MAT 530: Topology&Geometry, I
Fall 2005

Problem Set 4

Solution to Problem p67, #7

Let J be a well-ordered set. A subset J_0 of J is **inductive** if for every $\alpha \in J$

$$S_\alpha \subset J_0 \implies \alpha \in J_0.$$

Proposition (Principle of Transfinite Induction) If J is a well-ordered set and $J_0 \subset J$ is inductive, then $J_0 = J$.

Recall that if J is an ordered set, S_α is the section of J by α:

$$S_\alpha = \{ x \in J : x < \alpha \}.$$

Suppose J is a well-ordered set, $J_0 \subset J$ is inductive, and $J_0 \neq J$, i.e. the set $J - J_0$ is nonempty. Since J is well-ordered, every nonempty subset of J has a minimal element. Let

$$\alpha = \min(J - J_0) \in J - J_0 \implies \alpha \notin J_0.$$

(1)

Since α is the minimal element of $J - J_0$, $x \in J_0$ for all $x < \alpha$, i.e. $S_\alpha \subset J_0$. Since J_0 is inductive, it follows that $\alpha \in J_0$, contrary to (1).

Solution to Problem p235, #1

Let X be a space. Let D a collection of subsets of X that is maximal with respect to the finite-intersection property.

(a) Show that $x \in \bar{D}$ for every $D \in D$ if and only if every neighborhood of x belongs to D. Which implication uses the maximality of D?

(b) Show that if $D \in D$ and $D \subset A \subset X$, then $A \in D$.

(c) Show that if X satisfies the T1-axiom, $\bigcap_{D \in D} \bar{D}$ contains at most one point.

(a) By Theorem 17.5, $x \in \bar{D}$ for every $D \in D$ if and only if every neighborhood of x intersects every element D of D. Since D has the finite-intersection property and is maximal with respect to this property, by (b) of Lemma 37.2 the latter is the case if and only if every neighborhood of x belongs to D. This proves (a). The maximality of D is used to show that if $x \in \bar{D}$ for every $D \in D$, then every neighborhood of x belongs to D (i.e. the only if part of the claim).

(b) Since $D \subset A$ and D intersects every element of D, so does A. The desired conclusion follows from (b) of Lemma 37.2.
(c) Suppose \(X \) is Hausdorff and \(x \) and \(y \) are two distinct points in \(\bigcap_{D \in D} \bar{D} \). Since \(x \neq y \), there exist disjoint neighborhoods \(U \) and \(V \) of \(x \) and \(y \), respectively. Since \(x \in \bar{D} \) for every \(D \in D \), by part (a) \(U \in D \). Since \(y \in \bar{D} \) for every \(D \in D \), by part (a) \(V \in D \). However, \(U \cap V = \emptyset \), which is impossible since \(D \) has the finite intersection property.

The T1 assumption is not sufficient here. Here is a counterexample. Let \(X \) be an infinite set endowed with the finite complement topology. Let \(A \) be the collection of all nonempty open sets in \(X \), i.e. \(A \) is the collection of all sets whose complement is finite. Since \(X \) is infinite, the intersection of any finite collection of elements of \(A \) is nonempty; in fact, it is another element of \(A \). Thus, \(A \) has the finite intersection property. By Lemma 37.1, there exists a collection \(D \) of subsets of \(X \) such that \(D \) has the finite intersection property, is maximal with respect to this property, and contains \(A \). Since \(D \) has the finite intersection property and contains \(A \), every elements \(D \) of \(D \) must intersect every element of \(A \), i.e. every nonempty open set in \(X \). Thus, \(\bar{D} = X \) for all \(D \in D \). It follows that \(\bigcap_{D \in D} \bar{D} = X \).

Remark: The first edition of the book actually had the correct statement. This error is also listed in a publicly available list of corrections to the second edition. Nevertheless, sometimes it is good to see whether any assumptions in a statement can be weakened.

Solution to Problem p236, #5

Prove Tychonoff’s Theorem using the open-set definition of compactness and the Tube Lemma.

Theorem: If \(X_j \) is a compact topological space for every \(j \in J \), then the space \(X = \prod_{j \in J} X_j \) is compact in the product topology.

Tube Lemma: Suppose \(X \) and \(Y \) are topological spaces, \(X \) is compact, and \(A \) is a collection of standard basis elements for the topology of \(X \times Y \). If no finite subcollection of \(A \) covers \(X \times Y \), then there exists \(x \in X \) such that no finite subcollection of \(A \) covers \(x \times Y \).

Proof of Theorem: For each \(j \in J \), let \(\pi_j : X \rightarrow X_j \) be the projection map. Choose a well-ordering on \(J \) so that \(J \) has a maximal element, \(j_{\text{max}} \). Denote the minimal element by \(j_{\text{min}} \).

(a) Suppose \(k \in J \), \(k \neq j_{\text{min}} \), and \(p_i \in X_i \) is a point for each \(i < k \). For each \(j < k \), let

\[
Y_j = \left\{ (x_i)_{i \in J} : x_i = p_i \quad \forall \; i \leq j \right\}.
\]

Then, \(j < j' < k \implies Y_j \supset Y_{j'} \). Let

\[
Z_k = \bigcap_{j < k} Y_j = \left\{ (x_i)_{i \in J} : x_i = p_i \quad \forall \; i < k \right\}.
\]

Show that if \(A \) is a finite collection of basis elements that covers \(Z_k \), then \(A \) covers \(Y_j \) for some \(j < k \).

(b) Suppose \(A \) is a collection of standard basis elements for \(X \) such that no finite subcollection of \(A \) covers \(X \). Show that there are points \(p_i \in X_i \) for each \(i \in J \) such that every corresponding space \(Y_j \) defined in (a) cannot be covered by a finite subcollection of \(A \). Thus,

\[
Y_{j_{\text{max}}} = \left\{ (p_i)_{i \in J} \right\}
\]
is a one-point set which is not contained in any of the elements of \(A \). Thus, \(A \) does not cover \(X \).

(a) If \(k \) has an immediate predecessor, \(j^* \), in \(J \), then

\[
Z_k = \bigcap_{j<k} Y_j = Y_{j^*},
\]

and \(A \) covers \(Y_{j^*} \). Suppose \(k \) does not have an immediate predecessor and thus the set

\[
\{i \in J : i < k\}
\]

is infinite. For each \(\mathcal{U} \in \mathcal{A} \), let

\[
J_{\mathcal{U}} = \{i \in J : i < k, \pi_i(\mathcal{U}) \neq X_i\}.
\]

Since \(\mathcal{U} \) is a basis element in the product topology, the set \(J_{\mathcal{U}} \) is finite for every \(\mathcal{U} \in \mathcal{A} \). Since \(\mathcal{A} \) is finite, \(\bigcup_{\mathcal{U} \in \mathcal{A}} J_{\mathcal{U}} \) is finite. Thus, there exists

\[
j^* \in J \quad \text{s.t.} \quad j^* < k \quad \text{and} \quad i < j^* \quad \forall i \in \bigcup_{\mathcal{U} \in \mathcal{A}} J_{\mathcal{U}}.
\]

Every element \(\mathcal{U} \) of \(\mathcal{A} \) must then be of the form

\[
\mathcal{U} = \mathcal{U}_- \times \prod_{j^* \leq j < k} X_j \times \mathcal{U}_+ \subset \prod_{j < j^*} X_j \times \prod_{j^* < j < k} X_j \times \prod_{k \leq j} X_j
\]

for some open subsets \(\mathcal{U}_- \) and \(\mathcal{U}_+ \) of \(\prod_{j < j^*} X_j \) and \(\prod_{k \leq j} X_j \), dependent on \(\mathcal{U} \). Since the sets \(\mathcal{U} \in \mathcal{A} \) cover \(Z_k \), the sets \(\mathcal{U}_- \times \mathcal{U}_+ \) cover

\[
(p_i)_{i < j^*} \times \prod_{k \leq j} X_j,
\]

It follows that the sets

\[
\mathcal{U} = \mathcal{U}_- \times \prod_{j^* \leq j < k} X_j \times \mathcal{U}_+
\]

cover

\[
(p_i)_{i < j^*} \times p_{j^*} \times \prod_{j^* < j < k} X_j \times \mathcal{U}_+ = Y_{j^*}.
\]

(b) Since the space \(X_{j_{\text{min}}} \) is compact by assumption and the space

\[
X_{j_{\text{min}}} \times \prod_{j_{\text{min}} < j} X_j
\]

cannot be covered by finitely many elements of \(\mathcal{A} \), by the Tube Lemma there exists \(p_{j_{\text{min}}} \in X_{j_{\text{min}}} \) such that

\[
p_{j_{\text{min}}} \times \prod_{j_{\text{min}} < j} X_j
\]
cannot be covered by finitely many elements of A. Suppose $k \in J$, $k \in j_{\min}$, and we have chosen $p_i \in X_i$ for each $j < k$ so that the corresponding slices Y_j, with $j < k$, of part (a) cannot be covered by finitely many elements of A. By part (a), the corresponding space

$$Z_k = (p_i)_{i < k} \times X_k \times \prod_{k < i} X_i$$

cannot be covered by finitely many elements of A. Since the space X_k is compact, by the Tube Lemma there exists $p_k \in X_k$ such that

$$Z_k = (p_i)_{i < k} \times p_k \times \prod_{k < i} X_i = (p_i)_{i \leq k} \times \prod_{k < i} X_i$$

cannot be covered by finitely many elements of A, as needed.

Remark 1: By part (b), if A is an open cover of X by basis elements, then A has a finite subcover. This implies that X is compact.

Remark 2: The argument in part (b) above, as suggested by the book, is actually a little problematic. Here is a fix. Let S be the set of all subsets I of J such that if $j \in I$, $i \in J$, and $i < j$, then $i \in I$. Let D be the collection of all elements $(p_i)_{i \in I}$ of

$$\bigcup_{I \in S} \prod_{j \in I} X_j$$

such that the corresponding slices Y_j, with $j \in I$, defined in part (a) cannot be covered by finitely many elements of A. We define a partial ordering on D by

$$(p_i)_{i \in I} \prec (p'_i)_{i \in I'}$$ if $I \subseteq I'$ and $p_i = p'_i \ \forall i \in I$.

By Zorn’s Lemma (or the Maximum Principle), there exists a maximal simply ordered subset D^* of D. Let I^* be the union of all sets I such that $(p_i)_{i \in I}$ is an element of D^*. Since D^* is maximal, $(p_i)_{i \in I^*}$ is an element of D^* and is the largest element of D^*. We claim that $I^* = J$. If not, take k to be the smallest element of $J - I^*$ and proceed as above to choose $p_k \in X_k$. The element $(p_i)_{i \in I^* \cup \{k\}}$ of D is larger than any element of D^*, contrary to the assumption that D^* is a maximal simply ordered subcollection of D.