MAT 530: Topology&Geometry, I Fall 2005

Problem Set 3

Solution to Problem p158, #12

Let S_{Ω} be the minimal uncountable well-ordered set, as in Section 10. Denote by L the ordered set $S_{\Omega} \times [0,1)$ in the dictionary order with its smallest element deleted. The topological space L, with the order topology, is called the long line.

Theorem: The long line L is path-connected and locally homeomorphic to \mathbb{R} , but it cannot be embedded in \mathbb{R} .

(a) Suppose X is an ordered set, $a, b, c \in X$, and a < b < c. Show that [a, c) has the order type of [0, 1) if and only if both [a, b) and [b, c) do.

(b) Suppose X is an ordered set, $x_0, x_1, \ldots \in X$ is a strictly increasing sequence in X, and $b = \sup\{x_i\}$. Show that $[x_0, b)$ has the order type of [0, 1) if and only if every interval $[x_i, x_{i+1})$ with $i \ge 0$ does. (c) Let a_0 be the smallest interval of S_{Ω} . Show that for every $a \in S_{\Omega} - \{a_0\}$, the interval

$$\left[a_0 \times 0, a \times 0\right) \subset S_\Omega \times [0, 1)$$

has the order type of [0, 1).

- (d) Show that L is path connected.
- (e) Show that every point in L has a neighborhood homeomorphic to an open interval in \mathbb{R} .

(f) Show that L cannot be embedded into in \mathbb{R}^n for any n.

Recall that two ordered sets (X, <) and (Y, <) are said to have the same order type if there exists a surjective map

$$f: X \longrightarrow Y$$
 s.t. $x_1, x_2 \in X, x_1 < x_2 \implies f(x_1) < f(x_2).$

Such a map f is necessarily bijective and is a homeomorphism with respect to the order topologies on X and Y.

(a) Suppose $f: [a, c) \longrightarrow [0, 1)$ is an order-preserving bijection as above. Then, so are

$$g: [a, b) \longrightarrow [0, 1), \quad g(x) = f(x)/f(b), \text{ and}$$

 $h: [b, c) \longrightarrow [0, 1), \quad g(x) = (f(x) - f(b))/(1 - f(b)).$

Conversely, if $g: [a, b) \longrightarrow [0, 1)$ and $h: [b, c) \longrightarrow [0, 1)$ are order-preserving bijections, then so is

$$f: [a, c) \longrightarrow [0, 1), \qquad f(x) = \begin{cases} g(x)/2, & \text{if } x \in [a, b); \\ 1/2 + h(x)/2, & \text{if } x \in [b, c). \end{cases}$$

(b) Suppose $f: [x_0, b) \longrightarrow [0, 1)$ is an order-preserving bijection. Then, so is

$$f_i: [x_i, x_{i+1}) \longrightarrow [0, 1), \qquad f_i(x) = (f(x) - f(x_i)) / (f(x_{i+1}) - f(x_i)), \qquad i = 0, 1, \dots$$

since $f(x_{i+1}) - f(x_i) > 0$. Conversely, if $f_i : [x_i, x_{i+1}) \longrightarrow [0, 1)$ is an order-preserving bijection for each $i = 0, 1, \ldots$, then so is

$$f: [x_0, b) \longrightarrow [0, 1), \qquad f(x) = \begin{cases} (1 - 2^{-i}) + 2^{-(i+1)} f_i(x), & \text{if } x \in [x_i, x_{i+1}); \\ 1, & \text{if } x = b. \end{cases}$$

This map is injective and order-preserving on each interval $[x_i, x_{i+1})$, since f_i is. Furthermore, if $y \in [x_i, x_{i+1})$ and $z \in [x_j, x_{j+1})$ with i < j, then

$$f(x) < 1 - 2^{-(i+1)} \le 1 - 2^{-j} \le f(y).$$

Thus, f is injective and order-preserving on the entire interval $[x_0, b)$, and the image of f is [0, 1).

$$A = \{ a \in S_{\Omega} - \{ a_0 \} \colon [a_0 \times 0, a \times 0) \text{ has order type of } [0, 1) \}.$$

We will show that if $c \in S_{\Omega} - \{a_0\}$ and $a \in A$ for all $a \in S_{\Omega} - \{a_0\}$ such that a < c, then $c \in A$. By transfinite induction, this implies that $A = S_{\Omega} - \{a_0\}$; see Exercise 7 on p67.

Suppose first that c has an immediate predecessor, b < c. Then, $[a_0 \times 0, b \times 0)$ has the order type of [0, 1) and so does

$$[b \times 0, c \times 0] = b \times [0, 1)$$

Thus, by part (a), $[a_0 \times 0, c \times 0)$ has the order type of [0, 1), and $c \in A$.

Suppose c has no immediate predecessor. The set

$$S_c \equiv \{a \in S_\Omega : a < c\}$$

is countable and must be infinite, since c has no immediate predecessor. Thus, there exists a strictly increasing sequence $a_i \in S_{\Omega} - \{a_0\}$ that converges to c. Since $[a_0 \times 0, a_{i+1} \times 0)$ has the order type of [0, 1), so does $[a_i \times 0, a_{i+1} \times 0)$ by part (a). Since c has no immediate predecessor, the sequence $x_i = a_i \times 0$ converges to $c \times 0$. Since $[a_i \times 0, a_{i+1} \times 0)$ has the order type of [0, 1) and $a_i \times 0$ converges to $c \times 0$, $[a_0 \times 0, c \times 0)$ has the order type of [0, 1) by part (b). Thus, $c \in A$.

(d) Suppose $x, y \in L$ and x < y. Since S_{Ω} has no largest element, there exists $b \in S_{\Omega}$ such that $y < b \times 0$ and thus $x, y \in [a_0 \times 0, b \times 0)$. Since $[a_0 \times 0, b \times 0)$ has the order type of [0, 1), there exists an order-preserving bijection

$$f: [0,1) \longrightarrow [a_0 \times 0, b \times 0)$$

This map is continuous (in fact, a homeomorphism), and so is its restriction

$$f: \left[f^{-1}(x), f^{-1}(y)\right] \longrightarrow [x, y] \subset L.$$

This is a path from x to y in L.

(e) Given $x \in L$, choose $b \in S_{\Omega}$ such that $x < b \times 0$; see part (d). Let

$$f: [0,1) \longrightarrow [a_0 \times 0, b \times 0)$$

be a homeomorphism as above. Then,

$$f: (0,1) \longrightarrow (a_0 \times 0, b \times 0)$$

is a homeomorphism between (0, 1) and a neighborhood of x in L.

(f) The space \mathbb{R}^n is second-countable, i.e. has a countable basis for its standard topology. So, does every subspace Y of \mathbb{R}^n ; a countable basis for the subspace topology on Y can be obtained by intersecting Y with the elements of a countable basis for \mathbb{R}^n . If $f: L \longrightarrow Y$ is a homeomorphism and Y is second-countable, then so is L. On the other hand,

$$\left\{a \times (1/4, 3/4) : a \in S_{\Omega}\right\}$$

is an uncountable collection of disjoint nonempty open subsets of L. Thus, L is not second-countable.

Solution to Problem p178, #5

Suppose that X is a compact Hausdorff space and $\{A_n\}_{n\in\mathbb{Z}^+}$ is a countable collection of closed subsets of X such that $\operatorname{Int} A_n = \emptyset$ for all $n \in \mathbb{Z}^+$. Show that $\operatorname{Int} \bigcup_{n=1}^{\infty} A_n = \emptyset$.

We first note that if X is a compact Hausdorff space and $\mathcal{U} \subset X$ is a nonempty open subset, then there exists a nonempty open subset $V \subset X$ such that $\overline{V} \subset \mathcal{U}$. Indeed, choose $p \in \mathcal{U}$. Since $X - \mathcal{U}$ is a closed, and thus compact, subset of X and does not contain p, by Lemma 26.4 there exist open sets $V, W \subset X$ such that

$$\begin{aligned} x \in V, \quad X - \mathcal{U} \subset W, \quad V \cap W = \emptyset & \implies \\ V \neq \emptyset, \quad \bar{V} \cap W = \emptyset & \implies \quad \bar{V} \cap (X - \mathcal{U}) = \emptyset & \implies \quad \bar{V} \subset \mathcal{U}, \end{aligned}$$

as needed.

Suppose $V_0 = \text{Int } \bigcup_{n=1}^{\infty} A_n$ is nonempty. Recall that this is the largest open set contained in $\bigcup_{n=1}^{\infty} A_n$. Suppose $n \leq 1$ and for all i < n we have constructed a nonempty open subset $V_i \subset X$ such that

$$V_i \supset V_j \quad \forall i < j < n \quad \text{and} \quad V_i \cap A_i = \emptyset \quad \forall i < n.$$

Since Int $A_n = \emptyset$, $V_{n-1} \not\subset A_n$ and thus $V_{n-1} - A_n$ is an nonempty open subset of X. By the previous paragraph, we can choose a nonempty open subset V_n of X such that

$$\bar{V}_n \subset V_{n-1} - A_n \implies \bar{V}_n \cap A_n = \emptyset.$$

The inductive assumptions are satisfied. Thus, we can find nonempty open subsets $\{V_i\}_{i\in Z^+}$ of X such that

$$V_i \supset V_j \quad \forall i < j \quad \text{and} \quad V_i \cap A_i = \emptyset \quad \forall i.$$

Since

$$\bigcap_{i=1}^{i=n} \bar{V}_i = \bar{V}_n \neq \emptyset,$$

the collection $\{V_i\}_{i\in\mathbb{Z}^+}$ satisfies the finite-intersection property. Since X is compact,

$$\bigcap_{i=1}^{i=\infty} \bar{V}_i \neq \emptyset.$$

However,

$$\bigcap_{i=1}^{i=\infty} \bar{V}_i \subset V_0 \equiv \text{Int} \bigcup_{n=1}^{\infty} A_n \subset \bigcup_{n=1}^{\infty} A_n \quad \text{and} \quad \bigcap_{i=1}^{i=\infty} \bar{V}_i \cap A_n \subset \bar{V}_n \cap A_n = \emptyset.$$

The last two statements are contradictory.