MAT 303 Assignment 2.
Hand in to the instructor in class on Friday, September 22.

Problem 1. Consider the differential equation

\[y' = (x + y)^{\frac{1}{3}} - 1. \] \hspace{1cm} (1)

Describe all pairs of numbers \((x_0, y_0)\) for which Theorem of Existence and Uniqueness guaranties that the initial value problem \(y(x_0) = y_0\) has a unique solution.

Problem 2. Solve the differential equation (1). Describe all pairs \((x_0, y_0)\) for which the initial value problem \(y(x_0) = y_0:\)

a) has a unique solution,

b) do not have any solutions,

c) has more than one solution.

Problem 3. Separate variables and use partial fractions to solve the initial value problem

\[\frac{dx}{dt} = 3x(5 - x), \quad x(0) = 8. \]

Problem 4. A tank contains 1000 liters \((L)\) of a solution consisting of 100 kg of salt dissolved in water. Pure water is pumped into the tank at the rate of 5\(L/s\), and the mixture – kept uniform by stirring – is pumped out at the same rate. How long will it be until only 10 kg of salt remains in the tank?

Problem 5. Verify that the given differential equation is exact; then solve it.

\[\frac{1}{x} \sin y \, dx + (\ln x \cos y + y)dy = 0. \]
Problem 6. Show that the following differential equation is homogeneous:

\[x(\ln x - \ln t + 1)dt = tdx. \]

Solve the initial value problem \(x(1) = 1 \).

Problem 7. The time rate of change of a rabbit population \(P \) is proportional to the square root of \(P \). At time \(t = 0 \) (months) the population numbers 100 rabbits and is increasing at the rate of 20 rabbits per month. How many rabbits will there be one year later?