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Problem Set 4

Solution to Problem p67, #7

Let J be a well-ordered set. A subset J0 of J is inductive if for every α∈J

Sα ⊂ J0 =⇒ α ∈ J0.

Proposition (Principle of Transfinite Induction) If J is a well-ordered set and J0⊂ J is inductive,
then J0 =J .

Recall that if J is an ordered set, Sα is the section of J by α:

Sα =
{
x∈J : x<α

}
.

Suppose J is a well-ordered set, J0⊂J is inductive, and J0 6=J , i.e. the set J−J0 is nonempty. Since
J is well-ordered, every nonempty subset of J has a minimal element. Let

α = min(J−J0) ∈ J−J0 =⇒ α 6∈ J0. (1)

Since α is the minimal element of J−J0, x∈ J0 for all x < α, i.e. Sα ⊂ J0. Since J0 is inductive, it
follows that α∈J0, contrary to (1).

Solution to Problem p235, #1

Let X be a space. Let D a collection of subsets of X that is maximal with respect to the finite-
intersection property.
(a) Show that x ∈ D̄ for every D ∈ D if and only if every neighborhood of x belongs to D. Which
implication uses the maximality of D?
(b) Show that if D∈D and D⊂A⊂X, then A∈D.
(c) Show that if X satisfies the T1-axiom,

⋂
D∈D D̄ contains at most one point.

(a) By Theorem 17.5, x∈ D̄ for every D ∈D if and only if every neighborhood of x intersects every
element D of D. Since D has the finite-intersection property and is maximal with respect to this
property, by (b) of Lemma 37.2 the latter is the case if and only if every neighborhood of x belongs
to D. This proves (a). The maximality of D is used to show that if x∈D̄ for every D∈D, then every
neighborhood of x belongs to D (i.e. the only if part of the claim).

(b) Since D ⊂ A and D intersects every element of D, so does A. The desired conclusion follows
from (b) of Lemma 37.2.



(c) Suppose X is Hausdorff and x and y are two distinct points in
⋂

D∈D D̄. Since x 6=y, there exist
disjoint neighborhoods U and V of x and y, respectively. Since x∈ D̄ for every D ∈D, by part (a)
U ∈D. Since y∈ D̄ for every D∈D, by part (a) V ∈D. However, U∩V =∅, which is impossible since
D has the finite intersection property.

The T1 assumption is not sufficient here. Here is a counterexample. Let X be an infinite set endowed
with the finite complement topology. Let A be the collection of all nonempty open sets in X, i.e. A is
the collection of all sets whose complement is finite. Since X is infinite, the intersection of any finite
collection of elements of A is nonempty; in fact, it is another element of A. Thus, A has the finite
intersection property. By Lemma 37.1, there exists a collection D of subsets of X such that D has
the finite intersection property, is maximal with respect to this property, and contains A. Since D
has the finite intersection property and contains A, every elements D of D must intersect every ele-
ment of A, i.e. every nonempty open set in X. Thus, D̄=X for all D∈D. It follows that

⋂
D∈D D̄=X.

Remark: The first edition of the book actually had the correct statement. This error is also listed in
a publicly available list of corrections to the second edition. Nevertheless, sometimes it is good to see
whether any assumptions in a statement can be weakened.

Solution to Problem p236, #5

Prove Tychonoff’s Theorem using the open-set definition of compactness and the Tube Lemma.
Theorem: If Xj is a compact topological space for every j∈J , then the space X =

∏
j∈J Xj is compact

in the product topology.
Tube Lemma: Suppose X and Y are topological spaces, X is compact, and A is a collection of
standard basis elements for the topology of X×Y . If no finite subcollection of A covers X×Y , then
there exists x∈X such that no finite subcollection of A covers x×Y .

Proof of Theorem: For each j∈J , let πj : X−→Xj be the projection map. Choose a well-ordering on
J so that J has a maximal element, jmax. Denote the minimal element by jmin.
(a) Suppose k∈J , k 6=jmin, and pi∈Xi is a point for each i<k. For each j <k, let

Yj =
{
(xi)i∈J : xi =pi ∀ i≤j

}
.

Then, j <j′<k =⇒ Yj⊃Yj′. Let

Zk =
⋂
j<k

Yj =
{
(xi)i∈J : xi =pi ∀ i<k

}
.

Show that if A is a finite collection of basis elements that covers Zk, then A covers Yj for some j <k.
(b) Suppose A is a collection of standard basis elements for X such that no finite subcollection of A
covers X. Show that there are points pi ∈Xi for each i ∈ J such that every corresponding space Yj

defined in (a) cannot be covered by a finite subcollection of A. Thus,

Yjmax =
{
(pi)i∈J

}



is a one-point set which is not contained in any of the elements of A. Thus, A does not cover X.

(a) If k has an immediate predecessor, j∗, in J , then

Zk =
⋂
j<k

Yj = Yj∗ ,

and A covers Yj∗ . Suppose k does not have an immediate predecessor and thus the set

{i∈J : i<k}

is infinite. For each U ∈A, let
JU =

{
i∈J : i<k, πi(U) 6=Xi

}
.

Since U is a basis element in the product topology, the set JU is finite for every U ∈A. Since A is
finite,

⋃
U∈AJU is finite. Thus, there exists

j∗ ∈ J s.t. j∗ < k and i < j∗ ∀ i ∈
⋃
U∈A

JU .

Every element U of A must then be of the form

U = U− ×
∏

j∗≤j<k

Xj × U+ ⊂
∏
j<j∗

Xj ×
∏

j∗≤j<k

Xj ×
∏
k≤j

Xj

for some open subsets U− and U+ of
∏

j<j∗Xj and
∏

k≤jXj , dependent on U . Since the sets U ∈A
cover Zk, the sets U−×U+ cover

(pi)i<j∗ ×
∏
k≤j

Xj .

It follows that the sets
U = U− ×

∏
j∗≤j<k

Xj × U+

cover
(pi)i<j∗ × pj∗ ×

∏
j∗<j<k

Xj × U+ = Yj∗ .

(b) Since the space Xjmin is compact by assumption and the space

Xjmin ×
∏

jmin<j

Xj

cannot be covered by finitely many elements of A, by the Tube Lemma there exists pjmin ∈Xjmin such
that

pjmin ×
∏

jmin<j

Xj



cannot be covered by finitely many elements of A. Suppose k∈J , k∈jmin, and we have chosen pi∈Xi

for each j <k so that the corresponding slices Yj , with j <k, of part (a) cannot be covered by finitely
many elements of A. By part (a), the corresponding space

Zk = (pi)i<k ×Xk ×
∏
k<i

Xi

cannot be covered by finitely many elements of A. Since the space Xk is compact, by the Tube Lemma
there exists pk∈Xk such that

Zk = (pi)i<k × pk ×
∏
k<i

Xi = (pi)i≤k ×
∏
k<i

Xi

cannot be covered by finitely many elements of A, as needed.

Remark 1: By part (b), if A is an open cover of X by basis elements, then A has a finite subcover.
This implies that X is compact

Remark 2: The argument in part (b) above, as suggested by the book, is actually a little problematic.
Here is a fix. Let S be the set of all subsets I of J such that if j∈I, i∈J , and i<j, then i∈I. Let D
be the collection of all elements (pi)i∈I of ⋃

I∈S

∏
j∈I

Xj

such that the corresponding slices Yj , with j ∈ I, defined in part (a) cannot be covered by finitely
many elements of A. We define a partial ordering on D by

(pi)i∈I ≺ (p′i)i∈I′ if I ( I ′ and pi = p′i ∀ i∈I.

By Zorn’s Lemma (or the Maximum Principle), there exists a maximal simply ordered subset D∗ of D.
Let I∗ be the union of all sets I such that (pi)i∈I is an element of D∗. Since D∗ is maximal, (pi)i∈I∗

is an element of D∗ and is the largest element of D∗. We claim that I∗ = J . If not, take k to be
the smallest element of J−I∗ and proceed as above to choose pk ∈Xk. The element (pi)i∈I∗∪{k} of
D is larger that any element of D∗, contrary to the assumption that D∗ is a maximal simply ordered
subcollection of D.


