MAT 530: Topology& Geometry, 1
Fall 2005

Problem Set 4

Solution to Problem p67, #7
Let J be a well-ordered set. A subset Jy of J is inductive if for every a€J
So C Jo — a € Jy.

Proposition (Principle of Transfinite Induction) If J is a well-ordered set and Jy C J is inductive,
then Jo=J.

Recall that if J is an ordered set, S, is the section of J by a:
Seo = {xGJ: :z<a}.

Suppose J is a well-ordered set, Jo CJ is inductive, and Jy#J, i.e. the set J—Jy is nonempty. Since
J is well-ordered, every nonempty subset of J has a minimal element. Let

o= min(J—Jo) eJ—Jy - « Q Jo. (1)

Since « is the minimal element of J—Jy, x € Jy for all x < «, i.e. S, C Jy. Since Jy is inductive, it
follows that a € Jy, contrary to (1).

Solution to Problem p235, #1

Let X be a space. Let D a collection of subsets of X that is mazimal with respect to the finite-
intersection property.

(a) Show that x € D for every D € D if and only if every neighborhood of = belongs to D. Which
implication uses the maximality of D?

(b) Show that if D€D and DCACX, then AeD.

(¢) Show that if X satisfies the T1-aziom, (\pep D contains at most one point.

(a) By Theorem 17.5, z € D for every D € D if and only if every neighborhood of z intersects every
element D of D. Since D has the finite-intersection property and is maximal with respect to this
property, by (b) of Lemma 37.2 the latter is the case if and only if every neighborhood of x belongs
to D. This proves (a). The maximality of D is used to show that if 2 € D for every D €D, then every
neighborhood of x belongs to D (i.e. the only if part of the claim).

(b) Since D C A and D intersects every element of D, so does A. The desired conclusion follows
from (b) of Lemma 37.2.



(c) Suppose X is Hausdorff and 2 and y are two distinct points in ()pcp D. Since x #y, there exist
disjoint neighborhoods U and V of = and y, respectively. Since x € D for every D € D, by part (a)
UeD. Since y€ D for every D€ D, by part (a) V €D. However, UNV =(), which is impossible since
D has the finite intersection property.

The T1 assumption is not sufficient here. Here is a counterexample. Let X be an infinite set endowed
with the finite complement topology. Let A be the collection of all nonempty open sets in X, i.e. A is
the collection of all sets whose complement is finite. Since X is infinite, the intersection of any finite
collection of elements of A is nonempty; in fact, it is another element of A. Thus, A has the finite
intersection property. By Lemma 37.1, there exists a collection D of subsets of X such that D has
the finite intersection property, is maximal with respect to this property, and contains A. Since D
has the finite intersection property and contains A, every elements D of D must intersect every ele-
ment of A, i.e. every nonempty open set in X. Thus, D= X for all D€ D. It follows that MNpep D=X.

Remark: The first edition of the book actually had the correct statement. This error is also listed in
a publicly available list of corrections to the second edition. Nevertheless, sometimes it is good to see
whether any assumptions in a statement can be weakened.

Solution to Problem p236, #5

Prove Tychonoff’s Theorem using the open-set definition of compactness and the Tube Lemma.
Theorem: If X; is a compact topological space for every j€J, then the space X = HjeJ X 1s compact
i the product topology.

Tube Lemma: Suppose X and Y are topological spaces, X is compact, and A is a collection of
standard basis elements for the topology of X XY . If no finite subcollection of A covers X XY, then
there exists x € X such that no finite subcollection of A covers xxY .

Proof of Theorem: For each je€J, let mj: X — X be the projection map. Choose a well-ordering on
J so that J has a maximal element, jmax. Denote the minimal element by jmin-
(a) Suppose k€ J, k+# jmin, and p; € X; is a point for each i<k. For each j<k, let
Yy = {(zi)ics: zi=pi Vi<j}.
Then, j<j'<k = Y;DYj. Let
7y, = ﬂ Y; = {(xi)ieJ: Ti=Dp; Vi<kz}.
i<k

Show that if A is a finite collection of basis elements that covers Zy, then A covers Y; for some j<k.
(b) Suppose A is a collection of standard basis elements for X such that no finite subcollection of A
covers X. Show that there are points p; € X; for each i € J such that every corresponding space Y
defined in (a) cannot be covered by a finite subcollection of A. Thus,

Ve = {(Pi)ics }



s a one-point set which is not contained in any of the elements of A. Thus, A does not cover X.

(a) If k£ has an immediate predecessor, j*, in J, then

Ze= (1Y =Y,
i<k

and A covers Yj+. Suppose k does not have an immediate predecessor and thus the set
{ieJ i<k}
is infinite. For each U € A, let
Ju={ie: i<k, mU)#X;}.

Since U is a basis element in the product topology, the set Ji; is finite for every U € A. Since A is
finite, J;;c 4Ju is finite. Thus, there exists

jfedJ st jr<k and i<j* Vie |J
UeA

Every element U of A must then be of the form

U=u_x [[x;=xuyc [[x = T[X < [[%

*<j<k 7<g* J*<j<k k<j

for some open subsets ¢_ and Uy of [, ;. X; and [[;;X;, dependent on U. Since the sets U € A
cover Zy, the sets U_ xU, cover
(pi)i<i x ][5
k<j
It follows that the sets
U=u_x [[x;xu;

7*<i<k

cover

(pi)i<js X pj= ¥ HXj XUy =Y,
j*<i<k

(b) Since the space X, . is compact by assumption and the space

ijin X HX]

jmin <j

min

cannot be covered by finitely many elements of A, by the Tube Lemma there exists p; . € Xj . such

that
pjmin X H X]
jmin<j



cannot be covered by finitely many elements of A. Suppose k€ J, k€ jmin, and we have chosen p; € X;
for each j <k so that the corresponding slices Y;, with j <k, of part (a) cannot be covered by finitely
many elements of A. By part (a), the corresponding space

Z = (pi)ick X Xi x [[ X
k<i

cannot be covered by finitely many elements of A. Since the space X} is compact, by the Tube Lemma
there exists pr € X such that

Zr = (pi)ick ¥ e x [ [ Xi = (pi)i< x [[ X

k<i k<i

cannot be covered by finitely many elements of A, as needed.

Remark 1: By part (b), if A is an open cover of X by basis elements, then A has a finite subcover.
This implies that X is compact

Remark 2: The argument in part (b) above, as suggested by the book, is actually a little problematic.
Here is a fix. Let S be the set of all subsets I of J such that if jel, i€ J, and i<j, then €. Let D
be the collection of all elements (p;);cs of

UII%

I€S jel

such that the corresponding slices Yj, with j € I, defined in part (a) cannot be covered by finitely
many elements of 4. We define a partial ordering on D by

(pi)ier = (P))icr if ICT and p;,=p,Viel.

By Zorn’s Lemma (or the Maximum Principle), there exists a maximal simply ordered subset D* of D.
Let I* be the union of all sets I such that (p;)ics is an element of D*. Since D* is maximal, (p;);cr
is an element of D* and is the largest element of D*. We claim that I* = J. If not, take k to be
the smallest element of J—I* and proceed as above to choose py € Xj. The element (p;)icr-uqry of
D is larger that any element of D*, contrary to the assumption that D* is a maximal simply ordered
subcollection of D.



