MAT 531: Topology&Geometry, II Spring 2010

Final Exam

Instructions

- Give concise proofs, quoting established facts as appropriate; no treatises.
- The problems are worth 20 points each, but are not necessarily of the same difficulty. Parts of a problem may not carry equal weight.
- Your final exam score will be based on your work on 5 problems: 2 (highest-scoring) from Part I, 2 from Part II, and 1 from Part III. The points earned on the bonus problem will be added to your final-exam score, even if the total exceeds 100. However, *NO extra credit will be awarded for solutions to any of the other three problems.*
- Please start each problem on a new sheet of paper. When you are finished, please assemble your solutions in order and attach them to the cover sheet. Do *not* attach this problem sheet.

Part I (choose 2 problems from 1,2, and 3)

1. Let *M* and *N* be compact oriented connected *n*-manifolds and $f: M \longrightarrow N$ a smooth map. Show that there exists a unique number $(\deg f) \in \mathbb{R}$ such that

$$\int_{M} f^{*}\omega = (\deg f) \cdot \int_{N} \omega \qquad \forall \ \omega \in E^{n}(N).$$

Note: there are two parts to this problem.

2. Let X and Y be the vector fields on \mathbb{R}^3 given by

$$X = \frac{\partial}{\partial x} + x \frac{\partial}{\partial y} + y \frac{\partial}{\partial z} \,, \qquad Y = y \frac{\partial}{\partial x} + z \frac{\partial}{\partial y} + \frac{\partial}{\partial z}$$

- (a) Compute [X, Y].
- (b) Is there a coordinate chart $\varphi = (x_1, x_2, x_3) : U \longrightarrow \mathbb{R}^3$ on a neighborhood of the origin in \mathbb{R}^3 such that

$$X|_U = \frac{\partial}{\partial x_1}, \qquad Y|_U = \frac{\partial}{\partial x_2}?$$

- **3.** Let $S^2 \subset \mathbb{R}^3$ be the unit sphere centered at the origin.
- (a) Why is the line bundle $\Lambda^2(TS^2) \longrightarrow S^2$ trivial?
- (b) Describe an explicit isomorphism $\Lambda^2(TS^2) \longrightarrow S^2 \times \mathbb{R}$ of real line bundles over S^2 (give a formula).

Part II (choose 2 problems from 4,5, and 6)

4. Show that there exist a closed 1-form α on $\mathbb{R}P^n$ and a smooth function $f: [0,1] \longrightarrow \mathbb{R}P^n$ so that

$$f(0) = f(1)$$
 and $\int_{[0,1]} f^* \alpha \neq 0$

if and only if n = 1.

5. Let $M = (S^1 \times \mathbb{R}P^n \times \mathbb{R}P^n) / \sim$, where $n \in \mathbb{Z}^+$, $(x, y, z) \sim (-x, z, y)$, and S^1 is viewed as the unit circle in \mathbb{C} (so $x \in \mathbb{C}$). Show that M is not orientable and describe the orientable double cover of M. Hint: both parts require some care.

6. Let $M = \mathbb{R}^3 / \sim$, where

$$(x, y, z) \sim (x+k, y+m, z+ky+n) \qquad \forall \ (x, y, z) \in \mathbb{R}^3, \ (k, m, n) \in \mathbb{Z}^3$$

(a) Show that this is an equivalence relation and M is a connected compact orientable 3-manifold.

(b) Determine the de Rham cohomology of M (as graded vector space).

Part III (choose 1 problem from 7 and 8)

7. Let $T^3 = S^1 \times S^1 \times S^1$ be the 3-torus and X the complement of two disjoint closed balls in T^3 . The boundary of \bar{X} consists of two copies of S^2 , S_0 and S_1 , which inherit an orientation from the removed closed balls (this orientation is *opposite* to the orientation as the boundary of \bar{X}). The boundary of $S^2 \times [0, 1]$ also consists of two copies of S^2 , $S^2 \times 0$ and $S^2 \times 1$, which inherit an orientation from the standard orientation of S^2 (on $S^2 \times 0$ this orientation is opposite to its orientation as boundary of $S^2 \times [0, 1]$). Let M be the smooth 3-manifold obtained by joining \bar{X} and $S^2 \times [0, 1]$ along their boundaries so that S_i is identified with $S^2 \times i$ by an orientation-preserving diffeomorphism for i=0, 1. Show that M is not orientable and determine its de Rham cohomology (as graded vector space).

8. Let X be a smooth vector field on a manifold M and define

$$P: \Gamma(M; TM) \longrightarrow \Gamma(M; TM)$$
 by $P(Y) = [X, Y].$

- (a) Show that P is a first-order differential operator.
- (b) What is the symbol of P?
- (c) Under what conditions (on M and/or X) is P elliptic?

Bonus Problem

Let $\gamma_n \longrightarrow \mathbb{C}P^n$ be the tautological complex line bundle, where $n \ge 1$. Show that for every $k \in \mathbb{Z}^+$, the complex line bundles

$$\gamma_n^{\otimes k} \equiv \underbrace{\gamma_n \otimes \ldots \otimes \gamma_n}_k \longrightarrow \mathbb{C}P^n \quad \text{and} \quad \gamma_n^{\otimes (-k)} \equiv \underbrace{\gamma_n^* \otimes \ldots \otimes \gamma_n^*}_k \longrightarrow \mathbb{C}P^n$$

are not trivial (not isomorphic to $\mathbb{C}P^n \times \mathbb{C}$ as complex line bundles over $\mathbb{C}P^n$).

Hint: there is a short solution, but it connects several different things encountered in class and thus requires a solid understanding of what is going on.