1. Let M and N be compact oriented connected n-manifolds. If $f : M \to N$ is a smooth map, the degree of f is the number $\deg f \in \mathbb{R}$ such that

$$\int_M f^*\omega = (\deg f) \cdot \int_N \omega \quad \forall \omega \in E^n(N).$$

This number is well-defined (i.e., exists) and is an integer (you should be able to prove these two claims, but you can assume them for this problem).

(a) Show that if $f : M \to N$ and $g : N \to X$ are smooth maps between compact oriented connected n-manifolds, then

$$\deg(g \circ f) = (\deg g) \cdot (\deg f).$$

(b) Show that if $f : M \to N$ is a covering projection between compact oriented connected n-manifolds, then $\deg f$ is the degree of f as a covering map (i.e., the number of elements in each fiber).

(c) Show that if $f : M \to N$ is a smooth map of degree one between compact oriented connected n-manifolds, then $f_* : \pi_1(M) \to \pi_1(N)$ is surjective.

Note: The last part uses a fact that has been stated previously and will be proved in class on Tuesday, 5/4. You can nearly complete the solution to this problem without this fact.

2. State and prove a Mayer-Vietoris theorem for compactly supported cohomology.

Note: The restriction of a compactly supported form to an open subset need not be compactly supported. You do not need anything from the lecture on Tuesday, 5/4, to do this problem.

3. Let M be an oriented n-manifold, possibly non-compact.

(a) Show that the pairing

$$H^*_\text{deR}(M) \otimes H^*_\text{deR,c}(M) \to \mathbb{R}, \quad [\alpha] \otimes [\beta] \to \int_M \alpha \wedge \beta,$$

is well-defined.

(b) Show that the above pairing is nondegenerate if $M = \mathbb{R}^n$.

(c) Suppose that M admits a cover $\{U_i\}_{i=1,\ldots,m}$ such that every intersection $U_{i1} \cap \ldots \cap U_{ik}$ is either empty or diffeomorphic to \mathbb{R}^n. Show that the above pairing is nondegenerate.