MAT 530: Topology&Geometry, I Fall 2005

Problem Set 4

Solution to Problem p67, #7

Let J be a well-ordered set. A subset J_0 of J is **inductive** if for every $\alpha \in J$

$$S_{\alpha} \subset J_0 \implies \alpha \in J_0.$$

Proposition (Principle of Transfinite Induction) If J is a well-ordered set and $J_0 \subset J$ is inductive, then $J_0 = J$.

Recall that if J is an ordered set, S_{α} is the section of J by α :

$$S_{\alpha} = \{x \in J : x < \alpha\}.$$

Suppose J is a well-ordered set, $J_0 \subset J$ is inductive, and $J_0 \neq J$, i.e. the set $J - J_0$ is nonempty. Since J is well-ordered, every nonempty subset of J has a minimal element. Let

$$\alpha = \min(J - J_0) \in J - J_0 \implies \alpha \notin J_0. \tag{1}$$

Since α is the minimal element of $J - J_0$, $x \in J_0$ for all $x < \alpha$, i.e. $S_\alpha \subset J_0$. Since J_0 is inductive, it follows that $\alpha \in J_0$, contrary to (1).

Solution to Problem p235, #1

Let X be a space. Let \mathcal{D} a collection of subsets of X that is maximal with respect to the finiteintersection property.

(a) Show that $x \in \overline{D}$ for every $D \in \mathcal{D}$ if and only if every neighborhood of x belongs to \mathcal{D} . Which implication uses the maximality of \mathcal{D} ?

(b) Show that if $D \in \mathcal{D}$ and $D \subset A \subset X$, then $A \in \mathcal{D}$.

(c) Show that if X satisfies the T1-axiom, $\bigcap_{D \in \mathcal{D}} \overline{D}$ contains at most one point.

(a) By Theorem 17.5, $x \in \overline{D}$ for every $D \in \mathcal{D}$ if and only if every neighborhood of x intersects every element D of \mathcal{D} . Since \mathcal{D} has the finite-intersection property and is maximal with respect to this property, by (b) of Lemma 37.2 the latter is the case if and only if every neighborhood of x belongs to \mathcal{D} . This proves (a). The maximality of \mathcal{D} is used to show that if $x \in \overline{D}$ for every $D \in \mathcal{D}$, then every neighborhood of x belongs to \mathcal{D} (i.e. the *only if* part of the claim).

(b) Since $D \subset A$ and D intersects every element of \mathcal{D} , so does A. The desired conclusion follows from (b) of Lemma 37.2.

(c) Suppose X is Hausdorff and x and y are two distinct points in $\bigcap_{D \in \mathcal{D}} \overline{D}$. Since $x \neq y$, there exist disjoint neighborhoods U and V of x and y, respectively. Since $x \in \overline{D}$ for every $\mathcal{D} \in \mathcal{D}$, by part (a) $U \in \mathcal{D}$. Since $y \in \overline{D}$ for every $\mathcal{D} \in \mathcal{D}$, by part (a) $V \in \mathcal{D}$. However, $U \cap V = \emptyset$, which is impossible since \mathcal{D} has the finite intersection property.

The T1 assumption is not sufficient here. Here is a counterexample. Let X be an infinite set endowed with the finite complement topology. Let \mathcal{A} be the collection of all nonempty open sets in X, i.e. \mathcal{A} is the collection of all sets whose complement is finite. Since X is infinite, the intersection of any finite collection of elements of \mathcal{A} is nonempty; in fact, it is another element of \mathcal{A} . Thus, \mathcal{A} has the finite intersection property. By Lemma 37.1, there exists a collection \mathcal{D} of subsets of X such that \mathcal{D} has the finite intersection property, is maximal with respect to this property, and contains \mathcal{A} . Since \mathcal{D} has the finite intersection property and contains \mathcal{A} , every elements D of \mathcal{D} must intersect every element of \mathcal{A} , i.e. every nonempty open set in X. Thus, $\overline{D} = X$ for all $D \in \mathcal{D}$. It follows that $\bigcap_{D \in \mathcal{D}} \overline{D} = X$.

Remark: The first edition of the book actually had the correct statement. This error is also listed in a publicly available list of corrections to the second edition. Nevertheless, sometimes it is good to see whether any assumptions in a statement can be weakened.

Solution to Problem p236, #5

Prove Tychonoff's Theorem using the open-set definition of compactness and the Tube Lemma. **Theorem:** If X_j is a compact topological space for every $j \in J$, then the space $X = \prod_{j \in J} X_j$ is compact in the product topology.

Tube Lemma: Suppose X and Y are topological spaces, X is compact, and A is a collection of standard basis elements for the topology of $X \times Y$. If no finite subcollection of A covers $X \times Y$, then there exists $x \in X$ such that no finite subcollection of A covers $x \times Y$.

Proof of Theorem: For each $j \in J$, let $\pi_j \colon X \longrightarrow X_j$ be the projection map. Choose a well-ordering on J so that J has a maximal element, j_{max} . Denote the minimal element by j_{min} . (a) Suppose $k \in J$, $k \neq j_{\text{min}}$, and $p_i \in X_i$ is a point for each i < k. For each j < k, let

$$Y_j = \left\{ (x_i)_{i \in J} \colon x_i = p_i \ \forall i \le j \right\}.$$

Then, $j < j' < k \implies Y_j \supset Y_{j'}$. Let

$$Z_k = \bigcap_{j < k} Y_j = \{ (x_i)_{i \in J} \colon x_i = p_i \ \forall i < k \}.$$

Show that if \mathcal{A} is a finite collection of basis elements that covers Z_k , then \mathcal{A} covers Y_j for some j < k. (b) Suppose \mathcal{A} is a collection of standard basis elements for X such that no finite subcollection of \mathcal{A} covers X. Show that there are points $p_i \in X_i$ for each $i \in J$ such that every corresponding space Y_j defined in (a) cannot be covered by a finite subcollection of \mathcal{A} . Thus,

$$Y_{j_{\max}} = \left\{ (p_i)_{i \in J} \right\}$$

is a one-point set which is not contained in any of the elements of \mathcal{A} . Thus, \mathcal{A} does not cover X.

(a) If k has an immediate predecessor, j^* , in J, then

$$Z_k = \bigcap_{j < k} Y_j = Y_{j^*},$$

and \mathcal{A} covers Y_{j^*} . Suppose k does not have an immediate predecessor and thus the set

$$\{i\!\in\!J:i\!<\!k\}$$

is infinite. For each $\mathcal{U} \in \mathcal{A}$, let

$$J_{\mathcal{U}} = \left\{ i \in J : i < k, \ \pi_i(\mathcal{U}) \neq X_i \right\}$$

Since \mathcal{U} is a basis element in the product topology, the set $J_{\mathcal{U}}$ is finite for every $\mathcal{U} \in \mathcal{A}$. Since \mathcal{A} is finite, $\bigcup_{\mathcal{U} \in \mathcal{A}} J_{\mathcal{U}}$ is finite. Thus, there exists

$$j^* \in J$$
 s.t. $j^* < k$ and $i < j^*$ $\forall i \in \bigcup_{\mathcal{U} \in \mathcal{A}} J_{\mathcal{U}}$.

Every element \mathcal{U} of \mathcal{A} must then be of the form

$$\mathcal{U} = \mathcal{U}_{-} \times \prod_{j^* \le j < k} X_j \times \mathcal{U}_{+} \subset \prod_{j < j^*} X_j \times \prod_{j^* \le j < k} X_j \times \prod_{k \le j} X_j$$

for some open subsets \mathcal{U}_{-} and \mathcal{U}_{+} of $\prod_{j < j^*} X_j$ and $\prod_{k \leq j} X_j$, dependent on \mathcal{U} . Since the sets $\mathcal{U} \in \mathcal{A}$ cover Z_k , the sets $\mathcal{U}_{-} \times \mathcal{U}_{+}$ cover

$$(p_i)_{i < j^*} \times \prod_{k \le j} X_j.$$

It follows that the sets

$$\mathcal{U} = \mathcal{U}_{-} \times \prod_{j^* \le j < k} X_j \times \mathcal{U}_{-}$$

cover

$$(p_i)_{i < j^*} \times p_{j^*} \times \prod_{j^* < j < k} X_j \times \mathcal{U}_+ = Y_{j^*}$$

(b) Since the space $X_{j_{\min}}$ is compact by assumption and the space

$$X_{j_{\min}} \times \prod_{j_{\min} < j} X_j$$

cannot be covered by finitely many elements of \mathcal{A} , by the Tube Lemma there exists $p_{j_{\min}} \in X_{j_{\min}}$ such that

$$p_{j_{\min}} \times \prod_{j_{\min} < j} X_j$$

cannot be covered by finitely many elements of \mathcal{A} . Suppose $k \in J$, $k \in j_{\min}$, and we have chosen $p_i \in X_i$ for each j < k so that the corresponding slices Y_j , with j < k, of part (a) cannot be covered by finitely many elements of \mathcal{A} . By part (a), the corresponding space

$$Z_k = (p_i)_{i < k} \times X_k \times \prod_{k < i} X_i$$

cannot be covered by finitely many elements of \mathcal{A} . Since the space X_k is compact, by the Tube Lemma there exists $p_k \in X_k$ such that

$$Z_k = (p_i)_{i < k} \times p_k \times \prod_{k < i} X_i = (p_i)_{i \le k} \times \prod_{k < i} X_i$$

cannot be covered by finitely many elements of \mathcal{A} , as needed.

Remark 1: By part (b), if \mathcal{A} is an open cover of X by basis elements, then \mathcal{A} has a finite subcover. This implies that X is compact

Remark 2: The argument in part (b) above, as suggested by the book, is actually a little problematic. Here is a fix. Let S be the set of all subsets I of J such that if $j \in I$, $i \in J$, and i < j, then $i \in I$. Let \mathcal{D} be the collection of all elements $(p_i)_{i \in I}$ of

$$\bigcup_{I\in\mathcal{S}}\prod_{j\in I}X_j$$

such that the corresponding slices Y_j , with $j \in I$, defined in part (a) cannot be covered by finitely many elements of \mathcal{A} . We define a partial ordering on \mathcal{D} by

$$(p_i)_{i \in I} \prec (p'_i)_{i \in I'}$$
 if $I \subsetneq I'$ and $p_i = p'_i \forall i \in I$.

By Zorn's Lemma (or the Maximum Principle), there exists a maximal simply ordered subset \mathcal{D}^* of \mathcal{D} . Let I^* be the union of all sets I such that $(p_i)_{i \in I}$ is an element of \mathcal{D}^* . Since \mathcal{D}^* is maximal, $(p_i)_{i \in I^*}$ is an element of \mathcal{D}^* and is the largest element of \mathcal{D}^* . We claim that $I^* = J$. If not, take k to be the smallest element of $J - I^*$ and proceed as above to choose $p_k \in X_k$. The element $(p_i)_{i \in I^* \cup \{k\}}$ of \mathcal{D} is larger that any element of \mathcal{D}^* , contrary to the assumption that \mathcal{D}^* is a maximal simply ordered subcollection of \mathcal{D} .