MAT 401: Undergraduate Seminar Introduction to Enumerative Geometry Fall 2018

Homework Assignment II

Written Assignment due on Thursday, 9/13, at 1pm in ESS 181 (or by 9/13, noon, in Math 3-111)

Chapter 2, #1,5,6; optional bonus problem on the back

Please aim to make your solutions as concise and to the point as possible.

Discussion Problem for 9/13

Duality for Conics

Let $n_2(i)$ be the number of plane conics that are tangent to *i* general lines and pass through 5-i points, with $i=0,1,\ldots,5$. It is stated at the end of Chapter 2 that

An argument for the numbers $n_2(i)$ for i = 0, 1, 2 is given in the book. The aim of this discussion problem is to obtain the remaining numbers by showing that

$$n_2(i) = n_2(5-i). \tag{(*)}$$

Part I: Chapter 2, $\#8 \ (\sim 30 \text{ mins})$

Part II: Recall from the first discussion session and Chapter 2 that a line in $\mathbb{C}P^2$ is also a point in the dual projective plane, $(\mathbb{C}P^2)^* \approx \mathbb{C}P^2$. If $C \subset \mathbb{C}P^2$ is a smooth conic, there is a well-defined tangent line $\tau_C(z) \in (\mathbb{C}P^2)^*$ at each point $z \in C$. Show that the map

$$\tau_C \colon C \longrightarrow (\mathbb{C}P^2)^*, \qquad z \longrightarrow \tau_C(z),$$

is injective and is a homeomorphism (or at least a bijection) onto a smooth conic C^* in $(\mathbb{C}P^2)^*$. Furthermore, the image of the map

$$\tau_{C^*} \colon C^* \longrightarrow ((\mathbb{C}P^2)^*)^* = \mathbb{C}P^2$$

is the original conic C (i.e. dualizing twice gets us back to where we started). (~ 30 mins)

Part III: Prove the identity (*) (~10 mins)

On Tuesday, 9/11, please volunteer to discuss one of the three parts on Thursday, 9/13.

Problem A (bonus)

There are two natural coordinate charts on $\mathbb{C}P^1$:

$$\varphi_0: U_0 \equiv \left\{ [Z_0, Z_1] \in \mathbb{C}P^1 \colon Z_0 \neq 0 \right\} \longrightarrow \mathbb{C}, \qquad \varphi_0([Z_0, Z_1]) = Z_1/Z_0;$$

$$\varphi_1: U_1 \equiv \left\{ [Z_0, Z_1] \in \mathbb{C}P^1 \colon Z_1 \neq 0 \right\} \longrightarrow \mathbb{C}, \qquad \varphi_1([Z_0, Z_1]) = Z_0/Z_1.$$

A map $F: \mathbb{C}P^1 \longrightarrow \mathbb{C}P^1$ is called **holomorphic** if F is continuous and the four maps

$$F_{ij} \equiv \varphi_i \circ F \circ \varphi_j^{-1} \colon \varphi_j \left(F^{-1}(U_i) \cap U_j \right) \longrightarrow \mathbb{C}, \qquad i, j = 0, 1, j = 0, j = 0,$$

are holomorphic (as maps between open subsets of \mathbb{C}).

(1) Show that the overlap maps between the coordinate charts,

$$\varphi_{10} \equiv \varphi_1 \circ \varphi_0^{-1} \colon \varphi_0(U_0 \cap U_1) \longrightarrow \varphi_1(U_0 \cap U_1), \quad \varphi_{01} \equiv \varphi_0 \circ \varphi_1^{-1} \colon \varphi_1(U_0 \cap U_1) \longrightarrow \varphi_0(U_0 \cap U_1)$$

are holomorphic (as maps between open subsets of \mathbb{C}).

(2) Let $p_0, p_1: \mathbb{C}^2 \longrightarrow \mathbb{C}$ be homogeneous polynomials of the same degree without a common linear factor. Show that the map

$$F: \mathbb{C}P^1 \longrightarrow \mathbb{C}P^1, \qquad F([Z_0, Z_1]) = [p_0(Z_0, Z_1), p_1(Z_0, Z_1)],$$

is well-defined and holomorphic (you can assume continuity).

- (3) Let $F: \mathbb{C}P^1 \longrightarrow \mathbb{C}P^1$ be a non-constant holomorphic map. Show that
 - (a) $\mathbb{C} \varphi_j(F^{-1}(U_i) \cap U_j)$ is a finite set of points for all i, j = 0, 1;
 - (b) there exist homogeneous polynomials $p_0, p_1 : \mathbb{C}^2 \longrightarrow \mathbb{C}$ of the same degree without a common linear factor such that

$$F([Z_0, Z_1]) = [p_0(Z_0, Z_1), p_1(Z_0, Z_1)] \quad \forall [Z_0, Z_1] \in \mathbb{C}P^1.$$

Note: This problem requires some relatively basic stuff from MAT 536, which is probably also done in MAT 342.