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More on Plane Conics

Theorem: For each integer i, with 0≤ i≤5, let n2(i) be the number of smooth plane conics
that are tangent to i general lines and pass through 5−i general points in CP 2. Then,

n2(i) = n2(5− i). (*)

Corollary: The six numbers n2(i) are given by

i 0 1 2 3 4 5
n2(i) 1 2 4 4 2 1

The numbers n2(0), n2(1), and n2(2) are computed in Chapter 2 of Katz’s book; the iden-
tity (∗) then yields the remaining three numbers. The above theorem was the subject of the
discussion on Thursday, 9/13; the aim of these notes is to sum up the full argument.

We will denote by [X] = [X0, X1, X2] an arbitrary point of CP 2 and by [Y ] = [Y0, Y1, Y2] a
specific point in CP 2. A line LB in CP 2 is the set of points [X0, X1, X2] in CP 2 satisfying a
linear equation

B0X0 +B1X1 +B2X2 = 0

for some B = (B0, B1, B2) 6= 0 and thus corresponds to a point in the dual projective plane,
(CP 2)∨≈CP 2. Analogously, a point [Y0, Y1, Y2] in CP 2 determines a line L∨

Y in (CP 2)∨; it is
the set of all points [A0, A1, A2] in (CP 2)∨ such that

A0Y0 +A1Y1 +A2Y2 = 0.

Since a line in (CP 2)∨ corresponds to a point in CP 2, the dual of the dual of the original CP 2

is the original CP 2:
(

(CP 2)∨
)

∨
= CP 2.

As we have seen previously, this duality between lines and points in the projective plane im-
plies that the number of lines passing through two general points in C

2 (or CP 2) is the same
as the number of points lying on two general lines in C

2 (or (CP 2)∨≈CP 2).

A conic in CP 2 is the zero set of a nonzero homogeneous polynomial F (X0, X1, X2). Any such
polynomial is of the form

FM (X0, X1, X2) = XtMX, (**)

for some nonzero symmetric 3×3-matrix, where we view X = (X0, X1, X2)∈C
3 as a column

vector. Let
CM ≡ Z(FM ) ⊂ CP 2



be the conic corresponding to a symmetric 3×3-matrix M . It can be of three possible shapes:
smooth, union of two distinct lines, or a double line. These three possibilities are beautifully
captured by the presentation (**):

Lemma 1: (1) If rkM = 1, CM is a double line.
(2) If rkM = 2, CM is a union of two distinct lines.
(3) If rkM = 3, CM is a smooth conic.

This key technical observation was proved by Moshe using algebraic computations only. Below
we give a less direct argument.

• By the first part of Problem D in Problem Set III, if [Y ]∈CM and MY 6=0, then [Y ] is a
smooth point of CM (this statement uses the assumption that M is symmetric). Thus, if
the rank of M is 3, then every point of CM is smooth (since the kernel of M is trivial) and
thus CM is a smooth conic.

• If the rank of M is two, M vanishes on a one-dimensional linear subspace of C3, corre-
sponding to a singular point [Y ] ∈ CM , i.e. MY = 0. Since M is symmetric, using the
Gram-Schmidt diagonalization procedure we can also find Y ′, Y ′′∈C

3 such that {Y, Y ′, Y ′′}
is a basis for C3,

Y ′tMY ′ = 1, Y ′′tMY ′′ = 1, Y ′tMY ′′ = 0;

it is essential here that we are working with complex numbers. Then, {Y, Y ′+ iY ′′} and
{Y, Y ′−iY ′′} span 2 distinct two-dimensional linear subspaces of C3; their projectivizations
are two distinct lines in CP 2 intersecting at [Y ]∈CM . Furthermore, for all s, t∈C

(

sY + t(Y ′ + iY ′′)
)t
M

(

sY + t(Y ′ + iY ′′)
)

= 0,
(

sY + t(Y ′ − iY ′′)
)t
M

(

sY + t(Y ′ − iY ′′)
)

= 0;

thus, these two lines are contained in CM . Since CM is a conic (a degree 2 curve), it must
then consist of these two lines only (each is a degree 1 curve).

• If the rank of M is one, M vanishes on a two-dimensional linear subspace of C3; its projec-
tivization is a line L in CP 2 on which FM vanishes to second order, i.e. CM =2L. Since M

is symmetric of rank one, we can choose a basis {Y, Y ′, Y ′′} for C3 such that Y ′, Y ′′∈kerM
and thus Y tMY 6=0. Then,

(aY + bY ′ + cY ′′)tM(aY + bY ′ + cY ′′) = a2 · Y tMY ;

this expression vanishes only when a=0, i.e. aY+bY ′+cY ′′∈kerM . Thus, CM has no points
outside of L.

This completes the proof of Lemma 1.

If C⊂CP 2 is a smooth conic, there is a well-defined tangent line Lz(C) at each point z∈C;
it corresponds to a point τC(z)∈(CP 2)∨. Thus, we obtain a map

τC : C −→ (CP 2)∨, z −→ τC(z).
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Lemma 2: The map τC is a homeomorphism onto a smooth conic C∨ in (CP 2)∨ and τ−1

C =τC∨ .
(In fact, τC is an analytic map, as is its inverse; such a map is called a biholomorphism).

Let M be a symmetric 3×3 matrix such that C =CM . By Lemma 1, M is invertible, since
C is smooth. By the last part of Problem D in Problem Set III, the tangent line to CM at a
point Y ∈CM is given by [MY ]∈(CP 2)∨. Since Y tMY =0 for all [Y ]∈CM , it follows that

(MY )tM−1(MY ) = 0 ∀ [Y ]∈CM =⇒ τCM
(CM ) ⊂ CM−1 ⊂ (CP 2)∨.

On the other hand, if [B]∈CM−1 , then [M−1B]∈CM . Thus,

τCM
: CM −→ C∨

M ≡ CM−1

is a bijection with inverse τC
M−1

. Since M−1 has rank 3, by Lemma 1 the image of τCM
is

a smooth conic. The map τCM
is continuous with respect to the quotient topology on CP 2

because it is the composition of restrictions of the continuous maps

C
3 − 0 −→ C

3 − 0, X −→ MX, C
3 − 0 −→ CP 2, A −→ [A].

For the same reason, τ−1

CM
=τC

M−1
is also continuous. This concludes the proof of Lemma 2.

If C is a smooth conic which is tangent to a line L in CP 2 at some point [Y ]∈C, then the
dual conic C∨=τC(C) passes through the point L∨∈(CP 2)∨ corresponding to L, since

τC
(

[Y ]
)

= L∨ ∈ (CP 2)∨.

Conversely, suppose C is a smooth conic which passes through a point p ∈ CP 2. Since
τ−1

C =τC∨ , p=τC∨([B]) for some [B]∈C∨ and thus C∨ is tangent at [B] to the line p∨∈(CP 2)∨

corresponding to p∈CP 2.

We are now ready to prove the theorem. Choose i general lines Lj , 1≤j≤ i, and 5−i general
points pj , 1≤ j ≤ 5−i, in CP 2. They correspond to i general points L∨

j , 1≤ j ≤ i, and 5−i

general lines p∨j , 1≤j≤5−i, in (CP 2)∨. If C is a smooth conic in CP 2 which is tangent to the

i lines Lj and passes through the 5−i points pj , then by the previous paragraph C∨⊂(CP 2)∨

is a smooth conic which passes through the i points L∨

j and is tangent to the 5−i lines p∨j .

Conversely, if C∨ ⊂ (CP 2)∨ is a smooth conic which passes through the i points L∨

j and is

tangent to the 5−i lines p∨j , then C=(C∨)∨⊂CP 2 is a smooth conic which is tangent to the i

lines Lj and passes through the 5−i points pj . Thus, we have established a bijection between
the set of smooth conics in CP 2 which are tangent to the i lines Lj and pass through the 5−i

points pj and the set of smooth conics in (CP 2)∨≈CP 2 which pass through the i points L∨

j

and are tangent to the 5− i lines p∨j . By definition, the cardinality of the first set is n2(i),
while the cardinality of the second set is n2(5−i); this proves the identity (∗).
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