8.3.28
\[a_n = \frac{1 + \sin n}{10^n}. \]
We have \(0 \leq 1 + \sin n \leq 2 \)
for all \(n \). Thus, \(0 \leq a_n \leq \frac{2}{10^n} \).
The series \(\sum_{n=1}^{\infty} \frac{2}{10^n} \) is the geometric series,
\[r = \frac{1}{10}, \quad |r| < 1 \rightarrow \text{it is convergent}. \]
By the Comparison Test, \(\sum_{n=1}^{\infty} \frac{1 + \sin n}{10^n} \) is convergent.

8.3.29
When \(n \to \infty \) sequence \(\frac{1}{n} \) converges to 0.
Near 0, \(\sin x \) behaves like \(x \). More precisely,
\[\lim_{x \to 0} \frac{\sin x}{x} = 1. \]
Therefore,
\[\lim_{n \to \infty} \frac{\sin \left(\frac{1}{n} \right)}{\frac{1}{n}} = 1, \quad \text{since} \quad \sin \frac{1}{n} > 0 \quad \text{and} \quad \frac{1}{n} > 0 \]
for all \(n \), we can use the Limit Comparison Test. We have: \(\sum_{n=1}^{\infty} \frac{1}{n} \) is divergent. Therefore,
\(\sum_{n=1}^{\infty} \sin \left(\frac{1}{n} \right) \) is also divergent.

8.3.34
Let \(S_n = \sum_{k=1}^{n} \frac{1}{k} \) be the \(n \)-th partial sum and \(R_n = \sum_{k=n+1}^{\infty} \frac{1}{k} \) be the \(n \)-th remainder of the series. Let \(f(x) = \frac{1}{x^s} \) so that \(a_n = \frac{1}{n^s} = f(n) \).
By the Remainder Estimate for the Integral Test,
\[\int_{n}^{\infty} \frac{1}{x^s} \, dx \leq R_n \leq \int_{n+1}^{\infty} \frac{1}{x^s} \, dx \]
(since \(\frac{1}{x^s} \) is positive, continuous and decreasing on \([1, \infty)\))
Thus, \(R_n \leq -\frac{1}{4 n^4} \int_1^{\infty} = NW^{-4} \) \(1\)

\[0 - \left(-\frac{1}{4 n^4} \right) = \frac{1}{4 n^4} \] and \(R_n \geq -\frac{1}{4 n^4} \int_1^{\infty} = \frac{1}{4(n+1)^4} \).

To estimate \(S \) correct to three digits, let's take \(n \) so that \(R_n \leq 10^{-3} \). Solving \(\frac{1}{4 n^4} < 10^{-3} \), \(n^4 > \frac{10^3}{4} = 250 \) we see that \(n = 4 \) is sufficient. We have:

\[S_4 = 1 + \frac{1}{32} + \frac{1}{243} + \frac{1}{1024} \approx 1.03634 \text{ and } \]

\[S_4 + \frac{1}{4.5^4} \leq S = S_4 + R_4 \leq S_4 + \frac{1}{4.9^4} \]

\[1.03624 \leq S \leq 1.03732. \]

Therefore, round of \(S \) to three digits is \(1.037 \).

\[\text{Answer: } 1.037. \]

\[\text{No. 3.38} \]

\[S_{10} = \sum_{n=1}^{10} \frac{\sin^2(n)}{n^3} = 0.83253 \]

\[R_{10} = \sum_{n=11}^{\infty} \frac{\sin^2(n)}{n^3} \] we cannot use the integral test directly to \(f(x) = \frac{\sin^2(x)}{x^3} \) since there is no formula for \(\int f(x) \, dx \).

Instead, first use the comparison test.
we have:
\[0 \leq \frac{\sin^2 n}{n^3} \leq \frac{1}{n^3}, \quad \sum_{n=11}^{\infty} \frac{1}{n^3} \text{ is convergent (p-series, p = 3 > 1)}. \]
Therefore,
\[\sum_{n=11}^{\infty} \frac{\sin^2 n}{n^3} \leq \sum_{n=11}^{\infty} \frac{1}{n^3}. \]
For the latter sum, use the integral test to estimate the remainder. Set \(f(x) = \frac{1}{x^3} \). Then \(f(x) \) is decreasing, positive, continuous. Therefore,
\[\sum_{n=11}^{\infty} \frac{1}{n^3} \leq \int_{10}^{\infty} \frac{1}{x^3} \, dx = -\frac{1}{2x^2} \bigg|_{10}^{\infty} = 0 - \left(-\frac{1}{2 \cdot 10^2}\right) \]
\[= \frac{1}{200} = 0.005. \]
Thus, \(0 \leq R_n \leq 0.005 \).

Answer: The error is less or equal to 0.005.

\(S \approx S_{10} \approx 0.83253 \).

Remark: Here we could not use improved estimate, because
\[R_{10} = \sum_{n=11}^{\infty} \frac{\sin^2 n}{n^3} \leq \sum_{n=11}^{\infty} \frac{1}{n^3}. \]
and saying that
\[\sum_{n=11}^{\infty} \frac{1}{n^3} \geq \int_{11}^{\infty} \frac{1}{x^3} \, dx \]
would not give any information about \(R_{10} \).
N8.4.3
\[a_n = \frac{4 \cdot (-1)^{n-1}}{n+6} \]

\(\sum a_n \) is an alternating series.

\[|a_n| = \frac{4}{n+6} \] is decreasing and convergent to 0. By the Alternating series test, \(\sum a_n \) is convergent.

N8.4.10
\[a_n = (-1)^n \cos \left(\frac{\pi}{n} \right) \]
\[1|a_n| = \left| \cos \left(\frac{\pi}{n} \right) \right| \]

From the picture we can see that \(1|a_n| \) approaches 1. Let's prove this. For \(n \geq 2 \)
\[1|a_n| = \cos \frac{\pi}{n} \]
since \(\cos \frac{\pi}{n} \geq 0 \) for \(n \geq 2 \).

Let \(f(x) = \cos x \), \(b_n = \frac{\pi}{n} \).

Then \(b_n \to 0 \) when \(n \to \infty \). Since \(\cos x \) is continuous everywhere (in particular at 0) we have: \(\lim_{n \to \infty} |a_n| = \cos 0 = 1 \).

Thus, \(1|a_n| \) does not converge to 0 \(\Rightarrow \) \(a_n \) does not converge to 0. By the Divergence Test, \(\sum a_n \) is divergent.
\[a_n = (-1)^n b_n \text{ where } b_n = \frac{1}{n \cdot 5^n} \]

\(\{b_n\} \) is decreasing, since \(n \cdot 5^n \) is increasing.

\[\lim_{n \to \infty} b_n = 0. \]

By the Alternating Series Test, \(\sum_{n=1}^\infty (-1)^n b_n \) is convergent. Moreover, the remainder \(R_n = S - S_n \) satisfies

\[|R_n| \leq b_{n+1} = \frac{1}{(n+1)5^{n+1}}. \]

To make the error \(< 0.0001 \), choose \(n \) so that \(b_{n+1} < 0.0001 \). We have

\[\frac{1}{(n+1)5^{n+1}} < 0.0001 \iff (n+1)5^{n+1} > 10^4 \]

By trial and error we find that \(n = 4 \) is sufficient.

Thus, \(S_4 = \sum_{n=1}^{4} (-1)^n b_n = -0.19226 \) approximates \(S \) with an error \(< 0.0001 \).

\[a_n = \frac{(-1)^n}{n \cdot 5^n} \]

Use the Ratio Test.

\[\left(\frac{a_{n+1}}{a_n} \right) = \frac{(n+1)!}{100^{n+1}} \cdot \frac{n!}{100^n} = \frac{n+1}{100} \]

since \(n+1 \) grows without a bound. By the Ratio Test, \(\sum_{n=1}^\infty |a_n| \) is divergent \(\implies \) not absolutely convergent.

Remark: This problem can be also solved by the Divergence Test by showing that \(\lim_{n \to \infty} a_n = \infty \).
N8.4.30

\[a_n = \frac{\sin 4n}{4^n}, \quad |a_n| = \frac{|\sin 4n|}{4^n} \]

We have:

\[0 \leq \frac{18 \sin 4n}{4^n} \leq \frac{1}{4^n}. \]

The series \(\sum_{n=1}^{\infty} \frac{1}{4^n} \) is the geometric series with \(r = \frac{1}{4} \). Hence, \(|r| < 1 \implies \) convergent. By the Comparison Test, \(\sum_{n=1}^{\infty} \frac{18 \sin 4n}{4^n} \) is convergent.

Thus, \(\sum_{n=1}^{\infty} \frac{\sin 4n}{4^n} \) is absolutely convergent.

N8.4.35

Clearly, \(a_n > 0 \) for all \(n \). Use the Ratio Test.

We have:

\[\left| \frac{a_{n+1}}{a_n} \right| = \frac{5n+1}{4n+3} = \frac{5 + \frac{1}{n}}{4 + \frac{3}{n}} \rightarrow \frac{5}{4} \]

when \(n \to \infty \). Therefore, \(\sum_{n=1}^{\infty} a_n \) is divergent.