
MAT 530: Topology&Geometry, I
Fall 2005

Problem Set 7

Solution to Problem p271, #10

Uniqueness-of-Completion Theorem: Let (X, d) be metric space. Suppose (Y, D) and (Y ′, D′) are
complete metric space such that

X ⊂ Y, Y ′, ClY X = Y, ClY ′X = Y ′, D|X×X = d, and D′|X×X = d.

Show that there exists an isometry f : (Y, D)−→(Y ′, D′) that restricts to the identity on X.

Given y∈Y , we define f(y)∈Y ′ as follows. Since ClY X = Y and Y is first-countable, there exists a
sequence of points

x1, x2, . . . ∈ X s.t. lim
n−→∞

xn = y ∈ Y.

Thus, this sequence must be Cauchy in (Y, D). Since D agrees with d over X, it is also Cauchy
in (X, d). Since D′ agrees with d over X, the sequence

x1, x2, . . . ∈ X ⊂ Y ′

is Cauchy in (Y ′, D′). Since (Y ′, D′) is complete, this sequence must converge to a limit point y′∈Y ′.
We then set

f(y) = y′ ∈ Y ′.

First, we need to show that f(y) is well-defined, i.e. that it depends only on y, and not on the choice
of the sequence as above. Suppose we have another sequence:

x̃1, x̃2, . . . ∈ X s.t. lim
n−→∞

x̃′n = y ∈ Y.

Let ỹ′ be the limit of this sequence in (Y ′, D′). We will show that ỹ′=y′. We define a third sequence
of points in X by combining the two sequences:

zn =

{
xk, if n=2k−1;
x̃k, if n=2k.

This sequence still converges to y in Y . Thus, it is still Cauchy in (Y ′, D′) and thus converges to a point
z′∈Y ′. Since every subsequence of z1, z2, . . . must also converge to z′ in Y , we conclude that y′=z′= ỹ′.

If y ∈ X, we can take the corresponding sequence to be given by xn = y for all n. This sequence
converges to y in Y ′. Thus, f(x)=x for all x∈X.



We next show that f : (Y, D)−→(Y ′, D′) is an isometric embedding. Suppose

y, ỹ ∈ Y, x1, x2, . . . ∈ X x̃1, x̃2, . . . ∈ X, lim
n−→∞

xn = y ∈ Y, and lim
n−→∞

x̃n = ỹ ∈ Y.

It then follows that

D(y, ỹ) = lim
n−→∞

D(xn, x̃n) = lim
n−→∞

d(xn, x̃n) and

D′(f(y), f(ỹ)) = lim
n−→∞

D′(xn, x̃n) = lim
n−→∞

d(xn, x̃n).

Thus, D′(f(y), f(ỹ))=D(y, ỹ).

It remains to show that f is surjective. Suppose y′∈Y ′. Since ClY ′X = Y ′ and Y ′ is first-countable,
there exists a sequence of points

x1, x2, . . . ∈ X s.t. lim
n−→∞

xn = y′ ∈ Y ′.

Thus, this sequence must be Cauchy in (Y ′, D′). Since D′ agrees with d over X, it is also Cauchy
in (X, d). Since D agrees with d over X, the sequence

x1, x2, . . . ∈ X ⊂ Y

is Cauchy in (Y, D). Since (Y, D) is complete, this sequence must converge to a limit point y ∈ Y .
Then, by definition, f(y)=y′.

Solution to Problem p274, #2

Show that there is a continuous surjective map f : R−→Rn.

Below we use a surjective map f : I −→ I2 to construct a surjective map g : R −→ R2. There is
more than one way of doing this. Once this is done, we can obtain a surjective map R−→ R2n

by
compositing f with f×f , then with f×f×f×f , and so on, n times. We then compose the resulting
map with a projection R2n−→Rn.

Let n ∈ Z+. Since the interval [2n− 1, 2n] is homeomorphic to [0, 1] and the square [−n, n]2 is
homeomorphic to I2, by the Piano Curve Theorem there exists a continuous surjective map

fn : [2n−1, 2n] −→ [−n, n]2.

Since all intervals [2n−1, 2n] are disjoint, putting these maps together we obtain a continuous surjective
map

f̃ :
⋃

n∈Z+

[2n−1, 2n] −→
⋃

n∈Z+

[−n, n]2 = R2.

Since
⋃

n∈Z+ [2n−1, 2n] is closed in R and R is normal, by the Tietze Extension Theorem (applied to
each component of f̃) f̃ extends to a continuous map g : R−→R2. Since it extends f̃ , g must also be
surjective.
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Remark: In this case we do not need to use the Tietze Extension Theorem. We can simply extend f̃
linearly over each interval [2n, 2n+1] and map all of (−∞, 1] to f̃(1).

Here is a variation on this construction. Let {I2
n : n∈Z+} be the set of all unit squares in R2 with

vertices on Z2, ordered in some way by Z+. For each n∈Z+, let

fn : [2n−1, 2n] −→ I2
n

be a continuous surjective map. Since all intervals [2n−1, 2n] are disjoint, putting these maps together
we obtain a continuous surjective map

f̃ :
⋃

n∈Z+

[2n−1, 2n] −→
⋃

n∈Z+

I2
n = R2.

As above, this map extends to a continuous surjective map on all of R.

Here is a different construction. Let f : I−→I2 be a continuous surjective map. We can assume that

f(0) = 0×0, f(1)=1×0, and f−1
(
0×0

)
= {0}.

The map constructed in the proof of Theorem 44.1 necessarily satisfies the first two conditions and with
some care can be made to satisfy the third (e.g. if at each step, the map gets stretched uniformly). Since
([1, 2], 2) is homeomorphic to ([0, 1], 0), there also exists a continuous surjective map g : [1, 2]−→ I2

such that
g(2) = 0×0, g(1)=1×0, and g−1

(
0×0

)
= {2}.

Let p, q : I2−→S2 be homeomorphisms onto the top and bottom hemispheres such that

p(0×0) = q(0×0) ≡ a and p(1×0) = q(1×0).

Then, the map
p ◦ f : [0, 1] −→ S2 and q ◦ g : [1, 2] −→ S2

are continuous, the first surjective onto the upper hemisphere, and the second on the lower. Further-
more,

{p ◦ f}(1) = p(1×0) = q(1×0) = {q ◦ g}(1), {p ◦ f}−1(a) = 0, and {q ◦ g}−1(a) = {2}.

Thus, p ◦ f and q ◦ g patch together to produce a continuous surjective map

h : [0, 2] −→ S2 s.t. h−1(a) = {0, 2}.

The restriction of this map to (0, 2) surjects onto S2−{a}. Since (0, 2) is homeomorphic to R and
S2−{a} is homeomorphic to R2, we are done.
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