Quiz 2.

Problem 1. Solve the initial value problem
\[y' = \frac{3y + x}{x}, \quad y(1) = \frac{3}{2}. \]

Problem 2. Find the general solution of the differential equation
\[yy'' = (y')^2. \]
Problem 1 First order linear ODE

\[y' = 3 \frac{y}{x} + 1 \]
\[y' - \frac{3}{x} y = 1 \]

Integrating factor \(\rho(x) = e^{\int -\frac{3}{x} \, dx} = e^{-3 \ln x} = x^{-3} \)

\[x^{-3} y' - \frac{3}{x} x^{-3} y = x^{-3} \]
\[\frac{d}{dx} (x^{-3} y) = x^{-3} \]
\[x^{-3} y = \int \frac{d}{dx} (x^{-3} y) \, dx = \int x^{-3} \, dx = -\frac{1}{2} x^{-2} + C \]

so \(y(x) = -\frac{1}{2} x + C x^3 \)

Initial condition:
\[\frac{3}{2} = y(1) = -\frac{1}{2} + C \quad \Rightarrow \quad C = 2 \]

so \(y(x) = -\frac{1}{2} x + 2 x^3 \)

Alternative solution: homogeneous equation

\[\frac{dy}{dx} = 3 \left(\frac{y}{x} \right) + 1 = F \left(\frac{y}{x} \right) \]
Problem 2 Reducible second order ODE

\[y \frac{d^2 y}{dx^2} = \left(\frac{dy}{dx} \right)^2 \] \hspace{1cm} (1)

We use substitution \(u = \frac{dy}{dx} \) and find a differential equation for \(u \) as a function of \(y \). Because \(u = \frac{dy}{dx} \),

\[\frac{d^2 y}{dx^2} = \frac{du}{dx} = \frac{du}{dy} \frac{dy}{dx} = \frac{du}{dy} u \]

\[\text{chain rule} \]

so equation (1) is equivalent to

\[y \frac{du}{dy} u = u^2 \]

Assume \(u \neq 0 \) (if \(u = 0 \), then \(y = \text{const.} \)) and divide by \(u \)

\[y \frac{du}{dy} = u \]

separable equation

\[\int \frac{du}{u} = \int \frac{dy}{y} \implies \ln u = \ln y + C \]

\[\implies u = e^C y = Ay \]

Now, \(\frac{dy}{dx} = u = Ay \)

We solve for \(y = y(x) \) by separating variables

\[\int \frac{dy}{Ay} = \int dx = Ax + C \]

\[\ln y = Ax + C \implies y(x) = e^{Ax+C} = e^C e^{Ax} = Be^{Ax} \]

\[A, B = \text{any constants} \]