MAT 312/AMS 351: Applied Algebra Solutions to Problem Set 7 (15pts)

5.3 2; 3pts Let $H \subset S_4$ be the subgroup consisting of the permutations id, (12)(34), (13)(24), (14)(23) and G be the group of rigid symmetries of a rectangle, which is not a square. Describe all isomorphisms between H and G.

Label the vertices of the rectangle by 1,2,3,4 in a circular order. The group G consists of the identity id, the reflection σ about the line joining the centers of the edges (12) and (34), the reflection τ about the line joining the centers of the edges (14) and (23), and the rotation $R = \sigma \tau$ by π about the center which interchanges the diagonally opposite vertices. An isomorphism $f: H \longrightarrow G$ is determined by where f sends (12)(34) and (14)(23) because

f(id) = id and $f((13)(24)) = f((12)(34) \circ (14)(23)) = f((12)(34)) \circ f((14)(23)).$

The elements f((12)(34)) and f((14)(23)) of G must be distinct from id and from each other. This gives us 3 choices for f((12)(34)), i.e. σ, τ, R , and the 2 remaining choices for f((14)(23)). In particular, there are 6 isomorphisms between H and G.

5.3 10; 6pts Let G be a non-abelian group of order 8. Show that G is isomorphic to either the dihedral group D_4 or the quaternion group \mathbb{H}_0 .

Since the order $\mathfrak{o}(a)$ of every element a of G divides |G|=8, the only possibilities for $\mathfrak{o}(a)$ are 1,2,4,8. If G contains an element a of order 8, then G is a cyclic group of order 8 generated by a and is thus abelian. If G contains no element of order 4 or 8, then $a^2=e$ for all $e \in G$, which again implies that G is abelian (see 4.3 3 on HW5). Since G is assumed to be non-abelian, G thus contains an element a of order 8.

Let $a \in G$ be an element of order 4. Thus, e, a, a^2, a^3 are four distinct elements of G and $a^4 = e$. Let $b \in G$ be a fifth element. Then,

$$\begin{array}{lll} ab \neq e, a, a^{2}, a^{3}, b & b/c & b \neq a^{3}, e, a, a^{2}, & a \neq e; \\ a^{2}b \neq e, a, a^{2}, a^{3}, b, ab & b/c & b \neq a^{2}, a^{3}, e, a, & a^{2}, a \neq e; \\ a^{3}b \neq e, a, a^{2}, a^{3}, b, ab, a^{2}b & b/c & b \neq a, a^{2}, a^{3}, e, & a^{3}, a^{2}, a \neq e. \end{array}$$

Thus, $G = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$ with $a^4 = e$. It remains to determine what b^2 and ba are.

Since $b \neq e, a, a^2, a^3$ and $b \neq a^3, e, a, a^2$,

 $b^2 \neq b, ab, a^2b, a^3b$ and $ba \neq e, a, a^2, a^3, b,$

respectively. If $b^2 = a, a^3$, then G is cyclic generated by b and thus abelian, contrary to the assumption. Thus, either $b^2 = e$ or $b^2 = a^2$. Furthermore, $ba \neq ab, a^2b$; otherwise, $(ba)^2$ would equal either a or a^3 and generate G, contrary to the assumption that G is not abelian. Thus, $ba = a^3b$ in both cases. If $b^2 = e$, we thus get the dihedral group D_4 . If $b^2 = a^2$, we get the quaternion group \mathbb{H}_0 with i=a, j=b, and k=ab.

Alternative solution. Let $a \in G$ be an element of order 4. Thus, $a^4 = e$ and $\langle a \rangle$ is a subgroup of G of order 4. Let $b \in G$ be an element not in $\langle a \rangle$. Thus, the right cosets $\langle a \rangle e = \langle a \rangle$ and $\langle a \rangle b$ are distinct and thus disjoint. Since each of them contains 4 elements and |G| = 8,

$$G = \langle a \rangle \sqcup \langle a \rangle b = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}.$$

Since $\langle a \rangle \neq \langle a \rangle b$, $\langle a \rangle b \neq \langle a \rangle b^2$ and $b^2 \notin \langle a \rangle b$. Since $b \notin \langle a \rangle$ and $\langle a \rangle$ is closed under inverses and multiplication, $ba \notin \langle a \rangle$. Since $b \neq e$, $b^2 \neq b$. Now continue with If $b^2 = a, a^3$, then in the first solution.

5.3 5; 2pts Let G and H be two groups. Show that $G \times H$ is abelian if and only if G and H are abelian.

Suppose the groups G and H are abelian. If $g, g' \in G$ and $h, h' \in H$, then

$$(g,h)(g',h') = (gg',hh') = (g'g,h'h) = (g',h')(g,h).$$

The first and last equalities above hold by the definition of the product in the group $G \times H$; the middle equality holds by the assumption that G and H are abelian. Since the first and fourth expressions above are the same for all $(g,h), (g',h') \in G \times H$, i.e. all possible elements of $G \times H$, the group $G \times H$ is abelian.

Suppose the group $G \times H$ is abelian. If $g, g' \in G$ and $h, h' \in H$, then

$$(gg', hh') = (g, h)(g', h') = (g', h')(g, h) = (g'g, h'h).$$

The first and last equalities above hold by the definition of the product in the group $G \times H$; the middle equality holds by the assumption that $G \times H$ is abelian. The equality of the first and last expressions above means that gg' = g'g and hh' = h'h. Since these equalities holds for all $g, g' \in G$ and $h, h' \in H$ and both sets are nonempty (because groups are never empty), it follows that the groups G and H are abelian.

5.3 9; 4pts Show that the group $A_4 \subset S_4$ of even permutations of 4 elements contains no subgroup of order 6.

Every permutation $\pi \in S_4$ is a product of disjoint cycles. Thus, π can be only the identity id ("trivial" product), a transposition, product of two disjoint transpositions, cycle of order 3, or cycle of order 4. Since transpositions and cycles of order 4 are odd permutations, A_4 consists of id, products of permutations (ab)(cd), and order 3 cycles (abc) for *distinct* elements a, b, c, d of $\{1, 2, 3, 4\}$. The only elements of A_4 of order 2 are the products of transpositions (ab)(cd); there are 3 such elements (since disjoint permutations commute, (ab)(cd) = (cd)(ab)). A product of two distinct such elements is

$$(ab)(cd) \circ (ac)(bd) = (ad)(bc)$$

is the third elements of order 2. Thus, the product of any two distinct elements of order 2 of A_4 is an element of order 2.

Every group of order 6 is isomorphic to either the cyclic group C_6 or the symmetric group S_3 . A subgroup $H \subset A_4$ of order 6 would have to be isomorphic to one of them. The group S_3 consists of the identity, the three transpositions (xy), and the two order 3 cycles (xyz). Thus, S_3 contains precisely three order 2 elements (the transpositions). The product of any two such elements is an order 3 cycle. Thus, H cannot be isomorphic to S_3 by the end of the previous paragraph. The group C_6 contains an element of order 6. Since A_4 contains no element of order 6, H cannot be isomorphic to C_6 either. It follows that A_4 contains no subgroup H of order 6.