MAT 320: Introduction to Analysis, Spring 2018 Homework Assignment 10

Please study Ross's Section 27 and Rudin's pp159-165 before starting on the problem set below.

Problem Set 10 (due at the start of recitation on Wednesday, 4/25): 26.8^{*}, 27.2, Problems T-V (below and next page); *in (a), (1)ⁿ should be $(-1)^n$

Problem T

Let X be a set and (Y, d_Y) be a metric space. Denote by $\mathcal{M}(X, Y)$ the set of all functions from X to Y. Define

$$d: \mathcal{M}(X,Y)^2 \longrightarrow \mathbb{R}, \qquad d(f,g) = \sup_{x \in X} \min(d_Y(f(x),g(x)),1).$$

Show that

- (a) d is well-defined (takes values in \mathbb{R}) and is a metric on $\mathcal{M}(X, Y)$;
- (b) a sequence of functions $f_n \in \mathcal{M}(X, Y)$ converges uniformly to $f \in \mathcal{M}(X, Y)$ if and only if f_n converges to f with respect to the metric d;
- (c) the uniform closure $\overline{\mathcal{A}}$ of any subcollection $\mathcal{A} \subset \mathcal{M}(X, Y)$, as defined in class (and on p161 in Rudin), is uniformly closed, i.e. $\overline{\overline{\mathcal{A}}} = \overline{\mathcal{A}}$.

Hint: (c) can be obtained from basic properties of metric spaces via (b) or by unwinding the relevant definitions; the former would be about a line.

Problem U

Let $S^1 \subset \mathbb{C}$ be the unit circle centered at $0 \in \mathbb{C}$ with a metric obtained by restricting a standard metric on \mathbb{C} and

$$q: \mathbb{R} \longrightarrow S^1, \qquad q(t) = e^{2\pi i t}$$

Denote by $\mathcal{C}(S^1; \mathbb{C})$ the vector space of continuous \mathbb{C} -valued functions and by $\mathcal{P}_1(\mathbb{R}; \mathbb{C})$ the vector space of continuous 1-periodic functions \tilde{f} on \mathbb{R} , i.e. $\tilde{f}(t+1) = \tilde{f}(t)$ for all $t \in \mathbb{R}$. Show that

- (a) the map q is continuous, $f \circ q \in \mathcal{P}_1(\mathbb{R}; \mathbb{C})$ for every $f \in \mathcal{C}(S^1; \mathbb{C})$, and for every $\tilde{f} \in \mathcal{P}_1(\mathbb{R}; \mathbb{C})$ there exists a unique $f \in \mathcal{C}(S^1; \mathbb{C})$ such that $\tilde{f} = f \circ q$;
- (b) for every $\tilde{f} \in \mathcal{P}_1(\mathbb{R}; \mathbb{C})$ and every $\epsilon > 0$ there exist $N \in \mathbb{Z}^+$ and $a_n \in \mathbb{C}$ with $n \in \mathbb{Z}$ such that

$$\left|\widetilde{f}(t) - \sum_{n=-N}^{n=N} a_n \mathrm{e}^{2\pi \mathrm{i} \, nt}\right| \le \epsilon \qquad \forall \ t \in \mathbb{R}.$$

Hint: apply Rudin's Theorem 7.33 via part (a).

Problem V

Let $\mathcal{P}_1(\mathbb{R};\mathbb{C})$ be as in Problem U. For $f, g \in \mathcal{P}_1(\mathbb{R};\mathbb{C})$ and $n \in \mathbb{Z}$, define

$$\langle\!\langle f,g \rangle\!\rangle_2 = \int_0^1 f \overline{g} \, \mathrm{d}t \in \mathbb{C}, \qquad c_n(f) = \langle\!\langle f, \mathrm{e}^{2\pi \mathrm{i}\,nt} \rangle\!\rangle_2.$$

(a) Show that the collection $\{e^{2\pi i nt} : n \in \mathbb{Z}^+\}$ consists of orthonormal elements of the Hermitian vector space $(\mathcal{P}_1(\mathbb{R};\mathbb{C}), \langle\!\langle\cdot,\cdot\rangle\!\rangle_2)$, i.e.

$$\langle\!\langle \mathbf{e}^{2\pi \mathbf{i}\,mt}, \mathbf{e}^{2\pi \mathbf{i}\,nt} \rangle\!\rangle_2 = \begin{cases} 1, & \text{if } m = n; \\ 0, & \text{if } m \neq n. \end{cases}$$

(b) Suppose $f \in \mathcal{P}_1(\mathbb{R}; \mathbb{C})$ is twice continuously differentiable. Show that

$$c_n(f) = \frac{1}{2\pi \mathfrak{i} n} c_n(f') = -\frac{1}{4\pi^2 n^2} c_n(f'') \qquad \forall \ n \neq 0$$

and that the sum

$$\sum_{n \in \mathbb{Z}} c_n(f) e^{2\pi i nt} \equiv \lim_{k,m \to \infty} \sum_{n=-k}^{n=m} c_n(f) e^{2\pi i nt}$$

converges uniformly to a continuous function $h_f: \mathbb{R} \longrightarrow \mathbb{C}$ with $c_n(h_f) = c_n(f)$ for all $n \in \mathbb{Z}$.

(c) Suppose $f \in \mathcal{P}_1(\mathbb{R}; \mathbb{C})$ is twice continuously differentiable. Show that

$$f(t) = \sum_{n \in \mathbb{Z}} c_n(f) e^{2\pi i nt} \qquad \forall \ t \in \mathbb{R}$$

with the sum converging uniformly on \mathbb{R} .

Hint: for the first statement in (b), use integration by parts; for (c), show that $||f - h_f||_2^2 = 0$ by applying the conclusion of Problem U(b) to $\tilde{f} = f - h_f$ and using the Cauchy-Schwartz inequality

$$\langle\!\langle \widetilde{f},g\rangle\!\rangle_2 \le \|f\|_2 \|g\|_2$$

which holds for all Hermitian vector spaces.

Note: This says that the Fourier series of a function f as in (c) converges to f uniformly on \mathbb{R} . If f is smooth, then a similar argument shows that

$$\frac{\mathrm{d}^{\ell}}{\mathrm{d}t^{\ell}}f = \sum_{n \in \mathbb{Z}} \left(2\pi \mathrm{i}n\right)^{\ell} c_n(f) \mathrm{e}^{2\pi \mathrm{i}\,nt} \equiv \lim_{k,m \to \infty} \sum_{n=-k}^{n=m} \left(2\pi \mathrm{i}n\right)^{\ell} c_n(f) \mathrm{e}^{2\pi \mathrm{i}\,nt}$$
$$= \lim_{k,m \to \infty} \frac{\mathrm{d}^{\ell}}{\mathrm{d}x^{\ell}} \sum_{n=-k}^{n=m} c_n(f) \mathrm{e}^{2\pi \mathrm{i}\,nt}$$

i.e. the Fourier series of f converges to f uniformly with all derivatives.