MAT 303 Assignment 1.
Hand in to the instructor in class on Monday, February 16.

Problem 1. In each case verify by substitution that the function is a solution of the corresponding differential equation

1) \(y(x) = \sin \left(\frac{x}{2} \right) - 2 \cos \left(\frac{x}{2} \right) \), \(4y'' + y = 0 \),
 2) \(y(x) = e^{x^2}, \ y' = 2xy \),
 3) \(y(x) = \sqrt{x^2 + 1}, \ (y')^2 = 1 - \frac{1}{y^2} \).

Problem 2. Find the general solutions of the following differential equations:

1) \(\frac{dx}{dt} = 3t^2 + 2t - \cos(2t) \), \(2) y' = x^2 \sin(x^3) \).

Problem 3. Solve the initial value problems:

1) \(\frac{dy}{dt} = \frac{t}{t^2 + 1}, \ y(0) = 5 \), \(2) xy' = x^2 - 2, \ y(-1) = 0 \).

Problem 4. A car starting from rest reached the velocity 30 mi/h (44 ft/s) after traveling the distance of 44 ft. Assuming that the car had constant acceleration find this acceleration and the time which took the car to reach 60 mi/h.

Problem 5. Solve the following first order separable differential equations:

1) \(y' = x^2y \), \(y(2) = 1 \), \(2) \frac{dx}{dt} = x + \frac{1}{x} \).

Problem 6. Among the following differential equations solve the one which is first order and separable

1) \(\frac{d^2x}{dt^2} = x^2t^2 \), \(2) \frac{dy}{dt} = t^2 + y \sin t \),
 3) \(y' - 1 = xy + x + y \), \(4) (y')^2 = x^2 + y^2 \).
Problem 7. Show by substitution that the formula

\[y(x) = \frac{2}{1 + Ce^x} - 1, \]

where \(C \) is a constant, gives a general solution of the differential equation

\[2y' = y^2 - 1. \]

Show that formula (1) is not the general solution of the given equation by finding a solution which is not described by (1).