1. Prove that the map \(f_* : \pi_1(X, x_0) \to \pi_1(Y, y_0) \) induced by a continuous map \(f : (X, x_0) \to (Y, y_0) \), is a group homomorphism.

2. Prove that the fundamental group of the sphere \(S^n \) is trivial for \(n > 1 \).

3. Let \(A \) be a subspace of a topological space \(X \) and suppose that \(r : X \to A \) is a continuous map such that \(r(a) = a \) for all \(a \in A \). Such map is called a retraction of \(X \) onto \(A \). If \(a_0 \in A \), show that
\[
r_* : \pi_1(X, a_0) \to \pi_1(A, a_0)
\]
is surjective.

4. Let \(G \) be a topological group with operation \(\cdot \) and the identity element \(e \). Let \(\Omega(G, e) \) denote the set of all loops in \(G \) based at \(e \). If \(f, g \in \Omega(G, e) \), then define a loop \(f \otimes g \) be the rule
\[
(f \otimes g)(s) = f(s) \cdot g(s).
\]
Show that \(\Omega(G, e) \) is a group with respect to \(\otimes \) Show that \(\otimes \) induces a group operation on \(\pi_1(G, e) \).

5. In the notation of Problem 4, prove that \(\otimes \) coincides with the usual group operation on \(\pi_1(G, e) \). Prove that \(\pi_1(G, e) \) is commutative.

6. A subspace \(A \) of \(X \) is called a deformation retract of \(X \) if the identity self-map of \(X \) is homotopic to some retraction of \(X \) onto \(A \) so that during the homotopy every point of \(A \) remains fixed. Prove that if \(A \) is a path connected deformation retract of \(X \), then \(X \) is also path connected and \(\pi_1(X) = \pi_1(A) \).