the quotient space CPn=S2n+1/S1 (being the image of S2n+1

under the continuous map p). Suppose next that A⊂S2n+1 is a closed subset. Then,

p−1
(

p(A)
)

= S1 ·A ≡
{

g · v : v∈A, g∈S1
}

.

Thus, p−1(p(A)) is the image of the closed subset S1×A in S2n+1 under the continuous multiplication
map

S1 × S2n+1 −→ S2n+1.

Since A is closed in S2n+1, S1×A is closed in the compact space S1×S2n+1 and thus compact.
It follows that p−1(p(A)) is a compact subset of the Hausdorff space S2n+1 and thus closed. We
conclude that p(A)⊂S2n+1/S1 is closed for all closed subsets A⊂S2n+1, i.e. the quotient map p
is a closed map. Since S2n+1 is normal, by Lemma 73.3 in Munkres’s Topology the quotient space
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CPn is normal as well (and in particular, Hausdorff).

(b-ii) We will now construct a collection of charts {(Ui, ϕi)}i=0,1,...,n on CPn that covers CPn.
Given a point (X0, . . . , Xn)∈Cn+1−0, we denote its equivalence class in

CPn = (Cn+1−0)/C∗

by [X0, . . . , Xn]. For i=0, 1, . . . , n, let

Ui =
{

[X0, . . . , Xn]∈CPn : Xi 6=0
}

.

Since
q−1(Ui) =

{

(X0, . . . , Xn)∈Cn+1−0: Xi 6=0
}

≡ Ũi

is an open subset of Cn+1−0, Ui is an open subset of CPn. Define

ϕ̃i : Ũi −→ Cn=R2n by

ϕ̃i(X0, . . . , Xn) =
(

X0/Xi, X1/Xi, . . . , Xi−1/Xi, Xi+1/Xi, . . . , Xn/Xi

)

.

Since ϕ̃i(c · v) = ϕ̃i(v), the map ϕ̃i induces a map ϕi from the quotient space Ui of Ũi:

Ũi

Ui

q

Cn

ϕ̃
i

ϕi

Since ϕ̃i is continuous, so is ϕi. Define

ψi : C
n −→ Ui by ψi(z1, . . . , zn) =

[

z1, . . . , zi, Xi=1, zi+1, . . . , zn].

Since ψi is a composition of two continuous maps, ψi is continuous. Since ψi ◦ϕi = idUi
and

ϕi◦ψi=idCn , the map
ϕi : Ui −→ Cn

is a homeomorphism. Note that for every p≡ [X0, . . . , Xn]∈CPn, there exists i=0, 1, . . . , n such
that Xi 6=0, i.e. p∈Ui. Thus, {(Ui, ϕi)}i=0,1,...,n is a collection of charts on CPn that covers CPn.
In particular, CPn is locally Euclidean of dimension 2n. Since this collection of charts is countable
(actually, finite), it follows that CPn is 2nd-countable (since each open subset Ui is 2nd-countable).

(b-iii) We now determine the overlap maps

ϕi ◦ ϕ
−1
j = ϕi ◦ ψj : ϕj(Ui∩Uj) −→ ϕi(Ui∩Uj).

Assume that j<i. Then,

Ui∩Uj =
{

[X0, . . . , Xn]∈CPn : Xi, Xj 6=0
}

=⇒

ϕj(Ui∩Uj) =
{

(z1, . . . , zn)∈Cn : zi 6=0
}

≡ Cni , ϕi(Ui∩Uj) =
{

(z1, . . . , zn)∈Cn : zj+1 6=0
}

≡ Cnj+1;

the assumption j<i is used on the second line. By (b-ii), the map

ϕi ◦ ϕ
−1
j : Cni −→ Cnj+1
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is given by

ϕi ◦ ϕ
−1
j (z1, . . . , zn) = ϕi ◦ ψj(z1, . . . , zn) = ϕi

(

[z1, . . . , zj , Xj=1, zj+1, . . . , zn]
)

=
(

z1/zi, . . . , zj/zi, 1/zi, zj+1/zi, . . . , zi−1/zi, zi+1/zi, . . . , zn/zi
)

.

Thus, the overlap map ϕi ◦ϕ
−1
j is holomorphic on its domain, as is its inverse, ϕj ◦ϕ

−1
i ; both maps

are given by rational functions on Cn. We conclude that the collection F0 = {(Ui, ϕi)}i=0,1,...,n

determines a complex structure on CPn.

(c) By part (b), the map

ψ0 : C
n −→ U0 ⊂ CPn, (z1, . . . , zn) −→ [1, z1, . . . , zn],

is a homeomorphism and
ϕ−1
0 ◦ ψ0 : C

n −→ Cn

is the identity map (and thus holomorphic). Since (U0, ϕ0)∈F0, ψ0 is a holomorphic embedding.
So, CPn contains Cn (as U0) with its complex structure as an open subset. The subset U0 is dense
in CPn, since Ũ0=q

−1(U0) is dense in Cn+1−0.

Remark: We can of course use any of the maps ψi in part (c). By part (c), CPn is a compactifi-
cation of Cn (i.e. Cn is a dense open subset of the compact Hausdorff space CPn). In contrast to
the one-point compactification S2n of Cn (for n>1), CPn has complex and algebraic structure. If
n=1, the two compactifications are the same; CP 1 is the Riemann sphere.

Problem 4: Chapter 1, #6, via 2nd suggested approach (5pts)

Suppose f :M−→N is a bijective immersion. Show that f is a diffeomorphism.

Let n=dim M and k=dim N . Since f is an immersion, the differential

df |m : TmM −→ Tf(m)N

is injective for all m∈M . In particular, n≤k. If n=k, then df |m is an isomorphism for all m∈M
and f is a local diffeomorphism by the Inverse Function Theorem. Since f is bijective, it then
follows that f is a (global) diffeomorphism if n= k. Below we show that the case n < k cannot
arise.

Suppose n< k and (W,ϕ) is a coordinate chart on N such that ϕ(W ) =Rk. Then, f−1(W ) is a
smooth n-manifold. It is sufficient to show that the image of f−1(W ) under f is not all of W , or
equivalently that the smooth map

g ≡ ϕ◦f :W −→ Rn

is not surjective. Let {ψi : Ui−→Vi}i∈Z be a collection of charts on f−1(W ) that covers f−1(W ).
Then,

g
(

f−1(W )
)

= g

(

⋃

i∈Z

ψ−1
i (Vi)

)

=
⋃

i∈Z

g
(

ψ−1
i (Vi)

)

⊂ Rk.
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Since Vi is an open subset of Rn, g ◦ ψ−1
i : Vi−→Rk is a smooth map, and n<k, the k-measure of

g(ψ−1
i (Vi)) in Rk is 0 (for reasons described in detail in the statement of the exercise in the book).

Since a countable union of measure 0 subsets of Rk is of measure 0, it follows that g(f−1(W )) is a
subset of Rk of measure 0. In particular,

g
(

f−1(W )
)

( Rk,

as needed.

Remark: This argument implies that there exist no smooth surjective map f : R−→Rk if k > 1.
Recall from 530 that there does exist a continuous surjective map f : R−→Rk (it can be constructed
from the Peano curve).

Problem 5 (5pts)

If ψ :M−→N is a smooth map and m∈M , the differential of ψ at m,

dψ|m : TmM −→ Tψ(m)N,

is defined by
{

dψ|mv
}

(f) = v(f ◦ ψ) ∈ R ∀ v∈TmM, f ∈ F̃ψ(m). (1)

Show that dψ|mv is indeed a well-defined element of Tψ(m)N for all v∈TmM .

We need to show that dψ|mv induces a linear derivation on F̃ψ(m), i.e. a linear map

F̃ψ(m) −→ R

satisfying the product rule. Suppose U and V are (open) neighborhoods of ψ(m) in N , f : U −→R

and g : V −→R are smooth functions, andW ⊂U∩V is a neighborhood of ψ(m) such that f |W =g|W ,
i.e. f=g∈ F̃ψ(m). Then, ψ

−1(U) and ψ−1(V ) are neighborhood of m in M ,

f ◦ ψ : ψ−1(U) −→ R and g ◦ ψ : ψ−1(V ) −→ R

are smooth functions, and ψ−1(W )⊂f−1(U)∩f−1(V ) is a neighborhood of m such that

(f ◦ ψ)|ψ−1(W ) = (g ◦ ψ)|ψ−1(W ) =⇒ [f ◦ ψ] = [g ◦ ψ] ∈ F̃m

=⇒ v(f ◦ ψ) = v
(

[f ◦ ψ]
)

= v
(

[g ◦ ψ]
)

= v(g ◦ ψ),

since v ∈ TmM . It follows that (1) induces a well-defined map F̃m −→ R (independent of the
choice of representative f for the equivalence class f ∈ F̃ψ(m)). If f and g are smooth functions on
neighborhoods of ψ(m) in M and α, β∈R, then

{

dψ|mv
}

(αf+βg) ≡ v
(

(αf+βg) ◦ ψ
)

= v
(

α (f ◦ ψ) + β (g ◦ ψ)
)

= α v(f ◦ ψ) + β v(g ◦ ψ) ≡ α
{

dψ|mv
}

(f) + β
{

dψ|mv
}

(g),

i.e. dψ|mv is a linear map. Finally, with f and g as above,
{

dψ|mv
}

(f · g) ≡ v
(

(f · g) ◦ ψ
)

= v
(

(f ◦ ψ) · (g ◦ ψ)
)

= f ◦ψ(m) v(g ◦ ψ) + g◦ψ(m) v(f ◦ ψ)

≡ f
(

ψ(m)
){

dψ|mv
}

(g) + g
(

ψ(m)
){

dψ|mv
}

(f),

i.e. dψ|mv satisfies the product rule.
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