MAT 531: Topology&Geometry, II Spring 2011

Solutions to Problem Set 1

Problem 1: Chapter 1, #2 (10pts)

Let \mathcal{F} be the (standard) differentiable structure on \mathbb{R} generated by the one-element collection of charts $\mathcal{F}_0 = \{(\mathbb{R}, \mathrm{id})\}$. Let \mathcal{F}' be the differentiable structure on \mathbb{R} generated by the one-element collection of charts

$$\mathcal{F}'_0 = \{(\mathbb{R}, f)\}, \quad where \quad f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(t) = t^3.$$

Show that $\mathcal{F} \neq \mathcal{F}'$, but the smooth manifolds $(\mathbb{R}, \mathcal{F})$ and $(\mathbb{R}, \mathcal{F}')$ are diffeomorphic.

(a) We begin by showing that $\mathcal{F} \neq \mathcal{F}'$. Since $id \in \mathcal{F}_0 \subset \mathcal{F}$, it is sufficient to show that $id \notin \mathcal{F}'$, i.e. the overlap map

$$id \circ f^{-1}: f(\mathbb{R} \cap \mathbb{R}) = \mathbb{R} \longrightarrow id(\mathbb{R} \cap \mathbb{R}) = \mathbb{R}$$

from $f \in \mathcal{F}'_0$ to id is not smooth, in the usual (i.e. calculus) sense:

Since $f(t) = t^3$, $f^{-1}(s) = s^{1/3}$, and

$$id \circ f^{-1} : \mathbb{R} \longrightarrow \mathbb{R}, \quad id \circ f^{-1}(s) = s^{1/3}.$$

This is not a smooth map.

(b) Let $h: \mathbb{R} \longrightarrow \mathbb{R}$ be given by $h(t) = t^{1/3}$. It is immediate that h is a homeomorphism. We will show that the map

$$h: (\mathbb{R}, \mathcal{F}) \longrightarrow (\mathbb{R}, \mathcal{F}')$$

is a diffeomorphism, i.e. the maps

$$h: (\mathbb{R}, \mathcal{F}) \longrightarrow (\mathbb{R}, \mathcal{F}')$$
 and $h^{-1}: (\mathbb{R}, \mathcal{F}') \longrightarrow (\mathbb{R}, \mathcal{F})$

are smooth. To show that h is smooth, we need to show that it induces smooth maps between the charts in \mathcal{F}_0 and \mathcal{F}'_0 . In this case, there is only one chart in each. So we need to show that the map

$$f \circ h \circ \mathrm{id}^{-1} : \mathrm{id}(h^{-1}(\mathbb{R}) \cap \mathbb{R}) = \mathbb{R} \longrightarrow \mathbb{R}$$

is smooth:

$$\mathbb{R} \xrightarrow{f \circ h \circ \mathrm{id}^{-1}} \mathbb{R}$$

$$\mathrm{id} \qquad \qquad \uparrow f$$

$$(\mathbb{R}, \mathcal{F}) \xrightarrow{h} (\mathbb{R}, \mathcal{F}')$$

Since

$$f \circ h \circ id^{-1}(t) = f(h(t)) = f(t^{1/3}) = (t^{1/3})^3 = t,$$

this map is indeed smooth, and so is h. To check that h^{-1} is smooth, we need to show that it induces smooth maps between the charts in \mathcal{F}'_0 and \mathcal{F}_0 , i.e. that the map

$$id \circ h^{-1} \circ f^{-1} : f(h(\mathbb{R}) \cap \mathbb{R}) = \mathbb{R} \longrightarrow \mathbb{R}$$

is smooth:

$$\mathbb{R} \xrightarrow{\operatorname{id} \circ h^{-1} \circ f^{-1}} \mathbb{R}$$

$$f \downarrow \qquad \qquad \downarrow \operatorname{id}$$

$$(\mathbb{R}, \mathcal{F}') \xrightarrow{h^{-1}} (\mathbb{R}, \mathcal{F})$$

Since

$$id \circ h^{-1} \circ f^{-1}(t) = h^{-1}(f(t)) = h^{-1}(t^3) = (t^3)^{1/3} = t,$$

this map is indeed smooth, and so is h^{-1} . Since h and h^{-1} are smooth maps, we conclude that h is diffeomorphism from $(\mathbb{R}, \mathcal{F})$ to $(\mathbb{R}, \mathcal{F}')$.

Remarks: (1) Since we know that h is a homeomorphism, it is sufficient to show that h induces diffeomorphisms on all charts in \mathcal{F}_0 and \mathcal{F}'_0 . This would imply that h^{-1} is smooth as well, since the maps between charts induced by h^{-1} are inverses of those induced by h.

(2) More generally, every topological manifold of dimension 1, 2, or 3 admits a differentiable structure and any two such structures are diffeomorphic. Up to diffeomorphism, the only connected 1-dimensional manifolds are \mathbb{R} and S^1 , with their standard differentiable structures (you can find a proof in the 2.5-page appendix in Milnor's Topology from Differentiable Viewpoint). Starting in dimension 4, things get more complicated. Not every topological 4-manifold admits a smooth structure. In a seven-page paper in 1956 (cited in his Fields medal award), Milnor showed that S^7 admits non-diffeomorphic smooth structures. Since then the situation for manifolds in dimensions five and higher has been sorted out; amazingly, 4 is the hard dimension.

Problem 2 (10pts)

Suppose a group G acts properly discontinuously on a smooth n-manifold \tilde{M} by diffeomorphisms. Show that the quotient topological space $M = \tilde{M}/G$ admits a unique smooth structure such that the projection map $\tilde{M} \longrightarrow M$ is a local diffeomorphism.

Since G acts properly discontinuously on \tilde{M} , the quotient projection map $\pi: \tilde{M} \longrightarrow M$ is a covering projection. The assumption that G acts by diffeomorphism leads to the following key property.

Claim: If V, W are open subset of \tilde{M} such that $\pi|_V$ and $\pi|_W$ are injective, then

$$\pi_{VW} \equiv \{\pi|_V\}^{-1} \circ \pi \colon \{\pi|_W\}^{-1} (\pi(V)) \longrightarrow \{\pi|_V\}^{-1} (\pi(W))$$

is a diffeomorphism.

Proof. By assumption, $\pi: V \longrightarrow \pi(V)$ and $\pi: W \longrightarrow \pi(W)$ are homeomorphisms; thus, so is the map π_{VW} (with the specified domain and range, which are open subsets of \tilde{M}). Thus, it is sufficient to show each point $p \in \{\pi|_W\}^{-1}(\pi(V))$ has a neighborhood W_p in $\{\pi|_W\}^{-1}(\pi(V))$ such that $\pi_{VW}|_{W_p}$ is smooth. Let $p' = \{\pi|_V\}^{-1}(\pi(p))$; then p' = gp for a unique $g \in G$. Since $g: \tilde{M} \longrightarrow \tilde{M}$ is continuous, $W_p = g^{-1}(V) \cap W$ is an open neighborhood of p in $\{\pi|_W\}^{-1}(\pi(V))$ and $\pi_{VW}|_{W_p} = g|_{W_p}$ (for each $q \in W_p$, $\pi_{VW}(q) = g_q q \in V$ for some $g_q \in G$, $gq \in V$, and there exists (at most) a unique $g' \in G$ such that $g'q \in V$). Since G acts by diffeomorphisms, $g|_{W_p}$ is smooth.

Let $\mathcal{F}_{\tilde{M}}$ be the smooth structure on \tilde{M} and

$$\mathcal{F}_0 = \{ (\pi(V), \varphi \circ \{\pi|_V\}^{-1}) \colon (V, \varphi) \in \mathcal{F}_{\tilde{M}}, \ \pi|_V \text{ is injective} \}.$$

Since π is a covering map, $\pi(V) \subset M$ is open whenever $V \subset \tilde{M}$ is. Since for every $p \in \tilde{M}$ there exists $(V, \varphi) \in \mathcal{F}_{\tilde{M}}$ such that $\pi|_V$ is injective, the union of the sets $\pi(V)$ with $(\pi(V), \varphi \circ \{\pi|_V\}^{-1}) \in \mathcal{F}_0$ covers M. If $(\pi(V), \varphi \circ \{\pi|_V\}^{-1}), (\pi(W), \psi \circ \{\pi|_W\}^{-1}) \in \mathcal{F}_0$,

$$\varphi \circ \{\pi|_{V}\}^{-1} \circ (\psi \circ \{\pi|_{W}\}^{-1})^{-1} = \varphi \circ \pi_{VW} \circ \psi^{-1} : \psi(\{\pi|_{W}\}^{-1}(\pi(V))) \longrightarrow \varphi(\{\pi|_{V}\}^{-1}(\pi(W)))$$

is smooth, because π_{VW} is smooth by the claim and φ and ψ are charts. Thus, \mathcal{F}_0 satisfies (i) and (ii) on p5 and thus gives rise to a smooth structure on M.

With respect to this smooth structure, the map $\pi : \tilde{M} \longrightarrow M$ is a local diffeomorphism because

$$\varphi \circ \{\pi|_V\}^{-1} \circ \pi|_W \circ \psi^{-1} = \varphi \circ \pi_{VW} \circ \psi^{-1} \colon \psi\big(\{\pi|_W\}^{-1}(\pi(V))\big) \longrightarrow \varphi\big(\{\pi|_V\}^{-1}(\pi(W))\big)$$

is a diffeomorphism whenever $(\pi(V), \varphi \circ \{\pi|_V\}^{-1}), (\pi(W), \psi \circ \{\pi|_W\}^{-1}) \in \mathcal{F}_0$. Conversely, if $\tilde{\mathcal{F}}'$ is any smooth structure on M such that $\pi \colon \tilde{M} \longrightarrow M$ is a local diffeomorphism, then

$$\varphi \circ \{\pi|_{V}\}^{-1} \circ (\psi \circ \{\pi|_{W}\}^{-1})^{-1} = \varphi \circ \{\pi|_{V}\}^{-1} \circ \pi|_{W} \circ \psi^{-1} : \psi(\{\pi|_{W}\}^{-1}(\pi(V))) \longrightarrow \varphi(\{\pi|_{V}\}^{-1}(\pi(W)))$$

is a diffeomorphism whenever $(\pi(V), \varphi \circ \{\pi|_V\}^{-1}), (\pi(W), \psi \circ \{\pi|_W\}^{-1}) \in \mathcal{F}_0$, and so $\mathcal{F}_0 \subset \mathcal{F}'$ and thus $\mathcal{F}' = \mathcal{F}$ by the maximality condition.

Note: this implies that the circle, the infinite Mobius band, the Lens spaces (that are important in 3-manifold topology), the real projective space, and the tautological line bundle over it,

$$S^{1} = \mathbb{R}/\mathbb{Z}, \quad s \sim s+1, \qquad MB = (\mathbb{R} \times \mathbb{R})/\mathbb{Z}, \quad (s,t) \sim (s+1,-t),$$

 $L(n,k) = S^{3}/\mathbb{Z}_{n}, \quad (z_{1},z_{2}) \sim \left(e^{2\pi i/n}z_{1}, e^{2\pi ik/n}z_{2}\right) \in \mathbb{C}^{2},$
 $\mathbb{R}P^{n} = S^{n}/\mathbb{Z}_{2}, \quad x \sim -x, \qquad \gamma_{n} = (S^{n} \times \mathbb{R})/\mathbb{Z}_{2}, \quad (x,t) \sim (-x,-t),$

are smooth manifolds in a natural way (k and n are relatively prime in the definition of L(n,k)).

Problem 3 (15pts)

- (a) Show that the quotient topologies on $\mathbb{C}P^n$ given by $(\mathbb{C}^{n+1}-0)/\mathbb{C}^*$ and S^{2n+1}/S^1 are the same.
- (b) Show that $\mathbb{C}P^n$ is a compact topological 2n-manifold. Furthermore, it admits a structure of a complex (in fact, algebraic) n-manifold, i.e. it can be covered by charts whose overlap maps, $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$, are holomorphic maps between open subsets of \mathbb{C}^n (and rational functions on \mathbb{C}^n).
- (c) Show that $\mathbb{C}P^n$ contains \mathbb{C}^n , with its complex structure, as a dense open subset.

(a) Let

$$p: S^{2n+1} \longrightarrow S^{2n+1}/S^1$$
 and $q: \mathbb{C}^{n+1}-0 \longrightarrow (\mathbb{C}^{n+1}-0)/\mathbb{C}^*$

be the quotient projection maps. Denote by

$$\tilde{i}: S^{2n+1} \longrightarrow \mathbb{C}^{n+1} - 0$$
 and $\tilde{r}: \mathbb{C}^{n+1} - 0 \longrightarrow S^{2n+1}$

the inclusion map and the natural retraction map, i.e. $\tilde{r}(v) = v/|v|$. We will show that these maps descend to continuous maps on the quotients, i and r,

$$S^{2n+1} \xrightarrow{\tilde{i}} \mathbb{C}^{n+1} - 0 \qquad \mathbb{C}^{n+1} - 0 \xrightarrow{\tilde{r}} S^{2n+1}$$

$$\downarrow p \qquad \qquad \downarrow q \qquad \qquad \downarrow p$$

$$S^{2n+1}/S^1 - \stackrel{i}{-} \rightarrow (\mathbb{C}^{n+1} - 0)/\mathbb{C}^* \qquad (\mathbb{C}^{n+1} - 0)/\mathbb{C}^* - \stackrel{r}{-} \rightarrow S^{2n+1}/S^1$$

that are inverses of each other. The map $q \circ \tilde{i}$ is constant on the fibers of p, since if $v, w \in S^{2n+1}$ and $w = g \cdot v$ for some $g \in S^1$, then $\tilde{i}(w) = g' \cdot \tilde{i}(v)$ for some $g' \in \mathbb{C}^*$ (in fact, g' = g). Thus, $q \circ \tilde{i}$ induces a map i from the quotient space S^{2n+1}/S^1 (so that the first diagram commutes); since the map $q \circ \tilde{i}$ is continuous, so is the induced map i. Similarly, the map $p \circ \tilde{r}$ is constant on the fibers of q, since if $v, w \in \mathbb{C}^{n+1} - 0$ and $w = g \cdot v$ for some $g \in \mathbb{C}^*$, then $\tilde{r}(w) = g' \cdot \tilde{r}(v)$ for some $g' \in S^1$ (in fact, g' = g/|g|). Thus, $p \circ \tilde{r}$ induces a map r from the quotient space $(\mathbb{C}^{n+1} - 0)/\mathbb{C}^*$; since the map $p \circ \tilde{r}$ is continuous, so is the induced map r. Since $\tilde{r} \circ \tilde{i} = \mathrm{id}_{S^{2n+1}}$, $r \circ i = \mathrm{id}_{S^{2n+1}/S^1}$. Similarly, for all $v \in \mathbb{C}^{n+1} - 0$,

$$\tilde{i}\circ\tilde{r}(v)=(1/|v|)v,\quad 1/|v|\in\mathbb{C}^*\quad\Longrightarrow\quad q\big(\tilde{i}\circ\tilde{r}(v)\big)=q(v)\quad\Longrightarrow\quad i\circ r=\mathrm{id}_{(\mathbb{C}^{n+1}-0)/\mathbb{C}^*}.$$

(b-i) Since S^{2n+1} is compact, so is the quotient space $\mathbb{C}P^n = S^{2n+1}/S^1$ (being the image of S^{2n+1} under the continuous map p). Suppose next that $A \subset S^{2n+1}$ is a closed subset. Then,

$$p^{-1}\big(p(A)\big) = S^1 \cdot A \equiv \big\{g \cdot v \colon v \in A, \ g \in S^1\big\}.$$

Thus, $p^{-1}(p(A))$ is the image of the closed subset $S^1 \times A$ in S^{2n+1} under the continuous multiplication map

$$S^1 \times S^{2n+1} \longrightarrow S^{2n+1}$$
.

Since A is closed in S^{2n+1} , $S^1 \times A$ is closed in the compact space $S^1 \times S^{2n+1}$ and thus compact. It follows that $p^{-1}(p(A))$ is a compact subset of the Hausdorff space S^{2n+1} and thus closed. We conclude that $p(A) \subset S^{2n+1}/S^1$ is closed for all closed subsets $A \subset S^{2n+1}$, i.e. the quotient map p is a closed map. Since S^{2n+1} is normal, by Lemma 73.3 in Munkres's *Topology* the quotient space

 $\mathbb{C}P^n$ is normal as well (and in particular, Hausdorff).

(b-ii) We will now construct a collection of charts $\{(\mathcal{U}_i, \varphi_i)\}_{i=0,1,\dots,n}$ on $\mathbb{C}P^n$ that covers $\mathbb{C}P^n$. Given a point $(X_0, \dots, X_n) \in \mathbb{C}^{n+1} - 0$, we denote its equivalence class in

$$\mathbb{C}P^n = (\mathbb{C}^{n+1} - 0)/\mathbb{C}^*$$

by $[X_0, ..., X_n]$. For i = 0, 1, ..., n, let

$$\mathcal{U}_i = \{ [X_0, \dots, X_n] \in \mathbb{C}P^n \colon X_i \neq 0 \}.$$

Since

$$q^{-1}(\mathcal{U}_i) = \{(X_0, \dots, X_n) \in \mathbb{C}^{n+1} - 0 : X_i \neq 0\} \equiv \tilde{\mathcal{U}}_i$$

is an open subset of $\mathbb{C}^{n+1}-0$, \mathcal{U}_i is an open subset of $\mathbb{C}P^n$. Define

$$\tilde{\varphi}_i : \tilde{\mathcal{U}}_i \longrightarrow \mathbb{C}^n = \mathbb{R}^{2n}$$
 by
$$\tilde{\varphi}_i(X_0, \dots, X_n) = (X_0/X_i, X_1/X_i, \dots, X_{i-1}/X_i, X_{i+1}/X_i, \dots, X_n/X_i).$$

Since $\tilde{\varphi}_i(c \cdot v) = \tilde{\varphi}_i(v)$, the map $\tilde{\varphi}_i$ induces a map φ_i from the quotient space \mathcal{U}_i of $\tilde{\mathcal{U}}_i$:

Since $\tilde{\varphi}_i$ is continuous, so is φ_i . Define

$$\psi_i : \mathbb{C}^n \longrightarrow \mathcal{U}_i$$
 by $\psi_i(z_1, \dots, z_n) = [z_1, \dots, z_i, X_i = 1, z_{i+1}, \dots, z_n].$

Since ψ_i is a composition of two continuous maps, ψ_i is continuous. Since $\psi_i \circ \varphi_i = \mathrm{id}_{\mathcal{U}_i}$ and $\varphi_i \circ \psi_i = \mathrm{id}_{\mathbb{C}^n}$, the map

$$\varphi_i \colon \mathcal{U}_i \longrightarrow \mathbb{C}^n$$

is a homeomorphism. Note that for every $p \equiv [X_0, \ldots, X_n] \in \mathbb{C}P^n$, there exists $i = 0, 1, \ldots, n$ such that $X_i \neq 0$, i.e. $p \in \mathcal{U}_i$. Thus, $\{(\mathcal{U}_i, \varphi_i)\}_{i=0,1,\ldots,n}$ is a collection of charts on $\mathbb{C}P^n$ that covers $\mathbb{C}P^n$. In particular, $\mathbb{C}P^n$ is locally Euclidean of dimension 2n. Since this collection of charts is countable (actually, finite), it follows that $\mathbb{C}P^n$ is 2nd-countable (since each open subset \mathcal{U}_i is 2nd-countable).

(b-iii) We now determine the overlap maps

$$\varphi_i \circ \varphi_j^{-1} = \varphi_i \circ \psi_j \colon \varphi_j(\mathcal{U}_i \cap \mathcal{U}_j) \longrightarrow \varphi_i(\mathcal{U}_i \cap \mathcal{U}_j).$$

Assume that j < i. Then,

$$\mathcal{U}_i \cap \mathcal{U}_j = \left\{ [X_0, \dots, X_n] \in \mathbb{C}P^n \colon X_i, X_j \neq 0 \right\} \implies \varphi_j(\mathcal{U}_i \cap \mathcal{U}_j) = \left\{ (z_1, \dots, z_n) \in \mathbb{C}^n \colon z_i \neq 0 \right\} \equiv \mathbb{C}_i^n, \quad \varphi_i(\mathcal{U}_i \cap \mathcal{U}_j) = \left\{ (z_1, \dots, z_n) \in \mathbb{C}^n \colon z_{j+1} \neq 0 \right\} \equiv \mathbb{C}_{j+1}^n;$$

the assumption j < i is used on the second line. By (b-ii), the map

$$\varphi_i \circ \varphi_i^{-1} \colon \mathbb{C}_i^n \longrightarrow \mathbb{C}_{i+1}^n$$

is given by

$$\varphi_i \circ \varphi_j^{-1}(z_1, \dots, z_n) = \varphi_i \circ \psi_j(z_1, \dots, z_n) = \varphi_i ([z_1, \dots, z_j, X_j = 1, z_{j+1}, \dots, z_n])$$

$$= (z_1/z_i, \dots, z_j/z_i, 1/z_i, z_{j+1}/z_i, \dots, z_{i-1}/z_i, z_{i+1}/z_i, \dots, z_n/z_i).$$

Thus, the overlap map $\varphi_i \circ \varphi_j^{-1}$ is holomorphic on its domain, as is its inverse, $\varphi_j \circ \varphi_i^{-1}$; both maps are given by rational functions on \mathbb{C}^n . We conclude that the collection $\mathcal{F}_0 = \{(\mathcal{U}_i, \varphi_i)\}_{i=0,1,\dots,n}$ determines a complex structure on $\mathbb{C}P^n$.

(c) By part (b), the map

$$\psi_0 \colon \mathbb{C}^n \longrightarrow \mathcal{U}_0 \subset \mathbb{C}P^n, \qquad (z_1, \dots, z_n) \longrightarrow [1, z_1, \dots, z_n],$$

is a homeomorphism and

$$\varphi_0^{-1} \circ \psi_0 \colon \mathbb{C}^n \longrightarrow \mathbb{C}^n$$

is the identity map (and thus holomorphic). Since $(\mathcal{U}_0, \varphi_0) \in \mathcal{F}_0$, ψ_0 is a holomorphic embedding. So, $\mathbb{C}P^n$ contains \mathbb{C}^n (as \mathcal{U}_0) with its complex structure as an open subset. The subset \mathcal{U}_0 is dense in $\mathbb{C}P^n$, since $\tilde{\mathcal{U}}_0 = q^{-1}(\mathcal{U}_0)$ is dense in $\mathbb{C}^{n+1} - 0$.

Remark: We can of course use any of the maps ψ_i in part (c). By part (c), $\mathbb{C}P^n$ is a compactification of \mathbb{C}^n (i.e. \mathbb{C}^n is a dense open subset of the compact Hausdorff space $\mathbb{C}P^n$). In contrast to the one-point compactification S^{2n} of \mathbb{C}^n (for n > 1), $\mathbb{C}P^n$ has complex and algebraic structure. If n = 1, the two compactifications are the same; $\mathbb{C}P^1$ is the Riemann sphere.

Problem 4: Chapter 1, #6, via 2nd suggested approach (5pts)

Suppose $f: M \longrightarrow N$ is a bijective immersion. Show that f is a diffeomorphism.

Let $n = \dim M$ and $k = \dim N$. Since f is an immersion, the differential

$$df|_m: T_m M \longrightarrow T_{f(m)} N$$

is injective for all $m \in M$. In particular, $n \le k$. If n = k, then $df|_m$ is an isomorphism for all $m \in M$ and f is a local diffeomorphism by the Inverse Function Theorem. Since f is bijective, it then follows that f is a (global) diffeomorphism if n = k. Below we show that the case n < k cannot arise.

Suppose n < k and (W, φ) is a coordinate chart on N such that $\varphi(W) = \mathbb{R}^k$. Then, $f^{-1}(W)$ is a smooth n-manifold. It is sufficient to show that the image of $f^{-1}(W)$ under f is not all of W, or equivalently that the smooth map

$$g \equiv \varphi \circ f \colon W \longrightarrow \mathbb{R}^n$$

is not surjective. Let $\{\psi_i : \mathcal{U}_i \longrightarrow V_i\}_{i \in \mathbb{Z}}$ be a collection of charts on $f^{-1}(W)$ that covers $f^{-1}(W)$. Then,

$$g(f^{-1}(W)) = g\left(\bigcup_{i \in \mathbb{Z}} \psi_i^{-1}(V_i)\right) = \bigcup_{i \in \mathbb{Z}} g\left(\psi_i^{-1}(V_i)\right) \subset \mathbb{R}^k.$$

Since V_i is an open subset of \mathbb{R}^n , $g \circ \psi_i^{-1} \colon V_i \longrightarrow \mathbb{R}^k$ is a smooth map, and n < k, the k-measure of $g(\psi_i^{-1}(V_i))$ in \mathbb{R}^k is 0 (for reasons described in detail in the statement of the exercise in the book). Since a countable union of measure 0 subsets of \mathbb{R}^k is of measure 0, it follows that $g(f^{-1}(W))$ is a subset of \mathbb{R}^k of measure 0. In particular,

$$g(f^{-1}(W)) \subsetneq \mathbb{R}^k$$
,

as needed.

Remark: This argument implies that there exist no smooth surjective map $f: \mathbb{R} \longrightarrow \mathbb{R}^k$ if k > 1. Recall from 530 that there does exist a continuous surjective map $f: \mathbb{R} \longrightarrow \mathbb{R}^k$ (it can be constructed from the Peano curve).

Problem 5 (5pts)

If $\psi: M \longrightarrow N$ is a smooth map and $m \in M$, the differential of ψ at m,

$$d\psi|_m: T_m M \longrightarrow T_{\psi(m)} N,$$

is defined by

$$\{d\psi|_{m}v\}(f) = v(f \circ \psi) \in \mathbb{R} \qquad \forall v \in T_{m}M, \ \mathbf{f} \in \tilde{F}_{\psi(m)}. \tag{1}$$

Show that $d\psi|_m v$ is indeed a well-defined element of $T_{\psi(m)}N$ for all $v \in T_mM$.

We need to show that $d\psi|_{m}v$ induces a linear derivation on $\tilde{F}_{\psi(m)}$, i.e. a linear map

$$\tilde{F}_{\psi(m)} \longrightarrow \mathbb{R}$$

satisfying the product rule. Suppose \mathcal{U} and V are (open) neighborhoods of $\psi(m)$ in N, $f: \mathcal{U} \longrightarrow \mathbb{R}$ and $g: V \longrightarrow \mathbb{R}$ are smooth functions, and $W \subset U \cap V$ is a neighborhood of $\psi(m)$ such that $f|_W = g|_W$, i.e. $\mathbf{f} = \mathbf{g} \in \tilde{F}_{\psi(m)}$. Then, $\psi^{-1}(U)$ and $\psi^{-1}(V)$ are neighborhood of m in M,

$$f \circ \psi \colon \psi^{-1}(U) \longrightarrow \mathbb{R}$$
 and $g \circ \psi \colon \psi^{-1}(V) \longrightarrow \mathbb{R}$

are smooth functions, and $\psi^{-1}(W) \subset f^{-1}(U) \cap f^{-1}(V)$ is a neighborhood of m such that

$$(f \circ \psi)|_{\psi^{-1}(W)} = (g \circ \psi)|_{\psi^{-1}(W)} \qquad \Longrightarrow \qquad [f \circ \psi] = [g \circ \psi] \in \tilde{F}_m$$

$$\Longrightarrow \qquad v(f \circ \psi) = v([f \circ \psi]) = v([g \circ \psi]) = v(g \circ \psi),$$

since $v \in T_m M$. It follows that (1) induces a well-defined map $\tilde{F}_m \longrightarrow \mathbb{R}$ (independent of the choice of representative f for the equivalence class $\mathbf{f} \in \tilde{F}_{\psi(m)}$). If f and g are smooth functions on neighborhoods of $\psi(m)$ in M and $\alpha, \beta \in \mathbb{R}$, then

$$\{d\psi|_{m}v\}(\alpha f + \beta g) \equiv v((\alpha f + \beta g) \circ \psi) = v(\alpha (f \circ \psi) + \beta (g \circ \psi))$$

$$= \alpha v(f \circ \psi) + \beta v(g \circ \psi) \equiv \alpha \{d\psi|_{m}v\}(f) + \beta \{d\psi|_{m}v\}(g),$$

i.e. $d\psi|_{m}v$ is a linear map. Finally, with f and g as above,

$$\{d\psi|_{m}v\}(f\cdot g) \equiv v((f\cdot g)\circ\psi) = v((f\circ\psi)\cdot(g\circ\psi))$$

$$= f\circ\psi(m)\,v(g\circ\psi) + g\circ\psi(m)\,v(f\circ\psi)$$

$$\equiv f(\psi(m))\{d\psi|_{m}v\}(g) + g(\psi(m))\{d\psi|_{m}v\}(f),$$

i.e. $d\psi|_{m}v$ satisfies the product rule.