
MAT 127: Calculus C, Spring 2022
Solutions to Problem Set 5 (65pts)

WebAssign Problem 1 (4pts)

Graphs of populations of two species are shown in the first sketch in Figure 1 (the original sketch
did not have the line segments labeled P1 and P2). Sketch the corresponding phase trajectory and
explain your steps.
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Figure 1: The left diagram shows graphs of population of two species. The right diagram shows the
corresponding phase trajectory.

At time t = 0, the populations of species 1 and 2 are 800 and 700, respectively, giving the starting
point of (800, 700) in the phase plane. The population of the first species then rises (trajectory
moves to the right), while the population of the second species falls (trajectory moves down). The
latter reaches its minimum at about 50 units, at which point the first population is about 1200 and
continues to rise; so the phase trajectory reaches a local minimum at P1≈(1200, 50) and starts mov-
ing to the right and up. This continues until the first population reaches about 1300, by which point
the second population recovers to about 100; so the phase trajectory passes through P2≈(1300, 100)
and then starts going back to the left, but still up (because the second population continues to
increase). From then on, the two populations approach a steady state of about (1150,200), with the
first population declining toward 1150 and the second rising toward 200 (so the trajectory moves to
the left and up). The key points in drawing the phase trajectory are marked on both diagrams in
Figure 1; the steady state of (1150,200) should not be marked by a dot, since the curve approaches
it as t−→∞, but may not actually get there. The scale on the t-axis (shown in the book) plays no
role in constructing the phase trajectory.

WebAssign Problem 2 (16pts)

Populations of aphids A and ladybugs L are modeled by the following equations:

{

dA
dt = 2A− .01AL
dL
dt = −.5L+ .0001AL

(1)

(a) Find all equilibrium solutions and explain their significance.



The equilibrium (constant) solutions of (1) are pairs of numbers (A,L) such that

{

2A− .01AL = A
100

(200− L) = 0

−.5L+ .0001AL = − L
10,000(5000−A) = 0

These pairs satisfy both of the following conditions
{

A = 0 or 200− L = 0

L = 0 or 5000−A = 0.

If we choose the first option on the first line, i.e. A=0, then we must choose the first option on the
second line, i.e. L=0 (because the second option on the second line contradicts our choice from the
first line). This gives the equilibrium solution (A,L) = (0, 0), which means there are no aphids or
ladybugs ever. On the other hand, if we choose the second option from the first line, i.e. L=200,
then we must choose the second option on the second line as well, i.e. A=5000. So the only other
equilibrium solution is (A,L)= (5000, 200); so 5000 aphids are precisely enough to support 200 la-
dybugs and be contained by them.

Note: A more systematic approach to extracting the equilibrium solutions from the last system of
equations above is to write a system of equation for each pair consisting of a condition from the first
line and a condition from the second line. In this case, we get 2·2=4 systems:

{

A = 0

L = 0

{

A = 0

5000−A = 0

{

200− L = 0

L = 0

{

200− L = 0

5000−A = 0

We must then find ALL solutions (A,L) of each of these systems. In this case, the second and third
systems of equations have no solutions, while the first and the forth give us (A,L) = (0, 0) and
(A,L) = (5000, 200), respectively.

(b) Find an expression for dL/dA.

Just divide the second equation in (1) by the first:

dL

dA
= − L

100A
· 5000−A

200− L
.

(c) The figure on p546 of Stewart’s book shows the direction field for the differential equation in
part (b). Use it to sketch a phase plane portrait. What do the phase trajectories have in common?

The trajectories for the system of the differential equations in (1) travel along the solution curves for
the differential equation in (b). These solution curves are everywhere tangent to the little slope lines.
In this case, the solution curves are loops going around the equilibrium point (A,L) = (5000, 200),
as can be seen from the direction field and is proved in Problem F (the non-trivial part is that these
curves are necessarily closed, i.e. circle back to themselves). If A= 5000 and L∈ (0, 200), i.e. at a
point directly below this equilibrium point, dA/dt > 0 by the first equation in (1), while dL/dt = 0.
Thus, at t increases, the point (A(t), L(t)) travels counter-clockwise along such a closed curve.
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(d) Suppose that at time t = 0 there are 1000 aphids and 200 ladybugs. Draw the corresponding
phase trajectory and use it do describe how both population change.

This trajectory starts at (A,L) = (1000, 200); this point lies 1/5 of the way from the y-axis to the
equilibrium point (5000, 200). By part (c), this trajectory then circles around the point (5000, 200)
counter-clockwise. So at first A increases, while L decreases. The trajectory reaches its lowest point
when A = 5000 (at which point L looks like it might around 100); A then continues to increase,
while L starts to increase as well. The trajectory reaches its right-most point when L=200, while A
looks like it might be around 15000; A then starts to decrease, while L continues to increases. The
trajectory reaches its highest point when A=5000 (at which point L looks like it might around 300);
A then continues to decrease, while L starts to decrease as well. The trajectory reaches its left-most
point when it returns to the starting point (A,L)=(1000, 200), after which the entire cycle repeats.
This is illustrated in the first diagram in Figure 2.
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Figure 2: The left diagram shows a phase trajectory. The right diagram shows the corresponding
graphs of the functions A(t) and L(t).

Note: we can find an equation for the curve traced by the above trajectory by solving the separable
differential in (b) and using the initial condition (A,L)= (1000, 200) to determine the constant. In
fact, we can simply use the solution Problem F, with

a = 2, b =
1

100
, c =

1

2
, d =

1

10, 000
=⇒ L2e−L/100 = CA−1/2eA/10000

=⇒ 2002e−200/100 = C · 1000−1/2e1000/10000

=⇒ C = 4
√
10 · 105 · e−21/10

=⇒ L2e−L/100 = 4 · 1011/2e−21/10A−1/2eA/10000 .

From this, we find that the largest possible value of A is roughly 14302, while the minimum and
maximum values of L are roughly 98 and 356, respectively.

(e) Use part (d) to make rough sketches of the aphid and ladybug populations as functions of t. How
are the graphs related to each other?

This is similar to Problem 7.6 6. First, mark the key points on the phase trajectory in the order
they are traversed as t increases (counter-clockwise in the first diagram in Figure 2). These are

• the left-most point P0 = (1000, 200);
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• the lowest point P1 ≈ (5000, 100);

• the right-most point P2 ≈ (15000, 200);

• the highest point P3 ≈ (5000, 350).

Note that both coordinates of P0 are exact, since this initial point is specified. The first coordinates
of P1 and P3 are also exact and can be determined from the second equation in (1), since this is
where dL/dt = 0. The second coordinate of P2 is exact as well and can be determined from the
first equation in (1), since this is where dA/dt = 0. The graphs of A=A(t) and L=L(t) can now
be sketched by marking the coordinates of each of the key points of the trajectory on a diagram
with horizontal t-axis and two separate vertical axes: A-axis and L-axis. The first coordinates then
should be connected by one curve, corresponding to the graph of A(t), while the second coordinates
should be connected by another curve, corresponding to the graph of L(t). The two graphs should
have no other maxima or minima. While both graphs start at t=0, the intermediate t-values cannot
be determined from the phase trajectory and so should not be marked on the t-axis. What matters
is that the values of A and L for the marked points lie on the same vertical lines; they correspond to
the same moments in time, but what these “moments in time” are cannot be determined (except for
t=0). However, after the A and R return to their starting values, the cycle repeats exactly, taking
the same amount of time from the P0-coordinates to the P1-coordinates as the first time, and so on.

A rough way in which the two graphs are related is that the L-graph (blue) is a “quarter” of a cycle
behind the A-graph (green): the maxima and minima of the former occur a bit after the maxima
and minima of the latter.

Note: In order to avoid mixing up the first coordinates (that are used for the A-graph) and the sec-
ond coordinates (that are used for the L-graphs), either mark them in different colors or with dots
and stars, etc. Do not forget to label the axes (t, A, and L in this case) and mark the appropriate
scales on the vertical (A and L) axes; these axes should have the same points marked as the corre-
sponding axes in the first diagram in Figure 2. However, the t-axis should carry no scale markings
(e.g. t=1), since the values of t at which the maxima and minima of A(t) and R(t) occur in the second
diagram in Figure 2 cannot be determined from the phase trajectory in the first diagram in Figure 2.

Problem V.1 (10pts)

Decide whether each of the following systems of differential equation models two species that compete
for the same resources or cooperate for mutual benefit. Explain why each is a reasonable model.

(a)

{

dx
dt = .12x− .0006x2 + .00001xy
dy
dt = .08x+ .00004xy

(b)

{

dx
dt = .15x− .0002x2 − .0006xy
dy
dt = .02y − .00008y2 − .0002xy

(a; 5pts) Since x′(t) increases if y increases and y′(t) increases if x increases, (a) must be a model
of cooperation The number of interactions between the two species is proportional to xy. In y = 0,

x′ = .12x(1 − x/200); this is a logistic growth equation with carrying capacity 200. If y > 0, the
growth rate of x is increased by an amount proportional to xy and thus to the number of interactions
between the species. So the first equation in (a) is a reasonable way to describe the growth of the
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species x if it benefits from interactions with y, but can also live without y. The growth rate of y
is also increased by an amount proportional to the number of interactions between the species. If
x=0, y′=0, while y′>0 if x> 0 even if y=0. This is perhaps a reasonable way to model the growth
of y if y represents flowering plants (as suggested in the book) which can be pollinated by bees only;
or perhaps there is a typo and .08x should be .08y.

(b; 5pts) Since x′(t) decreases if y increases and y′(t) decreases if x increases, (b) must be a model
of competition Since

x′ = .15x(1− x/750) if y = 0 and y′ = .02(1− y/250) if x = 0

in the absence of the species y the growth of x is described by a logistic equation (with carrying
capacity of 750 units of x) and in the absence of the species x the growth of y is also described by
a logistic equation (with carrying capacity of 250 units of y). Interactions between the two species
reduce these growth rates due to competition for the same resources; so (b) is a reasonable model
in the given situation.

Problem V.2 (10pts)

A phase trajectory is shown for populations of rabbits (R) and foxes (F) in the left diagram of Fig-
ure 3 (the original diagram did not include the points P1, P2, P3 or the steady state label).
(a) Describe how each population changes as the times goes by.
(b) Use your description to make a rough sketch of the graphs of R and F as functions of time.
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Figure 3: The left diagram shows a phase trajectory. The right diagram shows the corresponding
graphs of the functions R(t) and F (t).

At time t = 0, there are 160 foxes and about 600 rabbits. The number of both first declines, until
the population of foxes reaches 80 and the population of rabbits reaches 100 or so, corresponding
to the point P1 on the phase trajectory. At this point, the population of rabbits starts to increase
while the population of foxes continues to decline to about 30, at which moment there are somewhere
between 800 and 1000 rabbits (it is hard to tell where the nearly horizontal stretch really reaches its
lowest point P2). The population of foxes then recovers to 40 as the population of rabbits reaches its
maximum at about 1800; this corresponds to the point P3. From then on, the population of rabbits
declines to about 1000 and the population of foxes rises to about 60 as t−→∞. The key points in
drawing the graphs are marked on the second plot in Figure 3; after this the graphs can be sketched.
While both graphs start at t= 0, the intermediate t-values cannot be determined from the phase
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trajectories and so should not be marked on the t-axis. What matters is the values of R and F for
the marked points on the same vertical lines; they correspond to the same moments in time, but
what these “moments in time” are cannot be determined (except for t=0).

Problem F (25pts)

According to the book, the solutions (x, y) = (x(t), y(t)) to the system of differential equations

{

dx
dt = ax− bxy
dy
dt = −cy + dxy

(2)

with certain constants a, b, c, d > 0 trace simple closed curves (loops) in the xy-plane. Let’s see why.

(a; 8pts) Divide the second equation in (2) by the first and solve the resulting equation obtaining
y = y(x) implicitly; in doing so assume that x, y > 0 (so only the first quadrant is considered).

The division gives
dy

dx
=

−cy + dxy

ax− bxy
=

y(−c+ dx)

x(a− by)

This equation is separable, so move everything involving y to LHS and everything involving x to
RHS and integrate:

dy

dx
=

y(−c+ dx)

x(a− by)
⇐⇒ a− by

y
dy =

(−c+ dx)

x
dx

⇐⇒
∫

(

ay−1 − b
)

dy =

∫

(

− cx−1 + d
)

dx

⇐⇒ a ln |y| − by = −c ln |x|+ dx+ C.

Using the assumption x, y>0 and exponentiating, we obtain

ea ln y−by = (eln y)a(e−by) = e−c lnx+dx+C = (elnx)−cedxeC

⇐⇒ yae−by = Cx−cedx

(b; 10pts) Fix the constant C in your general solution (this gives a specific solution of the equation
in (a)). Show that the values of x, y > 0 that satisfy the equation lie in the interval [mC ,MC ] for
some mC ,MC > 0. Furthermore, for each fixed x > 0 at most two values of y > 0 satisfy the
equation; for each fixed y > 0 at most two values of x > 0 satisfy the equation.

We need to consider possible pairs (x, y) with x, y>0 that solve the equation

G(y) ≡ yae−by = Cx−cedx ≡ CF (x) (3)

for a fixed value of C. Since G(y)>0 if y>0 and F (x)>0 if x>0, the equation (3) has no solutions
(x, y) with x, y>0 unless C>0. So we’ll assume that C>0 from now on.
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Since a, b > 0, the function G(y)−→ 0 as y −→ 0,∞; thus, it has a maximum value maxG and is
smaller than any ǫ> 0 outside of the interval [mǫ,Mǫ] for some mǫ,Mǫ> 0. In particular, no value
of y satisfies (3) whenever CF (x)>maxG. Since c, d> 0, F (x)−→∞ as x−→ 0,∞; thus, it has a
minimum value minF > 0 and is larger than (maxG)/C outside of the interval [mC ,MC ] for some
mC ,MC>0. Thus, if (x, y) solves (3),

CminF ≤ CF (x) = G(y) ≤ maxG. (4)

Since this implies that F (x)≤(maxG)/C, x lies in the interval [mC ,MC ]. Since G(y) ≥ ǫ = CF (x),
y lies in some interval [m′

C ,M
′

C ]. So, if (x, y) satisfies (3) and thus (4), x and y lie in the interval
[min(mC ,m

′

C),max(MC ,M
′

C)]; this is the first statement in part (b).
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Figure 4: The left diagram shows the graphs of the functions G(y) and CF (x) in (3) with constant
C > 0 fixed. The right diagram shows the curve in the xy-plane described by (3) with the same
fixed C. A solution (x(t), y(t)) of (2) goes around this curve counter-clockwise as t increases.

The function G(y) is in fact first increasing and then decreasing, i.e. it has only one critical point:

G′(y) = (ya)′e−by + ya(e−by)′ = aya−1e−by + ya(−b)e−by = ya−1e−by(a− by);

so G′(y) = 0 only for y = b/a. This implies that there are at most two values of y with the same
value of G(y); so for each fixed x, there are at most two values of y that satisfy (3). Similarly, the
function F (x) is first decreasing and then increasing, i.e. it has only one critical point:

F ′(x) = (x−c)′edx + x−c(edx)′ = −cx−c−1edx + x−cdedx = x−c−1edx(−c+ dx);

so F ′(x) = 0 only for x= d/c. This implies that there are at most two values of x with the same
value of F (x); so for each fixed y, there are at most two values of x that satisfy (3). This gives the
remaining statement in part (b).

(c; 2pts) Assuming x, y>0, show that (x′(t), y′(t)) = 0 if and only if (x(t), y(t)) = (c/d, a/b).
By equation (2), (x′(t), y′(t)) = 0 is equivalent to

{

x(a− by) = 0

y(−c+ dx) = 0.

Since x, y>0, this is equivalent to (x(t), y(t)) = (c/d, a/b).
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(d; 5pts) Show that every phase trajectory of (2) in the first quadrant of the xy-plane other than
the equilibrium point (c/d, a/b) repeatedly traces a closed curve enclosing (c/d, a/b) in the counter-
clockwise direction.

For each value of the constant C, your solution in (a) is an equation for the curve traced by a
solution (x, y) = (x(t), y(t)) to the system (2) in the xy-plane. By (b), this curve is contained in a
rectangle, and every vertical and horizontal line intersects the curve at most twice. Thus, either the
curve is closed and (x(t), y(t)) keeps on moving around it as t increases or (x′(t), y′(t)) approaches
(0,0) as t −→ ∞ or (x′(t0), y

′(t0)) = (0, 0) some t0 (so that the path (x(t), y(t)) can reverse direction
on the curve). By (c), the last two things can (and do) occur only on the “curve” containing the
equilibrium point (c/d, a/b); so each of the non-equilibrium solutions (2) keeps on going around some
closed curve, containing the equilibrium point.

If (x, y) is a solution of (3), CF (x) cannot exceed maxG; so the possible values of x correspond to
the segment of the graph of CF (x) that lies below maxG. At the two endpoints of this range of x,
CF (x) =maxG; so the corresponding value of y in (3) is y= a/b, since this is where G(y) reaches
maxG. Thus, the left-most and right-most points on the curve (3) in the xy-plane have the same
y-coordinate a/b. Similarly, if (x, y) is a solution of (3), G(y) cannot be smaller than CminF ; so the
possible values of y correspond to the segment of the graph of G(y) that lies above CminF . At the
two endpoints of this range of y, G(y)=CminF ; so the corresponding value of x in (3) is x= c/d,
since this is where CF (x) reaches CminF . Thus, the lowest and highest points on the curve (3) in
the xy-plane have the same x-coordinate c/d. The statements concerning the extremal points of the
curve are true for all solution curves of (2) in the phase, xy-plane. The equilibrium point is (c/d, a/b).

For example, in Figures 2 and 3 in 7.6, the minimum R-value and the maximum R-value on any
solution curve are both reached when W =80; the minimum W -value and the maximum W -value on
any solution curve are both reached when R=1000. The equilibrium point is (R,W )=(1000, 80).

Note: The intersections of the graphs of CF (x) and G(y) in the first sketch in Figure 4 are completely
irrelevant and even meaningless, since the horizontal coordinates, x and y, might be measured in
completely different physical units (for example, hundreds of rabbits and dozens of wolves). What
matters is the part of the graph of CF (x) that lies below the top of the graph of G(y) and the part
of the graph of G(y) that lies above the bottom of the graph of CF (x).

Remark: In an actual differential equations course, such as MAT 303/305, the topic of systems of
two autonomous equations, such as (2), can easily take up a month. After that, it is possible to
draw phase-plane portraits (solution curves in the xy-plane, where (x, y)= (x(t), y(t))) such as the
right diagrams at the bottom of p11 and p10 in

http://www.math.stonybrook.edu/∼azinger/mat127-spr22/hw5/ODE1sol.pdf

http://www.math.stonybrook.edu/∼azinger/mat127-spr22/hw5/ODE2sol.pdf

in less than half an hour (each of these was one of 10 problems on a 3-hour final exam, but worth
1/6 of the points on the exam).

8


