MAT 531: Topology&Geometry, II Spring 2011

Final Exam

Instructions

- Give concise proofs, quoting established facts as appropriate; no treatises.
- The problems are worth 20 points each, but are not necessarily of the same difficulty. Parts of a problem may not carry equal weight.
- Your final exam score will be based on your work on 5 problems: 2 (highest-scoring) from Part I, 2 from Part II, and 1 from Part III. The points earned on the bonus problem will be added to your final-exam score, even if the total exceeds 100. However, *NO extra credit will be awarded for solutions to any of the other three problems.*
- Please start each problem on a new sheet of paper. When you are finished, please assemble your solutions in order and attach them to the cover sheet. Do *not* attach this problem sheet.

Part I (choose 2 problems from 1,2, and 3)

- **1.** Let $f: \mathbb{R}P^3 \longrightarrow T^3 \equiv (S^1)^3$ be a smooth map. Show that f is not an immersion.
- **2.** Let X and Y be the vector fields on \mathbb{R}^3 given by

$$X = \frac{\partial}{\partial x} + x \frac{\partial}{\partial y} + y \frac{\partial}{\partial z}, \qquad Y = y \frac{\partial}{\partial x} + z \frac{\partial}{\partial y} + \frac{\partial}{\partial z}$$

- (a) Compute the flows φ_s and ψ_t of X and Y (give formulas).
- (b) Do these flows commute?

3. Let *M* and *N* be smooth oriented connected manifolds and $H: M \times [0, 1] \longrightarrow N$ a smooth map. For each $t \in [0, 1]$, define

$$H_t: M \longrightarrow N, \qquad H_t(p) = H(p, t).$$

- (a) Suppose H_t is a diffeomorphism for every $t \in [0, 1]$. Show that H_0 is orientation-preserving if and only if H_1 is.
- (b) Suppose instead that M is compact and H_0 , H_1 are diffeomorphisms. Show that H_0 is orientationpreserving if and only if H_1 is.
- (c) Give an example so that H_0 and H_1 are diffeomorphisms, with H_0 orientation-preserving and H_1 orientation-reversing.

4. Let M be a smooth manifold obtained by identifying two copies of a Mobius Band, M_1 and M_2 , along their boundary circles. Compute $H^*_{deR}(M)$.

5. Let M be a smooth manifold admitting an open cover $\{U_i\}_{i=1,...,m}$ such that every intersection $U_{i_1} \cap \ldots \cap U_{i_k}$ is either empty or diffeomorphic to \mathbb{R}^n . Show that

- (a) if m = 2, $H^p_{deB}(M) = 0$ for all $p \neq 0$;
- (b) if $m \ge 2$, $H^p_{deR}(M) = 0$ for all $p \ge m-1$.
- 6. (a) Explain why $\mathbb{R}P^2 \times \mathbb{R}P^4$ is not orientable.
- (b) Describe the orientable double cover M of $\mathbb{R}P^2 \times \mathbb{R}P^4$.

(c) Determine the de Rham cohomology of M.

Part III (choose 1 problem from 7 and 8)

7. Let $V, W \longrightarrow S^1$ be smooth real vector bundles. Show that at least one of the vector bundles

$$V, W, V \oplus W \longrightarrow S^1$$

is orientable.

8. Let $\pi: V \longrightarrow M$ be a smooth vector bundle. A connection in V is an \mathbb{R} -linear map

$$\nabla \colon \Gamma(M;V) \longrightarrow \Gamma(M;T^*M \otimes V) \quad \text{s.t.} \quad \nabla(fs) = \mathrm{d}f \otimes s + f \nabla s \quad \forall \ f \in C^{\infty}(M), \ s \in \Gamma(M;V).$$

- (a) Show that ∇ is a first-order differential operator.
- (b) What is the symbol of ∇ ?
- (c) Under what conditions (on M and/or V) is ∇ elliptic?

Bonus Problem

Let $\gamma \longrightarrow \mathbb{C}P^1$ be the tautological (complex) line bundle. Compute

$$\int_{\mathbb{C}P^1} c_1(\gamma^*),$$

where $\mathbb{C}P^1$ has its canonical orientation as a complex manifold and $c_1(\gamma^*)$ is the image of γ^* under the composition

$$\check{H}^1(\mathbb{C}P^1;\mathfrak{C}^{\infty}(\mathbb{C}^*))\longrightarrow \check{H}^2(\mathbb{C}P^1;\underline{\mathbb{Z}})\longrightarrow \check{H}^2(\mathbb{C}P^1;\underline{\mathbb{C}})\longrightarrow H^2_{\mathrm{deR}}(\mathbb{C}P^1;\mathbb{C}),$$

 $\mathfrak{C}^{\infty}(\mathbb{C}^*) \longrightarrow \mathbb{C}P^1$ is the sheaf of germs of \mathbb{C}^* -valued smooth functions, the first homomorphism is induced by the exponential short exact sequence of sheaves, and the last homomorphism is the de Rham isomorphism (using \mathbb{C} instead of \mathbb{R} -coefficients simplifies the computation).