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Abstract. We prove that compact 3-manifolds M of constant curvature +1 with boundary a
minimal surface are locally naturally parametrized by the conformal class of the boundary metric γ
in the Teichmüller space of ∂M when genus(∂M) ≥ 2. Stronger results are obtained in the case of
genus 1, giving in particular a new proof of Brendle’s solution of the Lawson conjecture. The results
generalize to constant mean curvature surfaces, and surfaces in flat and hyperbolic 3-manifolds.

1. Introduction

In this paper, we consider compact embedded minimal surfaces in S3 = S3(1) and related
spaces of constant positive curvature. After earlier work on uniqueness of minimal spheres S2

immersed in S3 (the Almgren-Hopf uniqueness theorem [2]), this subject essentially began in earnest
with the groundbreaking work of Lawson [22], who constructed the first examples of embeddded
minimal surfaces of arbitrary genus in S3. Since then, there have been many further examples
and constructions of such surfaces, such as those in [12], [18], [19]; we refer to [11] for an excellent
recent survey of the area. However, a full classification of embedded minimal surfaces is still far
from being understood.

An important recent breakthrough on this issue is the solution of the Lawson conjecture by
Brendle [9] that the Clifford torus is the unique minimal embedded torus in S3, (up to rigid
motions). This settles the classification issue for embedded minimal tori T 2 ⊂ S3.

We note that the consideration of compact embedded minimal surfaces as opposed to general
immersed surfaces is a strong restriction. There are many more immersed minimal surfaces than
embedded ones. An important intermediate class of surfaces between embeddings and immersions
are the Alexandrov immersed minimal surfaces. Recall that an immersed compact surface f : Σ→
S3 is Alexandrov immersed if there is a compact 3-manifold M with ∂M = Σ and an immersion
F : M → S3 such that F |∂M = f . This is a natural generalization of embeddings, since an
embedded minimal surface Σ ⊂ S3 divides S3 into two components M1 ∪M2 of the complement
S3 \ Σ. Hence the embedding f : Σ ⊂ S3 extends to a pair of embeddings Fi : Mi ⊂ S3, i = 1, 2.

In this work, we study the space of minimal embeddings, or more generally Alexandrov immer-
sions, of a surface in S3, and in more general spaces of constant positive curvature. The main
point of view is to focus on the geometry of the constant curvature 3-manifolds M with bound-
ary ∂M = Σ rather than on the embeddings Σ ⊂ S3 themselves. Thus, the analysis is naturally
adapted to the class of Alexandrov immersed minimal surfaces in S3.

To describe the point of view, let for the moment M be an arbitrary compact (n+1)-dimensional
manifold with non-empty boundary ∂M , and let E = Em,α be the moduli space of Einstein metrics

(1.1) Ricg = λg

on M which are Cm,α up to the boundary ∂M ; here λ ∈ R is arbitrary but fixed and m ≥ 3,
α ∈ (0, 1). The space Em,α is defined to be the space of all λ-Einstein metrics Em,α, modulo the
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action of diffeomorphisms Diffm+1,α
1 (M) of M equal to the identity on ∂M . Let C = Cm,α be the

space of (pointwise) conformal classes [γ] of Cm,α metrics γ on ∂M and let C(∂M) = Cm−1,α(∂M)
be the space of Cm−1,α functions on ∂M . A metric g ∈ E induces by restriction a metric γ on ∂M .
Let H denote the mean curvature of ∂M in (M, g) with respect to the outward normal N , (so that
H > 0 means the area is increasing in the outward direction).

It is proved in [3] that E is a smooth Banach manifold (at least under the topological assumption
π1(M,∂M) = 0) and, if E is non-empty, the natural boundary map

(1.2) Π : E → C × C(∂M),

Π(g) = ([γ], H),

is Fredholm, of Fredholm index 0. The map Π associates to the ambient Einstein manifold (M, g)
the pointwise conformal class of the induced metric γ and mean curvature H of the boundary ∂M
in M .

Consider now the case n = 2, so M is a 3-manifold, with boundary a surface Σ = ∂M and
suppose λ = 2 so that (M, g) is of constant curvature +1. A Cm+1,α Alexandrov immersion
f : Σ → S3 gives an element (M, g) ∈ Em,α with g = F ∗(gS3), where F : M → S3 is a Cm+1,α

extension of f . Observe that the data (M, g) is in fact somewhat more general than an Alexandrov
immersion. Namely the developing map of (M, g) gives an isometric immersion of the universal

cover (M̃, g) → S3; one obtains an isometric immersion of (M, g) itself into S3 only when the
holonomy of (M, g) is trivial.

Suppose first genus(∂M) ≥ 2. Let Diff0(M) = Diffm+1,α
0 (M) be the group of Cm+1,α dif-

feomorphisms of M isotopic to the identity and mapping the boundary ∂M into itself. Thus
Diff1(M) ⊂ Diff0(M) and the quotient Diff0(M)/Diff1(M) ' Diff0(∂M) is the group of diffeomor-
phisms of the boundary isotopic to the identity. The group Diff0(∂M) also acts on C, and it is well
known that the action is free with quotient the Teichmüller space T (∂M) of ∂M .

When ∂M = T 2, let Diff0(M) denote the diffeomorphisms of M isotopic to the identity, mapping
∂M to ∂M , and which fix a given point p0 ∈ ∂M . Then again C/Diff0(∂M) = T (∂M) = T (T 2),
cf. [13] for instance.

Let

(1.3) Ẽ = E/Diff0(M),

be the quotient space of E by the action of Diff0(M). In general, the boundary map Π does not

descend to a map on Ẽ , since the mean curvature H is not invariant under the action of Diff0(∂M).
However, minimal surface boundaries H = 0, or more generally constant mean curvature bound-
aries, are invariant under reparametrizations or diffeomorphisms of ∂M .

Thus, let

(1.4) M = Π−1(C, 0)/Diff0(M),

be the moduli space of constant curvature +1 spaces (M, g) ∈ Ẽ with minimal surface boundary.
By [22], M is non-empty. The boundary map Π descends to a map

Π :M→ T (∂M),

associating to (M, g) ∈M the conformal class of (∂M, γ) in Teichmüller space.
The main result of this paper is the following “regular value theorem”:

Theorem 1.1. Suppose genus(∂M) ≥ 2. Then for any conformal class [γ] ∈ C, ([γ], 0) is a regular
value of the boundary map Π in (1.2), so that Π is a local diffeomorphism whenever ∂M is minimal.

Consequently, the space M is a smooth manifold and the smooth map

(1.5) Π :M→ T (∂M),
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is everywhere a local diffeomorphism. In particular the linearization

DΠ : T (M)→ T (T (∂M))

is an isomorphism, at any (M, g) ∈M and

dimM = dim(T (∂M)).

This result shows that the space of compact, oriented 3-manifolds of constant curvature +1 with
minimal surface boundary is naturally locally parametrized by the conformal class of the boundary
metric γ in the Teichmüller space T (∂M) of the boundary ∂M . The mapping class group Γ(∂M)
of ∂M acts on both factors and Π is equivariant with respect to these actions, so that Π in (1.5)
descends to map of the corresponding moduli spaces:

(1.6) Π :M/Γ(∂M)→ T (∂M)/Γ(∂M).

The global behavior of the map Π in (1.5) will not be studied here (except see Theorems 1.2-1.3
below for the genus(∂M) = 1 case); we hope to discuss this in detail elsewhere. Note thatM may
have many and possibly infinitely many components; for instance one expects that the components
of S3 \ Σ where S is an embedded minimal surface in S3 lie in different components of M.

Theorem 1.1 is not true as it stands for genus(∂M) = 1; this case is discussed further in Theorems
1.2 and 1.3 below.

Theorem 1.1 implies in particular that any Alexandrov immersed minimal surface Σ ⊂ S3 may be
perturbed to a “minimal boundary” Σ = ∂M in a space of constant curvature (M, g). For instance,
all Jacobi fields on Σ are “integrable”, i.e. tangent to a curve of Alexandrov immersed minimal
surfaces, if one allows the ambient geometry to vary within the class of constant curvature +1

metrics. However, generically (M, g) will not isometrically immerse in S3. Namely, any (M, g) ∈ Ẽ
has a holonomy map

(1.7) ρ : π1(M)→ SO(4) = Isom+(S3).

The map ρ is a homomorphism and the space Hom(π1(M), SO(4))/Ad of all such homomorphisms
modulo conjugacy is the representation variety R(M) of M , (also sometimes called the character
variety of M);

(1.8) R(M) = Hom(π1(M), SO(4))/Ad,

cf. [15], [21], [27]. The space (M, g) isometrically immerses in S3 only when ρ = e is the trivial map.
As shown in Section 2.2, the space R(M) has the same topological dimension as the Teichmüller
space T (∂M) of the boundary,

dim(R(M)) = dim(T (∂M)).

However, R(M) is compact, while T (∂M) is always non-compact. Moreover, T (∂M) is a smooth
manifold, while R(M) is not; topologically it is a stratified manifold with non-trivial strata.

One has a canonical projection map

π : Ẽ → R(M),

associating to (the isometry class of) each constant curvature +1 metric g its holonomy ρ = ρ(g).

Letting ι :M→ Ẽ denote the inclusion, one thus has a natural map

(1.9) χ :M→R(M), χ = π ◦ ι.
Of course χ will not be a local diffeomorphism everywhere, sinceR(M) is not smooth. In particular,
R(M) is not smooth at the trivial holonomy map ρ = e corresponding to (M, g) ⊂ S3. However
the singularity at e is quite simple (mainly since π1(M) has a simple structure) and is described
by the Zariski tangent space to R(M), cf. Section 2.2 for further discussion.
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The proof of Theorem 1.1 is partly based on a detailed study of the natural relations between
the linearizations of Π and χ at any (M, g) ∈M. Another key ingredient in the proof is a detailed
analysis of the second variation of the Einstein-Hilbert action (total scalar curvature functional),
giving rise to a duality between Dirichlet and Neumann data associated to the boundary map
(1.2). This is of course related to a study of the corresponding Dirichlet-to-Neumann map. Further
motivation and explanation of the ideas of the proof are given at suitable places in the course of
the proof in Section 3.

Next we turn to the case of toral boundary, genus(∂M) = 1. Theorem 1.1 is not true in general
in this case, due to the presence of tangential conformal Killing fields on T 2; these generate elements
in the kernel of DΠ. Nevertheless, almost all of the proof of Theorem 1.1 applies without change
to the case of genus(∂M) = 1 and, suitably modified, gives in fact stronger results.

In particular, as a by-product of the proof of Theorem 1.1, we obtain a new proof of Brendle’s
solution of the Lawson conjecture on the uniqueness of the Clifford torus in S3.

Theorem 1.2. [9], [10]. An embedded minimal torus T 2 ⊂ S3 is congruent to the Clifford torus.
Moreover, an Alexandrov immersed minimal torus in S3 is necessarily a “surface of revolution”,
i.e. is invariant under an isometric S1 action for some S1 ⊂ Isom(S3).

We note that the S1-invariant tori in S3 are fully classified by work of Hsiang-Lawson [17]. The
analog of Theorem 1.1 in this setting is:

Theorem 1.3. If genus(∂M) = 1, then M is a smooth 2-dimensional manifold and the map Π
in (1.5) is smooth. At any (M, g) ∈ M, the derivative DΠ : T (M) → T (T (∂M)) is either an
isomorphism or has rank 1, so dimKer(DΠ) = dimCoker(DΠ) = 1.

The same statement also holds for the full boundary map Π in (1.2) at minimal boundaries.

We refer to Theorems 3.15 and 3.16 for a more detailed description. In the first case where
dimKerDΠ = 0, all elements of the component of M are all “Clifford tori”, while in the case
dimKerDΠ = 1, all elements of the component of M are surfaces of revolution. Of course generi-
cally, elements of M do not isometrically immerse in S3.

These results also hold for constant mean curvature boundaries, with the same proofs. Thus in
analogy to (1.4), for c ∈ R, let Mc = Π−1(C, c)/Diff0(M).

Theorem 1.4. Theorems 1.1 - 1.3 hold for boundaries ∂M of constant mean curvature H =
const. = c, provided H ≥ 0 (with respect to the outward normal), with M replaced by Mc for any
fixed c ≥ 0.

Theorem 1.2 has been recently been proved, by different methods, for Alexandrov immersions of
constant mean curvature tori in S3 by Andrews-Li, [6], and by Brendle, [11]. Again there is a full
classification of Alexandrov immersed constant mean curvature tori in S3, cf. [24], [6].

Finally, very similar results hold for minimal or constant mean curvature boundaries in flat and
hyperbolic space forms R3, H3. These are discussed in Section 4; cf. Theorem 4.1 for the hyperbolic
case. Again, we point out that all of these further results (Theorems 1.2-1.4) are reasonably simple
consequences of the methods used to prove Theorem 1.1. Thus the proof of Theorem 1.1 is the
central focus of the paper.

A brief summary of the contents of the paper is as follows. In Section 2, we discuss preliminary
results and background information in order to prove the main results. This includes discussion of
Einstein metrics, the Einstein-Hilbert action and its second variation, and aspects of holonomy and
the representation variety. Section 3 is devoted to the proof of Theorems 1.1-1.3, while Section 4
discusses the extension of the results to constant mean curvature boundaries and spaces of constant
curvature 0 or −1.
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2. Preliminaries

In this section, we discuss preliminary material and results needed for the work to follow.
Throughout the paper M denotes a compact, connected and oriented 3-dimensional manifold with
non-empty boundary ∂M . Some of the results are valid in all dimensions, and we will occasionally
point this out.

2.1. Let Metm,α(M) be the space of metrics on M , Cm,α smooth up to ∂M , and let Sm,α(M) be
the corresponding space of symmetric bilinear forms. Let

(2.1) E(g) = Ricg −
R

2
g + Λg : Metm,α(M)→ Sm−2,α(M),

be the Einstein tensor. If E(g) = 0, so that g is an Einstein metric, then the scalar curvature R is
given by R = 6Λ, so

(2.2) Ricg = λg,

with λ = 2Λ. The main focus is on Λ = 1, but the cases Λ = 0,−1 (flat and hyperbolic metrics)
will also be considered briefly in Section 4. Of course the Einstein metrics satisfying (2.2) are of
constant curvature Λ.

For (M, g) Einstein, one has the divergence and scalar constraint equations on ∂M , (equivalent
to the Gauss-Codazzi and Gauss equations):

(2.3) δγ(A−Hγ) = −Ric(N, ·) = 0,

(2.4) |A|2 −H2 +Rγ = Rg − 2Ric(N,N) = (n− 1)λ = 2Λ.

Here A is the 2nd fundamental form of ∂M in M , Rγ and Rg are the scalar curvatures of γ and g
respectively, δγ = −tr∇ is the divergence with respect to γ and N is the unit outward normal.

Let Em,α denote the space of all Einstein metrics, Cm,α up to ∂M , and let Em,α = Em,α/Diffm+1,α
1 (M)

be the quotient of Em,α by the group of Cm+1,α diffeomorphisms of M equal to the identity on
∂M . The action of Diffm+1,α

1 (M) on Em,α is smooth, since Einstein metrics are real-analytic in the
interior and the diffeomorphisms fix the boundary ∂M , cf. [3] for further details.

As noted in the Introduction, the space Em,α is a smooth Banach manifold (at least when
π1(M,∂M) = 0) and the boundary map

(2.5) Π : Em,α → Cm,α × Cm−1,α,
Π(g) = ([γ], H),

is a smooth Fredholm map, of Fredholm index 0, when Em,α 6= ∅.
We note that the action of the larger group Diffm+1,α

0 (M) of diffeomorphisms of M mapping

∂M → ∂M on Em,α is no longer smooth in general. Thus, if ψ ∈ Diffm+1,α
0 (M) and g ∈ Em,α then

ψ∗g ∈ Em,α, so the action is well-defined and continuous. However, if Y T ∈ χm+1,α(M) is a Cm+1,α

smooth vector field on M , tangent to ∂M , then

(2.6) (LY T g)(A,B) = Y T (g(A,B))− g([Y T , A], B)− g(A, [Y T , B]).

While the last two terms are Cm,α smooth, the first term is only Cm−1,α smooth at ∂M . Thus,
one loses one derivative. (This is closely related to the well-known loss of derivative in isometric
embedding problems).

However, suppose ∂M is minimal, so that H = 0. As noted in the Introduction, this condition
is invariant under the action of the diffeomorphism group Diffm+1,α

0 (M). It is well-known that
minimal surfaces (or minimal boundaries in this context) are real-analytic. Namely, any such
boundary can be locally graphed over its tangent totally geodesic sphere S2 ⊂ S3, by a normal
graphing function f . The sphere S2 is analytic, and the equation H(f) = 0 is a non-linear elliptic
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equation with analytic coefficients. Hence, by elliptic regularity, the solution f is analytic. Thus,
when H = 0, the induced metric γ on ∂M is real analytic. Hence, so are also the normal vector
field N and the second fundamental form A. In this case, examination of (2.6) shows that

2δ∗(Y T ) = LY T g ∈ S
m,α
2 (M).

This also holds for arbitrary Cm+1,α vector fields Y ∈ χm+1,α(M) on M , not necessarily tangent

to ∂M . Hence, the action of Diffm+1,α
0 (M) and of the full diffeomorphism group Diffm+1,α(M) is

smooth on Em,α at configurations where H = 0 (or H = const).

The boundary data ([γ], H) in (2.5) arise from a natural Lagrangian. Thus, consider the func-
tional

(2.7) Ĩ : Metm,α(M)→ R,

Ĩ(g) =

∫
M

(R− 2Λ) + 2
n

∫
∂M

H,

where n = dim∂M . This is a modification of the Einstein-Hilbert action with Gibbons-Hawking-
York boundary term [14], [30]:

I(g) =

∫
M

(R− 2Λ) + 2

∫
∂M

H.

The first variation of Ĩ is given by

(2.8) dĨg(h) = −
∫
M
〈Eg, h〉 −

∫
∂M
〈A, hT0 〉+ (2− 2

n)H ′h,

cf. [4]. Here hT is the restriction of h to ∂M , (the tangential part of h), hT0 is its trace-free part
with respect to γ, Eg = E(g) and H ′h is the variation of the mean curvature H in the direction h.

Thus critical points of Ĩ among metrics with fixed boundary data ([γ], H) are exactly the Einstein
metrics. The first variation of I is

(2.9) dIg(h) = −
∫
M
〈Eg, h〉 −

∫
∂M
〈τ, hT 〉,

where τ = A − Hγ is the conjugate momentum to γ. These formulas are derived from standard
formulas for the variation of R, integration by parts, and the identity 2H ′k = N(trgk) + (δk)(N) +

δ(k(N)T )− 〈A, k〉, cf. (2.17) below.
Let gs,t = g + sh+ tk be a 2-parameter variation of g ∈ E , so that one has

∂2I(gs,t)

∂s∂t
=
∂2I(gs,t)

∂t∂s
.

This gives the identity

(2.10)

∫
M
〈E′k, h〉+

∫
∂M
〈τ ′k, hT 〉+ 〈a(k), hT 〉 =

∫
M
〈E′h, k〉+

∫
∂M
〈τ ′h, kT 〉+ 〈a(h), kT 〉;

cf. [4] for details. Here a(k) = −2τ ◦ kT + 1
2(trkT )τ , (τ ◦ `)(A,B) = 1

2(〈τ(A), `(B)〉+ 〈τ(B), `(A)〉)
and E′k is the linearization of E at g in the direction k. The formula (2.10) will play a central role
in Section 3. Of course the bulk terms in (2.10) vanish when k and h are infinitesimal Einstein
deformations (tangent to E).

The operator E in (2.1) is not elliptic, due to the diffeomorphism invariance of the Einstein
operator and to obtain an elliptic operator, one needs to introduce a gauge. The most natural
gauge for our purposes is the divergence-free gauge. Thus, given any background Einstein metric
g̃, consider the operator

Φg̃ : Metm,α(M)→ Sm−2,α(M),
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(2.11) Φg̃(g) = Ricg −
R

2
g + Λg + δ∗gδg̃(g).

The linearization of Φ at g = g̃ is

(2.12) L(h) = 1
2 [D∗Dh− 2R(h)−D2trh− (δδh)g + ∆trh g + λtrh g],

where D2 is the Hessian and ∆ = trD2 the Laplacian (with respect to g); the notation is otherwise
standard, as in [7]. It is straightforward to see that L is an elliptic operator (in the interior of M).
Moreover, since Φg̃ = E + δ∗δ, one has

(2.13) E′ = L− δ∗δ.
Of course solutions of L(h) = 0 with δh = 0 on M are infinitesimal Einstein deformations.

The following simple Lemma gives the converse.

Lemma 2.1. If L(h) = 0 on M and δh = δMh = 0 on ∂M , then

δh = 0 on M,

so that h is an infinitesimal Einstein deformation.
For any h ∈ Sm,α(M) there is a Cm+1,α vector field V on M with V = 0 on ∂M such that

h̃ = h+ δ∗V satisfies

δh̃ = 0.

Proof: By (2.13), δ(L(h)) = δδ∗(δh), since δE′ = 0, by the linearized Bianchi identity. Thus

δδ∗(δh) = 0.

Pairing this with δh and applying the divergence theorem gives the first result.
For the second result, consider the equation δδ∗V = −δh with Dirichlet boundary condition

V = 0. This is an elliptic boundary value problem, with trivial kernel, and so has a unique
solution. This gives the second result.

The tangent space TgE is given by KerE′, i.e. the space of infinitesimal Einstein deformations.
The kernel K = KerDΠ of DΠ in (2.5) is given by infinitesimal Einstein deformations κ satisfying

(2.14) κT = ϕγ, H ′κ = 0,

at ∂M , for some ϕ ∈ Cm,α(∂M). The study of K will be the central issue throughout the paper.
Theorem 1.1 is essentially the statement that K = 0 when genus(∂M) ≥ 2.

Define the superkernel K ⊂ K to be space of infinitesimal Einstein deformations κ as above
satisfying the stronger condition

(2.15) κT = ϕγ, and (A′κ)T =
ϕH

2
γ.

Since tr(A′κ)T = H ′κ + ϕH, this implies H ′κ = 0 so that K ⊂ K. The second equation in (2.15)
is equivalent to the statement that (A′κ)T is trace-free. Of course H = 0 implies (A′κ)T = 0 when
κ ∈ K.

To compute the variation A′k of A, let gs = g + sk be a variation of g. Since A = 1
2LNg,

one has 2A′k ≡ 2 d
dsAgs |s=0 = (LNsgs)′|s=0 = LNk + LN ′g. A simple computation gives N ′ =

−k(N)T − 1
2k00N , where k(N)T is the component of k(N) tangent to ∂M and k00 = k(N,N).

Using the standard identity LNk = ∇Nk + 2A ◦ k, it follows that

(2.16) 2A′k = ∇Nk + 2A ◦ k − 2δ∗(k(N)T )− δ∗(k00N).

Since H = trA, H ′k = trA′k − 〈A, k〉, so that

2H ′k = N(trgk) + 2δγ(k(N)T )− k00H −N(k00).
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A straightforward calculation gives (δk)(N) = −N(k00) + δ(k(N)T ) + 〈A, k〉 − k00H, so that this
is equivalent to

(2.17) 2H ′k = N(trgk) + (δk)(N) + δγ(k(N)T )− 〈A, k〉.
The formula (2.17) will be used later in deriving (3.32).

Lemma 2.2. Let g ∈ Em,α and suppose k is an infinitesimal Einstein deformation satisfying

(2.18) kT = (A′k)
T = 0

at ∂M . Then k is pure gauge near ∂M , i.e.

(2.19) k = δ∗V near ∂M,

with V = 0 on ∂M .

Proof: This is a unique continuation result for the linearized Einstein equations. It is proved
in [5] for m ≥ 5 (in all dimensions), cf. also [8] for the C∞ case. In the main case of interest here
where ∂M is minimal (or H = const.), the data and boundary are all analytic. The result is then
a simple consequence of the Cauchy-Kovalevsky theorem. Alternately, the result also follows from
the linearized version of the fundamental theorem for surfaces in space-forms - that a surface is
uniquely determined up to rigid motion by its first and second fundamental forms (γ,A).

This leads easily to the following global result.

Corollary 2.3. Let g ∈ Em,α and suppose κ is an infinitesimal Einstein deformation of (M, g). If
π1(M,∂M) = 0 and (2.18) holds, then κ is pure gauge on M , i.e. there exists a vector field V on
M with V = 0 on ∂M such that

(2.20) κ = δ∗V on M.

If κ is in divergence-free gauge, so that L(κ) = 0, then

κ = 0 on M.

Proof: The hypotheses and Lemma 2.2 imply that the form κ on M is pure gauge near ∂M , so
that (2.20) holds in a neighborhood Ω of ∂M .

It then follows from a well-known analytic continuation argument in the interior of M that the
vector field V may be extended so that (2.20) holds on all of M , cf. [20, VI.6.3] for instance. A
detailed proof of this is also given in [4, Lemma 2.6]. This analytic continuation argument requires
the topological hypothesis π1(M,∂M) = 0 to obtain a well-defined (single-valued) vector field V
on M . Moreover, since ∂M is connected, the condition V = 0 on ∂M remains valid in the analytic
continuation.

For the second statement, if in addition δκ = 0, then δδ∗V = 0 on M with V = 0 on ∂M . It
then follows as in the proof of Lemma 2.1 that V = 0 on M and hence κ = 0 on M , as claimed.

In view of (2.5) and (2.14) it is natural to consider a conformal generalization of Corollary 2.3,
i.e. ask whether the conditions

(2.21) kT = ϕγ, (A′k)
T =

ϕH

2
γ,

on ∂M imply that k = 0 on M , in divergence-free gauge, i.e. K = 0 in this gauge. However,
this is not true in general. Namely, observe that any (M, g) ∈ E with ∂M = T 2 and H = 0 (or
H = const) has a 2-dimensional space of conformal Killing fields T , generated by translation along
the two lattice directions defining the conformal structure of ∂M . These may be extended to vector
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fields on M and so give a space T of infinitesimal Einstein deformations k = δ∗T , satisfying the
boundary conditions (2.14). Thus

T ⊂ KerDΠ,

so that

(2.22) dim(KerDΠ) ≥ 2− i,

whenever ∂M = T 2 with H = const; here i is the number of linearly independent Killing fields of
(∂M, γ). Moreover, the trace-free part A0 of the second fundamental form A of ∂M is a holomorphic
quadratic differential on T 2 and hence has constant coefficients with respect to the basis lattice
vectors T1, T2. Thus

(2.23) LTiA0 = 0.

It is easy to see that LVA = 2(A′δ∗V )T whenever V is tangent to ∂M and so (2.21) holds on
∂M = T 2. Hence

(2.24) dimK ≥ 2− i,

whenever H = const.
This situation shows a marked difference in the structure of DΠ when genus(∂M) ≥ 2 and

genus(∂M) = 1.

2.2. In this section we discuss holonomy of constant curvature metrics and so set n = 2 where
Einstein metrics are of constant curvature. We consider here only Einstein metrics with positive
scalar curvature, and choose the normalization Λ = 1, so

Ricg = 2g.

Although (M, g) ∈ E thus has constant curvature +1, (M, g) does not necessarily embed or
immerse in S3 = S3(1); even if it does, arbitrarily close metrics in E will not. The developing map

D is defined only on the universal cover M̃ of M , and gives an isometric immersion

(2.25) D : M̃ → S3,

with g̃ = D∗(gS3), where g̃ is the lift of g to M̃ . Thus, while (M, g) is locally isometric to S3,
i.e. small balls in (M, g) are isometric to balls in S3, such local isometries may not patch together
consistently to give a global isometric immersion. This lack of consistency is measured by the
holonomy representation or homomorphism

(2.26) ρ : π1(M)→ SO(4),

cf. [27], [21], [15]. The configuration (M, g) isometrically immerses in S3 if and only if ρ = {e} is
the trivial homomorphism. Also metrics g, g′ with conjugate holonomy ρ, ρ′ = gρg−1, g ∈ SO(4),
are isometric, modulo deformations of the boundary, cf. [27].

Now recall a result of Frankel-Lawson [23] that any compact (n + 1)-manifold of positive Ricci
curvature with boundary ∂M satisfying H∂M ≥ 0 satisfies

(2.27) π1(M,∂M) = 0.

Thus, π1(∂M) surjects onto π1(M) and ∂M is connected. This applies in particular to any (M, g) ∈
M. In dimension 3, this implies that M is a handlebody, cf. again [23]; if ∂M = Σg is a surface of
genus g, then

(2.28) π1(M) = Z ∗ Z ∗ · · · ∗ Z︸ ︷︷ ︸
g

,
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the free group on g generators. Choosing a set of generators σi, i = 1, · · · , g the holonomy map ρ
is determined by its images ρ(σi) ∈ SO(4). The space

(2.29) R(M) = Hom(π1(M), SO(4))/Ad

of all holonomy representations modulo conjugacy is thus naturally identified with the quotient
space

(2.30) R(M) = [SO(4)× SO(4)× · · · × SO(4)︸ ︷︷ ︸
g

]/SO(4),

where SO(4) acts on the product diagonally by conjugation.

Consider first the case ∂M = T 2 in detail. One has π1(M) = Z and

R(M) = SO(4)/Ad,

the quotient of SO(4) by its adjoint action. Any element in SO(4) is conjugate to an element in
its maximal torus T 2 and

(2.31) R(M) = T 2/W,

where W is the Weyl group of SO(4). This is isomorphic to Z2⊕Z2, acting on R2, the Lie algebra
of the maximal torus T 2, by x′i = ±xσi , where σi is a permutation of (1, 2) and the product of
the signs is 1, cf. [1] for example. The Weyl chamber in R2 has two walls x1 = ±x2 and integer
translates thereof. The exponential map takes the square [0, 1]× [0, 1] ⊂ R2 onto the maximal torus
T 2 and a fundamental domain for the action of W on R2 is the 2-simplex S bounded by x2 = 0, and
the two walls x2 = x1, x2 = −x1 + 1, with 0 ≤ x2 ≤ 1, with vertices at (0, 0), (1, 0) and (12 ,

1
2). The

exponential map maps S to a 2-simplex with the two vertices (0, 0), (1, 0) identified, representing
Id ∈ SO(4), and with (12 ,

1
2) mapping to −Id ∈ SO(4).

The interior of the Weyl chamber consists of regular elements g ∈ SO(4), where the dimension
of the normalizer N(g) of g satisfies dimN(g) = 2. Generic singular elements g are points on the
two walls of the Weyl chamber, where dimN(g) = 4, while the two singular points ±Id satisfy
dimN(±Id) = 6. Topologically R(M) is thus a 2-manifold with corners; the boundary is formed
by the wedge two circles, with corners at the two singular points ±Id.

We note that

(2.32) dimN(g) = dimZ,

where Z is the space of Killing fields on (M, g).
When the genus g ≥ 2, the diagonal action of SO(4) by conjugacy on SO(4)×SO(4)×· · ·×SO(4)

is effective, and hence

dimR(M) = 6g − 6.

Here the dimension is the topological dimension. Thus, in all cases, one has

(2.33) dimR(M) = dim T (∂M),

where T (∂M) is the Teichmüller space of the boundary T (∂M).
However, there are strong differences between the spaces R(M) and T (∂M). First, R(M)

is clearly compact, while T (∂M) is never compact. Also, while T (∂M) is a smooth manifold,
(diffeomorphic to a ball of dimension 6g − 6 when g ≥ 2), the variety R(M) is only smooth at the
regular points h ∈ G = SO(4) × · · · × SO(4). A point is regular if its orbit is a maximal orbit
for the diagonal action of SO(4) on G; these form an open dense set in the orbit space R(M).
A point is singular otherwise, and so is a point with non-trivial stabilizer; in the case ∂M = T 2

the stabilizer of the action at g is the normalizer N(g) of g ∈ SO(4). Thus in general R(M) is a
stratified manifold.
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The space R(M) also has the structure of a real analytic, in fact real algebraic, variety. The ring
of functions on R(M) is defined to be algebraic functions on G = SO(4) × · · · × SO(4) invariant
under the action h → ghg−1 of SO(4) on G. However, as is common in this setting (geometric
invariant theory) the algebraic quotient is not modeled well by the topological quotient; for instance
the topological quotient in (2.31) does not effectively describe R(M) as an algebraic variety at the
singular points.

At the singular points of R(M), the tangent space TR(M) is defined to be the Zariski tangent
space of the algebraic variety R(M). By a theorem of Weil [29],

(2.34) TρR(M) = H1(π1(M), Adρ),

where ρ : Γ→ SO(4) is the holonomy representation. In more detail, let Γ = π1(M) and let Adρ be
the Γ-module L(SO(4)) with Γ action given by Ad ◦ ρ. The 1-cocyles Z1(Γ, Adρ) consist of maps
f : Γ→ L(SO(4)) satisfying the cocycle condition

(2.35) f(ab) = f(a) +Ad(ρ(a))f(b),

for a, b ∈ Γ. The 1-coboundaries B1(Γ, Adρ) consist of maps f : Γ → L(SO(4)) satisfying the
coboundary condtion

(2.36) f(a) = v −Adρ(a)v,

for some v ∈ L(SO(4)). Then H1(Γ, Adρ) = Z1(Γ, Adρ)/B1(Γ, Adρ).
A smooth curve ρt : π1(M) → SO(4) of holonomy maps is determined uniquely by g =

genus(∂M) smooth curves in SO(4) - the values of ρt on the generators. The derivative ρ′ :
π1(M)→ L(SO(4)) satisfies the cocycle condition (2.35). The derivative ρ′ is a coboundary if and
only if ρt is conjugate to ρ, to first order in t.

An important case is ρ = e the trivial representation, corresponding to (M, g) ⊂ S3. A simple
calculation from (2.35) and (2.36) gives

(2.37) dim(TeR(M)) = dim(H1(Γ, Ad e)) = 6g.

Namely one may define f arbitrarily on the generators f(σi) = ai ∈ L(SO(4)) and then extend
such f to satisfy the cocyle condition (2.35); the only coboundary in this case is the zero map.
Analogous to (2.32), for genus(∂M) ≥ 2, one has

(2.38) dimZ = dimN(ρ) = dimTρR(M)− (6g − 6),

where Z is the space of Killing fields on (M, g), ρ is the holonomy of (M, g) and N(ρ) = {r ∈
SO(4) : r−1ρr = ρ}. We refer to [21] for further background on R(M).

Next we consider the description of the variation of holonomy in terms of variation of the metric.

Let gt be a curve in E. Passing to the universal cover M̃ of M gives then a curve of developing
maps

Dt : M̃ → S3.

Let g̃t be the curve of lifted metrics on M̃ ; the fundamental group π1(M) acts by isometries of

g̃t. The derivative D′ of Dt is a vector field W on S3 along D = D0, so W : M̃ → T (S3). Since
D is an isometric immersion, the pullback D∗W is a well-defined vector field, also called W , on

M̃ . In general W will not be invariant under the action of π1(M) and so will not descend to a

vector field on M . The derivative k̃ = dg̃t/dt is given by k̃ = δ∗W on M̃ . The form k̃ is invariant
under the action of π1(M) and so descends to a symmetric form k on M , with k = dgt/dt. Thus
any infinitesimal Einstein (i.e. constant curvature +1) deformation of g on M is locally of the
form δ∗W , so locally pure gauge. These correspond to the cocycles in H1(π1(M), Adρ) while the
coboundaries correspond to forms δ∗Y with Y a globally defined vector field on M . We refer
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also to [16] where a very similar discussion is given in the case of SL(2,C) in place of SO(4),
corresponding to deformations of hyperbolic metrics.

We summarize the previous discussion as follows. The tangent space TgE to E at g consists of
symmetric forms k = δ∗W , where W is a locally defined vector field on M ; W is globally defined

on the universal cover M̃ , but is multi-valued on M . The tangent space TgE to E at g consists
of equivalence classes symmetric forms [k] as above, where k ∼ k + δ∗V and V is a global vector

field on M , vanishing on ∂M . Similarly, the tangent space TgẼ to Ẽ as in (1.3) at g consists of
equivalence classes symmetric forms [k], where k ∼ k+ δ∗Y T and Y T is a global vector field on M ,
tangent to ∂M at ∂M . Finally, the tangent space to the quotient R(M) consists of equivalence
classes symmetric forms [k], where k ∼ k + δ∗Y , with Y a globally defined vector field on M , not
necessarily tangent to ∂M at ∂M .

3. Minimal Surface Boundaries

In this section, we prove the main results in the Introduction. Most of the work concerns the
proof of Theorem 1.1. The other results are relatively straightforward consequences of the methods
used to prove Theorem 1.1. Motivation and ideas of the proof are presented in several places during
the course of the proof.

Given (M, g) ∈ E , suppose k is an infinitesimal Einstein deformation, so k ∈ TE . Then

(3.1) E′k = 0,

i.e. the variation of the Einstein tensor (2.1) in the direction k vanishes. One also has the induced
variations of the boundary data ([γ], H), given by (kT0 , H

′
k); here kT0 is the trace-free part of kT

and H ′k is given as in (2.17). As discussed in Section 2, in dimension 3 all infinitesimal Einstein
deformations are locally ”pure-gauge”, so that k = δ∗W , where W is a multi-valued vector field on

M , (well-defined on M̃).
Now K = KerDΠ consists of the forms κ such that E′κ = 0 on M and

(3.2) κT0 = 0, H ′κ = 0

at ∂M . Thus, κT = ϕγ is pure trace on ∂M . Suppose for example that κ = δ∗X for some global
vector field X on M . At ∂M , writing X = XT + νN where XT is the component of X tangent to
∂M and N is the outward unit normal, (3.2) is equivalent to

(δ∗X)T = δ∗XT + νA = ϕγ,

−∆ν − (|A|2 + 2)ν +XT (H) = 0.

When H = 0, J = νN is a Jacobi field of the minimal surface ∂M ⊂ M , and so this system
describes Jacobi fields that preserve the conformal class, for some parametrization of ∂M . This is
the “holonomy trivial” kernel K1 ⊂ K:

(3.3) K1 = {X : δ∗X = ϕγ, H ′δ∗X = 0 at ∂M};

here X ∈ χm+1,α(M) is a Cm+1,α smooth vector field on M .
The first result of this section sets the stage for the proof of Theorem 1.1 and gives a key duality

between the Dirichlet boundary data ϕ of κ ∈ K and its Neumann data A′κ or τ ′κ. We first prove
the result for κ ∈ K1; the proof in the general case κ ∈ K follows later in Proposition 3.9.

Proposition 3.1. For κ = δ∗X ∈ K1 with κT = ϕXγ and H = 0 at ∂M , one has the duality

(3.4)

∫
∂M
〈τ ′κ, hT 〉 =

∫
∂M

E′h(N,X)−
∫
∂M

ϕXH
′
h,
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for any metric deformation h. In particular, if h is an infinitesimal Einstein deformation, then

(3.5)

∫
∂M
〈τ ′κ, hT 〉 = −

∫
∂M

ϕXH
′
h,

Proof: We begin with the identity (2.10), i.e.

(3.6)

∫
∂M
〈τ ′k, hT 〉+ 〈a(k), hT 〉+

∫
M
〈E′k, h〉 =

∫
∂M
〈τ ′h, kT 〉+ 〈a(h), kT 〉+

∫
M
〈E′h, k〉,

for any deformations k, h, where a(k) = −2τ ◦ kT + 1
2(trkT )τ . Choose k = κ ∈ KerDΠ, so that κ

is an infinitesimal Einstein deformation with κT = ϕκγ, H ′κ = 0 on ∂M . Then

〈−2τ ◦ κT , hT 〉 = −2ϕκ〈τ, hT 〉 = 〈−2τ ◦ hT , κT 〉,

so these terms in (3.6) cancel. Also 〈τ, κT 〉 = ϕκtrτ = −ϕκH, so (3.6) becomes∫
∂M
〈τ ′κ, hT 〉+ ϕκ〈τ, hT 〉 =

∫
∂M
〈τ ′h, κT 〉 − 1

2 trh
TϕκH.

Next 〈τ ′h, κT 〉 = ϕκtrγτ
′
h. One has (trγτ)′h = trτ ′h + tr′γτ and tr′γτ = −〈τ, hT 〉, so that 〈τ ′h, κT 〉 =

−ϕκH ′h + ϕκ〈τ, hT 〉. Hence we obtain the formula

(3.7)

∫
∂M
〈τ ′κ, hT 〉+ 1

2 trh
TϕκH =

∫
M
〈E′h, κ〉 −

∫
∂M

ϕκH
′
h.

When H = 0, this becomes

(3.8)

∫
∂M
〈τ ′κ, hT 〉 =

∫
M
〈E′h, κ〉 −

∫
∂M

ϕκH
′
h.

Now assume κ = δ∗X. Then integration by parts gives∫
M
〈E′h, κ〉 =

∫
M
〈E′h, δ∗X〉 =

∫
M
〈δ(E′h), X〉+

∫
∂M

E′h(N,X),

where N is the unit outward normal. By the Bianchi identity, δ(E′h) = 0 for all h, and (3.4) follows
from (3.8).

Observe that the left side of (3.4) depends only on the Dirichlet data of hT on ∂M , while the
right side depends on the (1st order) extension of h on ∂M to M .

Remark 3.2. We note that τ ′κ is transverse-traceless when H = 0 (although this will not be used
in the actual proof):

(3.9) δτ ′κ = 0, trτ ′κ = 0,

so that τ ′κ is tangent to the Teichmüller space T (∂M). The second equation in (3.9) is immediate;
as above tr(τ ′κ) = −H ′κ + 〈τ, κT 〉 = 0, since H = 0. To prove the first equation, choose h = δ∗Y T

in (3.7), where Y T is any (smooth) global vector field on M tangent to ∂M . Then h is clearly an
infinitesimal Einstein deformation and H ′h = Y T (H) = 0. Hence∫

∂M
〈τ ′κ, δ∗Y T 〉 =

∫
∂M
〈δτ ′κ, Y T 〉 = 0,

where δ is the divergence on (∂M, γ). Since Y T is arbitrary, it follows that δτ ′κ = 0.
13



To prove Theorem 1.1, it suffices to prove the kernel K = KerDΠ as in (3.2) is trivial:

(3.10) K = 0,

for (M, g) ∈ E with H = 0 at ∂M , i.e. any minimal surface boundary is a regular value of the
boundary map Π, (since indexDΠ = 0). To see this, let

M̃ = Π−1(C × {0}).
If the linearization of Π as in (1.2) is an isomorphism, then by the implicit function theorem for

Banach spaces, M̃ is a smooth Banach manifold and the induced map

Π : M̃ → C,

is a local diffeomorphism at every (M, g) ∈ M̃. Passing to the quotient by the free action of

Diff0(M) on M̃ and C proves the claim.

The starting point of the proof of Theorem 1.1 is the main formula (3.4). The basic idea
(somewhat oversimplified) is to show that for arbitrary boundary data ([hT ], H ′h) in TC ×C(∂M),
one can find an extension h (called a canonical extension below) such that

(3.11)

∫
M
〈E′h, κ〉 = 0,

for any κ ∈ K. Equation (3.11) holds of course for h such that E′h = 0, i.e. infinitesimal Einstein
deformations. However, the presence of a kernel K shows exactly that DΠ is not surjective, i.e. not
all boundary data ([hT ], H ′h) are realized as boundary data of infinitesimal Einstein deformations.
The cokernel is essentially K itself, (cf. (3.23). A basic tool, cf. Propositions 3.5 and 3.10, is the
construction of a suitable slice Q ' K serving as a more effective cokernel for ImDΠ. Further
explanation for the construction of Q is given preceding Proposition 3.5.

Using Q, we construct an extension h of arbitrary boundary data ([hT ], H ′h) satisfying (3.11), so

that (3.5) holds for arbitrary boundary data ([hT ], H ′h). Since hT and H ′h are independent, this is
only possible when τ ′κ = 0 and ϕκ = 0. Via Corollary 2.3, this implies that κ = 0 (in divergence
free gauge) giving K = 0.

This brief sketch of the method of proof is oversimplified, in that it is not quite true when
genus(∂M) = 1; in any case it requires considerable further work and details to implement this
program.

We point out that most of the results of this section, namely from Proposition 3.1 up to and
including Proposition 3.10, hold for arbitrary genus genus(∂M) ≥ 1 (or even genus(∂M) = 0).

The next result, based on Proposition 3.1, is a major step in the proof of Theorem 1.1. Recall
the definition of the superkernel K in (2.15).

Theorem 3.3. Suppose (M, g) ∈ E has minimal surface boundary, so H = 0. Then

(3.12) K = 0⇒ K = 0.

The proof of Theorem 3.3 is rather long, and is broken down into a collection of Lemmas and
Propositions. Overall, the method of proof is that used to prove the isometry extension theorem
of [4], which states that any Killing vector field at (∂M, γ) which preserves the mean curvature
extends to a Killing field of any Einstein filling manifold (M, g). We point out that Theorem
3.3 holds for constant curvature metrics in any dimension and for any λ; all of the proof except
Proposition 3.9 below (which uses the fact that Einstein deformations in dimension 3 are locally
pure gauge) holds for Einstein metrics in all dimensions.

For later purposes, we point out that the assumption K = 0 is not used in the results below until
Proposition 3.10; similarly the results below until Proposition 3.10 hold for H = const.
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To begin, consider elliptic boundary data on ∂M for the elliptic operator L (the divergence-
gauged linearized Einstein operator) in (2.12):

L : Sm,α(M)→ Sm−2,α(M).

It was shown in [3] that if σ1, σ2 are any Riemannian metrics on ∂M , boundary data of the form

(3.13) δh = 0, [hT ]σ1 = h1, 〈τ ′h, σ2〉 − 〈τ, h〉 = h2 at ∂M,

form a well-posed elliptic boundary value system for L. Here [hT ]σ is the usual equivalence relation
mod σ, i.e. hT1 ∼ hT2 if and only if hT2 = hT1 + fσ, for some smooth function f on ∂M . The most
natural choice for σ in (3.13) is σ = γ, where the term [hT ]γ corresponds to the variation of the
conformal class of γ. Also, 〈τ ′h, γ〉 − 〈τ, h〉 = trγτ

′
h − 〈τ, h〉 = −H ′h gives the variation of the mean

curvature H. This case (σ1, σ2) = (γ, γ) will be the main case of interest, but we will also consider
σi to be smooth Riemannian metrics close to γ.

Let Sm,ασ1,σ2(M) be the space of Cm,α symmetric bilinear forms h on M such that at ∂M ,

(3.14) δh = 0, [hT ]σ1 = 0, 〈τ ′h, σ2〉 − 〈τ, h〉 = 0.

The operator

(3.15) L : Sm,ασ1,σ2(M)→ Sm−2,α(M)

is elliptic, so that in particular, ImL is of finite codimension in Sm−2,α(M). Let Sm,ασ (M) =
Sm,ασ,σ (M).

Proposition 3.4. On Sm,ασ (M), the equation L(h) = ` with boundary data

(3.16) δh = 0, [hT ]σ = 0, 〈τ ′h, σ〉 − 〈τ, h〉 = 0

forms an elliptic formally self-adjoint boundary value problem.
More generally the pair of boundary data

(3.17) [hT1 ]σ1 = 0, 〈τ ′h1 , σ2〉 − 〈τ, h1〉 = 0, and [hT2 ]σ2 = 0, 〈τ ′h2 , σ1〉 − 〈τ, h2〉 = 0,

with δhi = 0 at ∂M are adjoint elliptic boundary value problems provided

(3.18) [σ1, σ2] = 0,

when σi are viewed as linear maps via the metric γ, and

(3.19) 〈τ, σ1〉[1− 1
2〈σ2, γ〉] = 〈τ, σ2〉[1− 1

2〈σ1, γ〉].

Proof: We prove (3.17) which then implies (3.16). We claim that

(3.20)

∫
M
〈L(h1), h2〉 =

∫
M
〈h1, L(h2)〉,

for h1 ∈ Sm,ασ1,σ2(M) and h2 ∈ Sm,ασ2,σ1(M). Consider the formula (3.6). For the main boundary terms
one has

〈τ ′h1 , h2〉 = ϕh2〈τ ′h1 , σ2〉 = ϕh2ϕh1〈τ, σ1〉,
〈τ ′h2 , h1〉 = ϕh1〈τ ′h2 , σ1〉 = ϕh1ϕh2〈τ, σ2〉.

Also for the a term, 〈τ ◦ h1, h2〉 = ϕh1ϕh2〈τ ◦ σ1, σ2〉 and 〈τ ◦ h2, h1〉 = ϕh2ϕh1〈τ ◦ σ2, σ1〉. These
terms cancel when (3.18) holds. Next

1
2 trh

T
1 〈τ, h2〉 = 1

2ϕh1ϕh2〈σ1, γ〉〈τ, σ2〉,
1
2 trh

T
2 〈τ, h1〉 = 1

2ϕh2ϕh1〈σ2, γ〉〈τ, σ1〉,
Combining the equations above shows that (3.20) holds if

〈τ, σ1〉+ 1
2〈σ1, γ〉〈τ, σ2〉 = 〈τ, σ2〉+ 1

2〈σ2, γ〉〈τ, σ1〉,
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which is the same as (3.19).
It follows then from (3.6) that ∫

M
〈E′(k), h〉 =

∫
M
〈k,E′(h)〉.

By (2.13), the operator L differs from E′ by the operator δ∗δ. One has∫
M
〈δ∗δh, k〉 =

∫
M
〈δh, δk〉+

∫
∂M

k(δh,N).

The first term is symmetric in h and k, and the last (boundary) term vanishes, since δh = 0 at
∂M .

This proves the claim and the result follows.

In the following, until Proposition 3.10, we will assume (σ1, σ2) = (σ, σ). Later in Proposition
3.10, we assume (σ1, σ2) = (σ, γ); note that (3.18) holds in this case and (3.19) is equivalent to

(3.21) H[〈σ, γ〉 − 2] = 0.

Since the boundary value problem (3.16) is elliptic and formally self-adjoint, it follows from
ellliptic regularity that the operator

Lσ = L|Sσ : Sm,ασ (M)→ Sm−2,α(M)

satisfies

(3.22) Kσ = (ImLσ)⊥,

i.e. the kernel Kσ of Lσ equals the annihilator of ImLσ on L2. Thus

(3.23) ImLσ ⊕Kσ = Sm−2,α(M).

Note that dimKσ may depend on σ but for σ sufficiently close to γ,

dimKσ ≤ dimKγ .

The kernel consists Kσ forms k satisfying L(k) = 0 with boundary conditions

L(k) = 0, δk = 0, [kT ]σ = 0, 〈τ ′k, σ〉 − 〈τ, k〉 = 0.

Observe that for σ = γ, Kσ = Kγ = K is the kernel of DΠ in (3.2), in divergence-free gauge.
More generally, again by Proposition 3.4, the operator Lσ,γ : Sm,ασ,γ (M)→ Sm−2,α(M) satisfies

(3.24) ImLσ,γ ⊕Kγ,σ = Sm−2,α(M),

where Kγ,σ is the space of forms k satisfying L(k) = 0 and the boundary conditions

δk = 0, [kT ]γ = 0, 〈τ ′k, σ〉 − 〈τ, k〉 = 0.

The splittings in (3.23) and (3.24) are L2 orthogonal.

To motivate the next result, on Sm,ασ (M) form the operator

L̃(h) = L(h) + πKσ(h),

where πKσ is the L2 orthogonal projection onto Kσ along ImLσ. By (3.23), L̃ is an isomorphism

L̃ : Sm,ασ (M)→ Sm−2,α(M).

By a standard subtraction procedure (cf. (3.42) below for details) it follows that any boundary
data δh = 0, [hT ]σ = h1, 〈τ ′h, σ〉 − 〈τ, h〉 = h2 on ∂M has an extension h on M such that

L(h) = kσ ∈ Kσ, L̃(h) = 0.
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One easily verifies that δh = 0 on M (cf. Lemma 3.6) so that

(3.25)

∫
M
〈E′h, κ〉 =

∫
M
〈kσ, κ〉.

However, at this point, it is difficult to evaluate or understand the right side of (3.25), since kσ and
κ are global terms on M . One has no reason to believe that such an extension h satisfies (3.11).

The purpose of the next result is to construct a different slice Q to ImL in place of K, for
which the argument above can be carried out and for which the left side of (3.25) can be effectively
computed (first for κ ∈ K1). A similar slice construction to ImLσ,γ is given in Proposition 3.10
below.

Proposition 3.5. There exists an open set S of smooth Riemannian metrics σ (arbitrarily) near
γ and, for each σ ∈ S, a finite dimensional space Qσ with dimQσ = dimKσ, consisting of smooth
forms of the type

(3.26) q = D2f − (∆f + 2f)g,

and satisfying the conditions:

(3.27) δq = 0,

(3.28) ImLσ ⊕Qσ = Sm−2,α(M).

Proof: A standard computation gives

δD2f = −d∆f −Ric(df) = δ[(∆f + 2f)g],

since Ric = 2g, so that (3.27) follows immediately. For the moment, let f be arbitrary in Cm,α(M).
To establish the slice property (3.28), by the orthogonal direct sum decomposition (3.23) it

suffices to show that for each q ∈ Qσ there exists k ∈ Kσ such that

(3.29)

∫
M
〈q, k〉 6= 0,

so that Qσ has no elements orthogonal to Kσ.
Now computing (3.29) one has∫

M
〈D2f, k〉 =

∫
M
〈df, δk〉+

∫
∂M
〈k(N), df〉 =

∫
∂M

δγ(k(N)T )f + k00N(f),

since δk = 0 by Lemma 2.1. Set

α =

∫
∂M

δγ(k(N)T )f + k00N(f),

so

(3.30)

∫
M
〈q, k〉 = α−

∫
M

(∆f + 2f)trk.

On the other hand, since L(k) = 0 and δk = 0, taking the trace of (2.12) gives

(3.31) ∆trk + 2trk = 0.

Integrating by parts and using the fact that kT = ϕσ on ∂M (ϕ = ϕk) gives∫
M

(∆f + 2f)trk =

∫
∂M

N(f)trk −N(trk)f

=

∫
∂M

N(f)k00 +N(f)ϕtrγσ −N(trk)f = α+

∫
∂M
−δγ(k(N)T )f +N(f)ϕtrγσ −N(trk)f,

= α+

∫
∂M

N(f)ϕtrγσ − 2H ′kf − f〈A, k〉,
17



where the last equality follows from (2.17). Substituting this in (3.30) gives then the basic formula

(3.32)

∫
M
〈q, k〉 = −

∫
∂M

ϕkN(f)trγσ − f [2H ′k + 〈A, k〉].

This holds for all k = kσ ∈ Kσ, for any σ. From this, we need to establish (3.29).
Observe that if (3.32) vanishes for all choices of f , then necessarily

ϕ = 0 and H ′k = 0.

Namely one can set f = 0 and N(f) arbitrary on ∂M to obtain ϕ = 0; given this one can then
choose f arbitrary to obtain H ′k = 0.

The discussion above holds for each choice of smooth symmetric form σ and each kσ ∈ Kσ. In
particular, it applies to the “original” case σ = γ. For any σ as above, consider the “reduced

kernel” K̃σ ⊂ Kσ consisting of those kσ ∈ Kσ with ϕkσ = 0,

K̃σ = {k ∈ Kσ : kT = 0 on ∂M}.

Let Pσ be the L2 orthogonal complement of K̃σ in Kσ so that

Kσ = K̃σ ⊕ Pσ.

If πj is a basis for Pσ, then the boundary values ϕj (πTj = ϕjσ on ∂M) are linearly independent.

For convenience, assume {ϕj} are orthonormal in L2(∂M).
To begin, we choose a slice for Pγ ⊂ Kγ . Thus choose fi ∈ Cm,α(M), 1 ≤ i ≤ dimPσ, such that

fj = 0 on ∂M and N(fj) = ϕj on ∂M . Then

(3.33)

∫
∂M

ϕjN(fi) = δij .

Define then forms qi as in (3.26). This gives a space QPγ with dimQPγ = dimPγ for which the slice
property holds, i.e. for any q =

∑
aiqi ∈ QPγ , there exists π ∈ Pγ such that

(3.34)

∫
M
〈q, π〉 6= 0.

For σ close to γ, with the same choice of fi = 0 and of N(fi) on ∂M , (3.33) gives

(3.35)

∫
∂M

ϕjN(fi)trγσ ∼ δij ,

so the slice condition (3.34) still holds. This gives a slice QPσ for all σ (close to γ).

To obtain a slice for K̃σ, choose σ as follows. For the central choice σ = γ, the kernel Kγ consists
of forms satisfying

L(k) = 0, δk = 0, [kT ]γ = 0 and −H ′k = 〈τ ′k, γ〉 − 〈τ, k〉 = 0.

while the reduced kernel K̃γ consists of forms satisfying the further requirement kT = 0 on ∂M .
Now choose σ such that (as functions on ∂M)

(3.36) 〈τ ′k, σ〉 − 〈τ, k〉 6= 0,

for all non-zero k ∈ K̃γ . (If K̃γ = 0, then Kγ = Pγ , so that (3.34) gives the required slice property

for Kσ with σ = γ). If some kσ ∈ Kσ satisfies kσ = k ∈ K̃γ , then one has of course 〈τ ′k, σ〉−〈τ, k〉 6= 0

by (3.36) but by definition of Kσ, 〈τ ′kσ , σ〉 − 〈τ, kσ〉 = 0, a contradiction. Thus kσ /∈ K̃γ for all kσ,
i.e.

Kσ ∩ K̃γ = 0,

for all σ satisfying (3.36).
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Now by definition k ∈ K̃γ if and only if H ′k = 0 and ϕ = ϕk = 0. Thus kσ /∈ K̃γ exactly when
either H ′k 6= 0 or ϕkσ 6= 0. In the second case, kσ ∈ Pσ and so (3.35) gives the slice property. If

ϕkσ = 0, kσ ∈ K̃σ implies H ′kσ 6= 0. Moreover if kj is a basis of K̃σ, then the functions {H ′kj} are

linearly independent, and hence so are the functions {2H ′kj + 〈A, kj〉} (since kTj = 0). Thus again

from the basic formula (3.32), there is a choice of basis functions {fi} (with N(fi) = 0 for instance)

which gives the slice property as in (3.33)-(3.34) on K̃σ. This together with (3.34) itself, gives the
slice property for all of Kσ.

To complete the proof, it suffices then to prove there exists an open set of σ near γ such that

(3.36) holds. Observe first that for k ∈ K̃γ , (so ϕk = 0), A′k 6= 0 on ∂M . For if kT = (A′k)
T = 0 on

∂M , then by Corollary 2.3, k = 0 on M . It follows that if kj is a basis for K̃γ then the symmetric
forms A′kj , and hence τ ′kj , are linearly independent on ∂M .

Note that (3.36) may be reformulated as: find a linear map B, close to the identity, such that

(3.37) tr(Bτ ′k) ≡ trγBτ ′k 6= 0,

for all 0 6= k ∈ K̃γ .
Each τ ′k is trace-free with respect to γ, since ϕk = 0 so that trγτ

′
k = −H ′k = 0. Thus each τ ′k

has a non-trivial positive part (τ ′k)
+ given by composing τ ′k with the projection onto the positive

eigenspaces of τ ′k. In particular, on any basis kj of K̃τ , the forms (τ ′kj )
+ are linearly independent

on ∂M . Hence they are linearly independent pointwise on some open set Ω ⊂ ∂M . To simplify the
notation, set τ ′kj = Tj and (τkj )

+ = (Tj)
+.

Choose points pi ∈ Ω, 1 ≤ i ≤ dimK̃γ with disjoint neighborhoods Ui ⊂ Ω and positive bump
functions ηi supported in Ui, with ηi(pi) = 1. For the moment, set B =

∑
j ηjT

+
j , where for each

i, the basis forms {T+
i } satisfy

(3.38) 〈T+
i , Tj〉(pi) = 0, for all j > i.

Such a basis may be constructed inductively as follows. At p1, choose any basis k1 of K̃γ . Fix k1
and T1 = T ′k1 ; via the standard Gram-Schmidt process, construct then the basis forms kj , j ≥ 2
satisfying (3.38) at p1. Next in the space spanned by {kj}, j ≥ 2, repeat the process at p2, starting
with T2 and constructing forms kj , j ≥ 3 satisfying (3.38) at p2. One continues inductively in this

way through to the last point. Note that a different basis of K̃γ is thus used at each point pi. At
any given pr one has

(3.39) tr(BTk)(pr) = 〈B, Tk〉(pr) =
∑
i,j

ηicj〈T+
i , Tj〉(pr),

where k =
∑
cjkj in the basis associated to pr.

Now suppose that there exists k ∈ K̃γ such that tr(Bτ ′k) = 0. Evaluating (3.39) at p1 gives, by
(3.38),

tr(Bτ ′k)(p1) = c1|T+
1 |

2(p1) = 0,

so that c1 = 0. Using this, and by the construction of the basis at p2, one has similarly

tr(BT ′k)(p2) = c2|T+
2 |

2(p2) = 0,

so that c2 = 0. Continuing in this way, it follows that cr = 0 for all r, and hence by the construction

of the bases at {pr}, k = 0. Thus tr(BT ′k) 6= 0 for all non-zero k ∈ K̃γ . This establishes (3.37) for
this choice of B.

Finally, note that for B′ = Id, trγ(B′τ ′k) = 0, for all k ∈ K̃γ . Also, on the unit sphere in K̃γ

the space of functions trγ(Bτ ′k) is compact, and so bounded away from the zero function. Hence,
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choosing ε sufficiently small and replacing B by Id + εB gives a smooth metric σ > 0, close to γ
on ∂M , satisfying (3.36).

Proposition 3.5 gives the existence of a “good” slice Qσ to ImLσ as in (3.28) consisting of forms
q of the form (3.26). Of course it is possible that Kσ = 0, for some or all σ 6= γ, while Kγ 6= 0.

Now, as discussed prior to Proposition 3.5, form the operator

(3.40) L̃(h) = L(h) + πQσ(h),

where πQσ is the L2 orthogonal projection of Kσ onto Qσ along ImLσ. Proposition 3.5 implies

that L̃ is an isomorphism

(3.41) L̃ : Sm,ασ (M)→ Sm−2,α(M).

Given any boundary data δh = 0, [hT ]σ = h1, 〈τ ′h, σ〉 − 〈τ, h〉 = h2 on ∂M , let he be a smooth
extension of the boundary data to M . Assume without loss of generality that he depends smoothly

on the boundary data (σ, h1, h2). Let L̃(he) = z. By the isomorphism property above, there is a

unique h0 = t+ kσ, with t ∈ K⊥σ ⊂ S
m,α
σ (M) and kσ ∈ Kσ, such that L̃(h0) = z. Hence, setting

(3.42) h = he − h0 = he − t− kσ,
gives

(3.43) L(h) = q, L̃(h) = 0,

where q = πQσ(kσ − he).
We will refer to h in (3.42) as the “canonical” extension of the boundary data (σ, h1, h2). The

next two results give some basic properties of this extension.

Lemma 3.6. For any boundary data h1 and h2 as above, the solution h of (3.43) satisfies

(3.44) δh = 0,

on M .

Proof: By (3.43) and (3.27), it follows that δL(h) = 0. Also, by (2.13), for any h, one has
δL(h) = δδ∗(δ(h)) (since δE′ = 0 by the Bianchi identity). Hence,

δδ∗(δ(h)) = 0,

on M . The result then follows by Lemma 2.1.

Proposition 3.7. For any boundary data (σ, h1, h2) the canonical extension h in (3.42) satisfies

(3.45)

∫
∂M

E′h(N,X) =

∫
∂M

q(N,X) =

∫
∂M

ϕX [−2N(f) +Hf ],

where f is associated to q as in (3.26) and κ = δ∗X ∈ K1.

Proof: We have L(h) = E′(h) + δ∗δ(h) = E′(h) by (2.13). Since L(h) = q,

E′h = q,

so that for such h,
∫
∂M E′h(N,X) =

∫
∂M q(N,X). Thus we need to show that

(3.46)

∫
∂M

q(N,X) =

∫
∂M

D2f(N,X)− (∆f + 2f)ν =

∫
∂M

ϕX [−2ϕXN(f) +Hf ],

where ν = 〈N,X〉.
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Computing the first D2(N,X) term in (3.46) gives∫
∂M
〈∇X∇f,N〉 =

∫
∂M

νNN(f) +XT 〈∇f,N〉 − 〈∇f,∇XTN〉

=

∫
∂M

νNN(f)− div(XT )N(f)−A(XT ,∇f) =

∫
∂M

νNN(f)− div(XT )N(f)− fδ(A(XT ))

=

∫
∂M

νNN(f)− div(XT )N(f) + f〈A, δ∗(XT )〉+ fdH(XT ),

where we have used the fact that (δA)(XT ) = −dH(XT ). Since (δ∗X)T = ϕXγ, one has δ∗(XT ) +
νA = ϕXγ, so that div(XT ) = −νH + 2ϕX . It follows that

(3.47)

∫
∂M

D2f(N,X) =

∫
∂M

ν[NN(f) +HN(f)− f |A|2]− 2ϕXN(f) + fϕXH + fXT (H).

On the other hand, for the second term in (3.46) one has ∆f = ∆∂Mf + HN(f) + NN(f) so
that

(3.48)

∫
∂M

(∆f + 2f)ν =

∫
∂M

f∆∂Mν +HN(f)ν +NN(f)ν + 2fν.

Subtracting (3.48) from (3.47) gives∫
∂M

E′h(N,X) = −
∫
∂M

f [∆ν + (|A|2 + 2)ν −XT (H)]− 2N(f)ϕX − ϕXHf

=

∫
∂M

fH ′κ − 2N(f)ϕX + ϕXHf,

where H ′κ = 2H ′δ∗X . Since H ′κ = 0, the result follows.

The next two results give a partial proof of Theorem 3.3. The full proof of Theorem 3.3 is then
completed after the proof of Proposition 3.10 below.

Let K̃1 be the reduced kernel in K1, i.e. κ ∈ K̃1 if and only if κ = δ∗X for some X with κT = 0
and H ′κ = 0 at ∂M .

Proposition 3.8. One has

(3.49) K̃1 = 0.

Proof: Recall the formula (3.4)

(3.50)

∫
∂M
〈τ ′κ, hT 〉 =

∫
∂M

E′h(N,X)−
∫
∂M

ϕXH
′
h,

valid for any smooth h on M .

Suppose κ ∈ K̃1, κ = δ∗X. The last term in (3.50) then vanishes since ϕX = 0. Choose then
σ as in Proposition 3.5 and let h be the canonical extension of any boundary data (h1, h2). By
Proposition 3.7, it follows that∫

∂M
E′h(N,X) =

∫
∂M

ϕX [−2N(f) +Hf ] = 0,

(again since ϕX = 0). Hence, for any boundary data [hT ]σ = h1,∫
∂M
〈τ ′κ, hT 〉 = 0.
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Let D be the space of Dirichlet boundary data {hT }, for which there is an extension h of hT to
M such that

(3.51)

∫
∂M

E′h(N,X) = 0.

This includes of course Dirichlet boundary values of all Einstein deformations, but in general, is
considerably larger. The space D is linear subpace of Sm,α(∂M), of finite codimension. To see
this, the conformal classes [hT ]γ of D are of finite codimension in the space T (C) of all infinitesimal
deformations of conformal classes, (by the Fredholm property of Lγ). Moreover, by (3.50) and
Remark 3.2, any pure-trace deformation hT = fγ is in D, since ϕX = 0. Hence D is of finite
codimension in Sm,α(∂M).

Given σ and given a slice Qσ as in (3.28), for any boundary data (h1, h2), the canonical extension
h satisfies (3.51). Thus the “Dirichlet data” h1 = [hT ]σ may be arbitrarily prescribed (as may the
“Neumann data” h2); for any given equivalence class h1, there is an hT ∈ D with [hT ]σ = h1.

Let hσ0 be the trace-free part of h with respect to σ, i.e.

hσ0 = h− 〈h, σ〉
〈σ, σ〉

σ,

so that 〈hσ0 , σ〉 = 0 and let Vσ be the space of all such forms. One has a natural embedding
Vσ ⊂ Sm,α(∂M) and a natural projection map πσ : Sm,α(∂M) → Vσ. Any class [hT ]σ is uniquely
represented by an hσ0 ∈ Vσ and hence

πσ(D) = Vσ.

The same construction holds for σ = γ, with Vγ ⊂ Sm,α(∂M) the usual space of trace-free forms
on ∂M with respect to γ. For σ close to γ, the subspaces Vσ and Vγ are close, as are the projection
maps πσ, πγ . In particular, there is a natural isomorphism I : Vσ → Vγ . It follows that

πγ(D) = Vγ ,

so that boundary values hT of deformations hT satisfying (3.51) surject onto all conformal classes.
Since τ ′κ is trace-free, so in fact τ ′κ ∈ Vγ , it follows that

τ ′κ = 0,

which together with H = 0 gives A′κ = 0. Since κT = 0, the result then follows from Corollary 2.3.

Next we extend Proposition 3.8 to the full reduced kernel K̃. General deformations κ ∈ KerDΠ
are not necessarily of the form

(3.52) κ = δ∗X.

However, in dimension 3, all infinitesimal Einstein deformations are constant curvature deforma-
tions and hence all deformations are locally of the form (3.52). In particular (3.52) holds on the

universal cover M̃ . This leads to the full version of Proposition 3.8.

Proposition 3.9. One has

(3.53) K̃ = 0,

and hence K = P = Pγ. Consequently, Kσ = Pσ for any σ sufficiently close to γ.

Proof: As above, consider the universal cover M̃ of M with boundary ∂̃M the lift of ∂M to M̃ .

Recall the developing map gives an isometric immersion D : M̃ → S3. The group π1(M) = Z∗· · ·∗Z
acts isometrically on M̃ . A fundamental domain F ⊂ M̃ for the action of π1(M) is topologically
a thickening of a “g-cross”, i.e. g = genus(∂M) linearly independent line segments intersecting
at a common midpoint. The boundary ∂F consists of two parts; first the “intrinsic” boundary
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∂iF = ∂̃M ∩ F̄ coming from the lift of ∂M , and second, 2g discs Dj in M̃ meeting ∂iF in 2g circles.
Pairs of discs Dj ∪D′j are glued by an isometry to obtain the quotient manifold M , and give rise
to g discs in the interior of M . Equivalently, M is cut along g discs to obtain F .

Any form κ ∈ KerDΠ lifts to a form, also called κ on F , with κ of the form (3.52). Under the
gluing of the paired discs, the vector field X is transformed to X + Z, for some Killing field Z on
S3, depending on j.

On F , the formula (3.6) holds and gives

(3.54)

∫
∂F
〈τ ′κ, hT 〉+ 〈a(κ), hT 〉 =

∫
∂F
〈τ ′h, κ〉+ 〈a(h), κT 〉+

∫
F
〈E′h, δ∗X〉.

The terms on the boundary discs Dj∪D′j involving only κ cancel when glued, since κ is well-defined
on M . Hence, ∫

∂iF
〈τ ′κ, hT 〉+ 〈a(κ), hT 〉 =

∫
∂iF
〈τ ′h, κ〉+ 〈a(h), κT 〉+

∫
F
〈E′h, δ∗X〉,

which as in (3.8) gives ∫
∂iF
〈τ ′κ, hT 〉 = −

∫
∂iF

ϕXH
′
h +

∫
F
〈E′h, δ∗X〉.

As before,

(3.55)

∫
F
〈E′h, δ∗X〉 =

∫
∂F
E′h(N,X).

The construction and properties of the slices Q (and the associated operator L̃) hold for the
full kernel K = Kσ; they do not require holonomy trivial deformations. Thus we carry out the

construction with L, L̃, Q, canonical extension and such as before on M , and lift up to the
fundamental domain F . One thus has prescribed boundary data (h1, h2) for h along the intrinsic
boundary ∂iF . Note one has no such exact boundary control along the gluing discs Dj ∪D′j .

As in Proposition 3.7, one has E′h = q for some q ∈ Qσ and lifting this data up to F gives∫
∂F
E′h(N,X) =

∫
∂F
q(N,X).

We claim that

(3.56)

∫
Dj∪D′j

q(N,X) = 0,

for each pair of discs, 1 ≤ j ≤ g. Observe that δ∗X = δ∗(X+Z) for any Killing field Z on M̃ while
νX+Z = νX + νZ . To prove (3.56), it suffices to prove

(3.57)

∫
Dj

q(N,X) =

∫
Dj

q(N,X + Z),

since when the discs Dj and D′j are glued, the normal vectors N point in the opposite directions,

producing a cancelation which gives (3.56).
To prove (3.57), one calculates exactly as in (3.47)-(3.48), replacingX byX+Z. Preceding (3.47),

δ∗(XT ) = −νA+ϕXγ is replaced by δ∗(XT +ZT ) = −νX+ZA+κT , while div(XT ) = −νH + 2ϕX
is replaced by div(XT +ZT ) = −νX+ZH + trκT . Of course κ = δ∗X = δ∗(X +Z). It follows then
easily that∫

Dj

q(N,X + Z)−
∫
Dj

q(N,X) = −
∫
Dj

f [∆νZ + (|A|2 + 2)νZ − ZT (H)] = 0,

since H ′δ∗Z = 0.
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Equation (3.56) implies that ∫
∂F
E′h(N,X) =

∫
∂iF

q(N,X),

and rest of the proof of Proposition 3.9 is the same as that of Proposition 3.8.

To understand the remaining part P of the kernel K, we consider now the boundary conditions

(3.58) [hT ]σ = h1, −H ′h = 〈τ ′h, γ〉 − 〈τ, h〉 = h2.

As in (3.14), let Sm,ασ,γ (M) be the space of Cm,α smooth forms on M satisfying (h1, h2) = (0, 0) for
h1 and h2 as in (3.58). These boundary conditions are no longer self-adjoint, but for σ close to γ,
are close to being self-adjoint. Let

Lσ,γ = L|Sm,ασ,γ (M) : Sm,ασ,γ (M)→ Sm−2,α(M).

The operator Lσ,γ is elliptic and close to Lσ, and so is Fredholm, of Fredholm index zero. The
kernel Kσ,γ = KerLσ,γ is given by forms k with L(k) = 0, δk = 0 with (h1, h2) = (0, 0) in (3.58)
(so that in particular H ′k = 0) and

ImLσ,γ ⊕Kσ,γ = Sm−2,α(M).

This is a direct sum decomposition, which is almost, but not exactly, L2 orthogonal. As in (3.22),

(3.59) (ImLσ,γ)⊥ = Kγ,σ,

where Kγ,σ consists of forms k satisfying δk = 0, [kT ]γ = 0, 〈τ ′k, σ〉 − 〈τ, k〉 = 0.
Now the analog of Proposition 3.5 in this setting is:

Proposition 3.10. Under the assumptions K = 0 and H∂M = 0, there exist smooth Riemannian
metrics σ on ∂M arbitrarily close to γ, and a slice Qσ,γ, consisting of smooth forms q = D2f −
(∆f + 2f)g as in (3.26), such that

(3.60) ImLσ,γ ⊕Qσ,γ = Sm−2,α,

and such that, (cf. (3.45))

(3.61)

∫
∂M

ϕX [−2N(f) +Hf ] = 0.

Proof: The computations following (3.29) remain valid as before and (3.32) still holds. In this
setting, we now choose 2N(f)−Hf = 0 at ∂M , (e.g. N(f) = 0 when H = 0), so that (3.61) holds
automatically and (3.32) becomes∫

M
〈q, k〉 =

∫
∂M

f [2H ′k + 〈A, k〉] =

∫
∂M

f〈A, k〉.

Note that if k ∈ Kσ,γ has ϕk = 0, then k ∈ K̃γ and by (3.53), K̃γ = 0. Hence ϕk 6= 0 for all
non-zero k ∈ Kσ,γ . First choose then σ so that

(3.62) 〈A, k〉 6= 0,

(as functions on ∂M) for all non-zero k = kσ ∈ Kσ,γ . Of course kT = ϕkσ on ∂M ; note also that
if ϕk = 0 on any open set in ∂M , then ϕk = 0 on ∂M , since ϕk is analytic.

We then choose fi such that

(3.63)

∫
∂M

fi〈A, kj〉 = δij ,

where kj is a basis of Kσ,γ with kTj = ϕjσ and {ϕj} orthonormal in L2(∂M).
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Next we claim that there is a further choice of σ (satisfying (3.62)) verifying the slice property
(3.60). As in (3.59), (ImLσ,γ)⊥ = Kγ,σ and so to show that q /∈ ImLσ,γ , it suffices to show that,
for any non-zero q, ∫

M
〈q, k̃〉 6= 0,

for some k̃ ∈ Kγ,σ. Computing this in same way as before gives

(3.64)

∫
M
〈q, k̃〉 =

∫
∂M

f(2H ′
k̃

+ 〈A, k̃〉) =

∫
∂M

2fH ′
k̃
,

since κ̃ = ϕγ and H = 0. By assumption, 〈τ ′
k̃
, σ〉 − 〈τ, k̃〉 = 0, and hence (again since H = 0)

〈τ ′
k̃
, σ〉 = 0. Note that if H ′

k̃
= 0 then k̃ ∈ K = Kγ , since k̃T = ϕγ. Now by assumption K = 0.

Hence there is an open set of σ near γ such that, for any k̃ ∈ Kγ , 〈τ ′
k̃
, σ〉 6= 0. This is equivalent to

the statement that there is an open set of σ near γ such that for k̃ ∈ Kγ,σ, H ′
k̃
6= 0. Clearly, by the

openness property for instance, one may choose σ in addition so that (3.62) holds.
As in (3.63), one may then choose linearly independent boundary functions fi and form the slice

Qσ.

Propositions 3.9 and 3.10 essentially complete the proof of Theorem 3.3. Namely, given Qσ,γ as

in (3.60), one defines the operator L̃ as in (3.40) to obtain the canonical extension h of boundary
values [hT ]σ = h1 and −H ′h = h2 = 0. By (3.45) and (3.61),

(3.65)

∫
M
〈E′h, κ〉 =

∫
∂M

E′h(N,X) = 0,

for κ ∈ K1 with [hT ]σ = h1 arbitrary. Similarly, by Proposition 3.9, (3.65) holds for arbitrary
κ ∈ K. Thus (3.5) simplifies to ∫

∂M
〈τ ′κ, hT 〉 = 0.

As in the proof of Proposition 3.7, it follows that (τ ′κ)T = 0, so (A′κ)T = 0. Hence, since K = 0,
κ = 0.

This completes the proof of Theorem 3.3.

We recall that all the work above holds for ∂M of arbitrary genus.
We now proceed toward proving

K = 0,

which, via Theorem 3.3, will prove Theorem 1.1. Assume in the following that genus(∂M) ≥ 2;
the case genus(∂M) = 1 will be discussed afterwards.

As discussed in the Introduction, let Diff0(M) = Diffm+1,α
0 (M) be the group of Cm+1,α dif-

feomorphisms of M isotopic to the identity and mapping ∂M → ∂M . When genus(∂M) ≥ 2,
Diff0(M) acts freely on C and so on the target space C × C of Π. When ∂M is minimal (or of
constant mean curvature) the linearization DΠ of Π descends to a smooth Fredholm map

(3.66) DΠ : T (E/Diff0(M))→ TT (∂M)× C(∂M),

DΠ(h) = ([hT ], H ′h),

where [hT ] = [hT + fγ + δ∗Y T ], for any function f and vector field Y T tangent to ∂M .
Next, we proceed one step further and divide out by the full diffeomorphism group Diff(M) =

Diffm+1,α(M) of M , at the linearized level. At the boundary, this corresponds to dividing out
(setting to zero) the metric variations which are induced by vector fields normal to ∂M .
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Thus, let the functions ν ∈ Cm+1,α(∂M), identified with normal vector fields νN , act on the
boundary space TT (∂M)× Cm−1,α((∂M) as the normal variation of the data:

(3.67) ν(([h], H ′h)) = ([h+ δ∗(νN)], H ′h +H ′δ∗(νN)),

with δ∗(νN) = νA. This gives an action of Cm+1,α(∂M) on TT (∂M)×Cm−1,α(∂M). The stabilizer
J1 of the action at any point ([h], H ′h) consists of ν such that ν(([h], H ′h)) = ([h], H ′h), i.e. [νA] = 0
and H ′νA = 0. Thus

δ∗Y T + νA = ϕγ, H ′νA = 0,

for some Y T , ϕ. Since ∂M has no tangential conformal vector fields, Y T is uniquely determined
by ν. The vector field Y = Y T + νN gives an element δ∗Y in the holonomy trivial kernel K1 as in
(3.3). Let Z be the space Killing fields Z on (M, g), so δ∗Z = 0. It follows that

(3.68) dimJ1 = dimZ + dimK1.

The stabilizer is the same at all points, so the quotient group Cm+1,α(∂M)/J1 acts freely on
T (∂M)× C(∂M).

Let {H ′νA} denote the space of variations of H, as ν ranges over Cm+1,α(∂M) and let

(3.69) Cm−1,α(∂M)/{H ′νA} = Ĵ .

Since the Jacobi operator H : Cm+1,α(∂M)→ Cm−1,α(∂M), H(f) = H ′fA = −∆f − (|A|2 + 2)f is

self-adjoint, there is a natural isomorphism between the kernel J of H (the space of Jacobi fields)

and the cokernel Ĵ of H.
Note that for any prescribed function η on ∂M , there is a metric variation ` of (M, g) (not

necessarily Einstein) such that H ′` = η; thus

Cm−1,α(∂M) = {H ′`}.

Lemma 3.11. The orbit space of the action of Cm+1,α(∂M) on T (T (∂M))×Cm−1,α(∂M) is given
by

(3.70) [T (T (∂M)/(J/J1)]× Ĵ .

Proof: If two orbits
([h1], χ1) = ([h2], χ2),

are equal, then
h2 = h1 + νA,

(mod δ∗Y T ) and
χ2 = χ1 +H ′νA.

Without loss of generality we may assume that χ1 and χ2 are orthogonal to the space of variations
{H ′νA} as in (3.69). It follows that χ1 = χ2 and so H ′νA = 0. Hence

ν ∈ J,
i.e. νN is a Jacobi field. The subspace J1 ⊂ J acts trivially. Moreover, distinct elements χ1,

χ2 ∈ Ĵ ' J give rise to distinct orbits. This gives (3.70).

It follows that the map DΠ in (3.66) descends further to a map

(3.71) D̂Π : T (E/Diff(M))→ [T (T (∂M)/(J/J1)]× Ĵ ,

D̂Π(h) = ([hT ], [H ′h]),

where now ([hT ], [H ′h]) = ([hT + ϕγ + δ∗Y T + νA], [H ′h +H ′νA]), for any functions ϕ, ν and vector

field Y T tangent to ∂M . Set Y = Y T + νN .
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Note that

(3.72) T (E/Diff(M)) = {h}/{δ∗Y } ' TρR(M),

is naturally isomorphic to the space of infinitesimal holonomy deformations of (M, g).
Now consider the analog of the operator L in (3.15) in this setting, (where σ1 = σ2 = γ). We

have T (Met(M)/Diff(M)) = Sm,α(M)/δ∗(χm+1,α) ' {`}/{δ∗Y }. As in (3.14), the zero boundary
values in this space are given as

([hT , [H ′h]) = (0, 0),

i.e.

(3.73) hT = ϕγ + δ∗Y, Y = Y T + νA, with H ′h = H ′νA.

Let then Ŝm,α0 (M) be the subspace of Ŝm,α(M) = Sm,α(M)/δ∗(χm+1,α) satisfying (3.73) and con-
sider the induced Einstein operator

(3.74) E′ : Ŝm,α0 (M)→ Ŝm−2,α(M).

Since E′ is diffeomorphism invariant, i.e. E′(δ∗Y ) = 0, (3.74) is well-defined. Alternately, since we
are dividing out by the full diffeomorphism group, there is no longer a need for a gauge choice,
such as the divergence-free gauge. Namely, dividing out by all diffeomorphisms or vector fields
at ∂M constitutes dividing out by 3 degrees of freedom. The gauge condition δk = 0 at ∂M , or
equivalently the constraint equations (2.3)-(2.4), constitute 3 scalar conditions. Consequently, the
divergence-free gauge condition in (3.14) is now eliminated.

Elements k̂ in the kernel of E′, or equivalently D̂Π, are equivalence classes of infinitesimal Einstein
deformations which at ∂M have the form

(3.75) k̂T = ϕγ + δ∗Y, Y = Y T + νN with H ′
k̂

= H ′νA.

We claim that

(3.76) index D̂Π = 0.

Recall first that indexDΠ = 0. This follows from the self-adjoint property of the boundary condi-
tions (3.16), (Proposition 3.4) which gives the splitting (3.23), together with the standard exten-
sion/subtraction argument as discussed in (3.40)-(3.43).

Now K = KerDΠ consists of all infinitesimal Einstein deformations κ such that κT = ϕγ,

H ′κ = 0. The kernel K̂ of D̂Π consists of equivalence classes [κ] of κ under the equivalence relation
generated by δ∗Y , as in (3.75). Thus,

dim K̂ = dimK − dimK1.

Similarly, from (3.23),

ImLγ ⊕K = Sm−2,α(M).

so that Coker Lγ = K. Again one divides out by the space of forms δ∗Y , so that dimCokerE′ =
dimK − dimK1. This proves the claim.

Now recall from (2.37)

(3.77) dimTeR(M) = dimH1(π1(M), Ad e) = dimT (E/Diff(M)) = 6g,

while for (M, g) of holonomy ρ, we let

(3.78) dimTρR(M) = dimH1(π1(M), Ad ρ) = dimT (E/Diff(M)) ≡ Dρ ≤ 6g.

Generically, Dρ = 6g − 6.
27



Corollary 3.12. For genus(∂M) ≥ 2, one has

(3.79) dimJ1 = dimZ + dimK1 = 6,

when ρ = e, so that

(3.80) K1 = 0.

The holonomy trivial kernel consists only of Killing fields, i.e. the only solutions to

δ∗Y T + νA = ϕγ, H ′νA = 0,

are Killing fields Z. For general holonomy representation ρ, one has

(3.81) dimJ1 = Dρ − (6g − 6),

so that dimJ1 = dimZ and K1 = 0. Generically, J1 = Z = 0.

Proof: The first equality in (3.79) is of course just (3.68). Referring to (3.71)-(3.72), one has

dimT (E/Diff(M) = Dρ ≤ 6g,

while

dim[T (T (∂M)/(J/J1)]× Ĵ = 6g − 6 + j1,

where j1 = dimJ1. By the Fredholm alternative one then has

Dρ = 6g − 6 + j1 + indexD̂Π,

which via (3.76) gives (3.79) and (3.81). The last statement then follows from (2.38).

We are now (finally) in position to complete the proof of Theorem 1.1.

Proof of Theorem 1.1.
The idea at this point is to apply the slice construction as in Propositions 3.5 and 3.10 for the

map D̂Π in place of the map DΠ, and with the kernel K̂ in place of Q; more precisely, we choose

specific representatives for the slice K̂.

To begin, by Corollary 3.12, (K1 = 0), any non-zero k ∈ K induces a non-zero k̂ ∈ K̂, and hence

(3.82) K̂ ' K.

In particular, K̂ consists of forms with non-trivial holonomy.

We now choose (unique) representatives k̂ of [k̂] ∈ K̂ such that

k̂ ⊥ Im(δ∗Y ).

Such representatives can be constructed as minimizers of the L2 norm ||k̂ + δ∗Y ||L2 as Y ranges
over the space χm+1,α(M) of Cm+1,α vector fields on M .

For such k̂, one has

0 =

∫
M
〈k̂, δ∗Y 〉 =

∫
M
〈δk̂, Y 〉+

∫
∂M

k̂(N,Y ),

for all Y , and hence

(3.83) k̂(N, ·) = 0, δk̂ = 0.

These are exactly the properties needed of the slice Q = Qσ used in (3.27) (for Lemma 3.6) and

(3.45) used for showing
∫
∂M E′h(N,X) = 0. Thus we choose K̂ to be the slice for ImD̂Π with

representatives satsifying (3.83). In exactly the same way as before, (forming the operator L̃ by
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addition of the projection operator to K̂ to L), it follows then that for boundary data ([hT ], [H ′h])
arbitrarily prescribed, one has a canonical extension h such that as in (3.65)

(3.84)

∫
M
〈E′h, κ〉 = 0,

for any κ ∈ K = KerDΠ. Here the boundary data hT is prescribed modulo addition of terms
ϕγ + δ∗Y T + νA with H ′h prescribed mod H ′νA.

Now return to main formula (3.50); we choose κ ∈ K, so κT = ϕγ, τ ′κ = 0 and H ′κ = 0. One
then has

0 =

∫
∂M
〈τ ′κ, hT 〉 = −

∫
∂M

ϕκH
′
h.

Now H ′h may be arbitrarily prescribed modulo H ′νA. On the other hand, since δ∗(νN) is an
infinitesimal Einstein deformation,∫

∂M
ϕκH

′
νA = −

∫
∂M
〈τ ′κ, νA〉 = 0,

exactly since τ ′κ = 0. It follows that ∫
∂M

ϕκH
′
h = 0,

with H ′h arbitrarily prescribed. Hence

ϕκ = 0

and hence κ = 0 by Corollary 2.3. This shows

K = 0,

and thus by Theorem 3.3,

K = KerDΠ = 0.

This completes the proof of Theorem 1.1.

We now turn to the proofs of Theorems 1.2 and 1.3. The main aspects of the proofs of these
results are treated concurrently; further the proofs follow closely the proof of Theorem 1.1 above.
We recall that Propositions 3.1 through to Proposition 3.10 hold for genus(∂M) = 1.

For ∂M = T 2, let Diff0(M) = Diffm+1,α
0 (M) denote the group of diffeomorphisms of M isotopic

to the identity, mapping ∂M → ∂M , and fixing a given point p0 ∈ ∂M . This differs from the
diffeomorphism group used for higher genus by the action of T 2 on itself by the translation group
T .

The vector fields T ∈ T are conformal vector fields on (∂M, γ) so that

(3.85) dim{δ∗T} = 2− i,
where as in (2.22), i is the number of tangential Killing fields on (∂M, γ).

As before, we form the quotient by dividing out by the tangential diffeomorphisms Diff0(M)
(corresponding to vector fields Y T ) and then dividing out by normal vector fields Y = Y T + νN .
The action (3.67) is defined the same way here for ∂M = T 2, with stabilizer J1. The analog of
(3.68) is

(3.86) dimJ1 + (2− i) = dimZ − i+ dimK1.

Namely, an element ν ∈ J1 determines a vector field Y T uniquely up to the space of conformal
Killing fields of dimension 2− i. The pair (Y T , ν) give either a non-tangential Killing field Y = Z
at ∂M , or an element of K1. This gives (3.86).
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Lemma 3.11 holds here in the same way and the induced map D̂Π is defined as in (3.71). As
before, one has

E′ : Ŝm,α0,v (M)→ Ŝm−2,α(M),

where now the domain Ŝm,α0,v (M) consists of zero boundary values in the space Sm,α(M)/δ∗(χm+1,α
v ) =

T (Met(M)/Diff0,v(M)), where the subscript v denotes vector fields vanishing at a fixed point. One
has

(3.87) Ŝm,α0,v (M) = Ŝm,α0 (M)⊕ {δ∗T}.
The proof that

(3.88) index D̂Π = 0

is the same as in (3.76).
In analogy to (3.77) and (3.78), for genus(∂M) = 1 one has

(3.89) dimTeR(M) = dimH1(π1(M), Ad e) = dimT (E/Diff(M)) = 6,

while for general ρ,

(3.90) dimTρR(M) = dimH1(π1(M), Ad rho) = dimT (E/Diff(M)) = Dρ ≤ 6,

(and generically Dρ = 2).

Corollary 3.13. When genus(∂M) = 1,

(3.91) dimJ1 = 6− i, dimK1 = 2− i,
when ρ = e, where i is the number of tangential Killing fields. Thus all elements in K1 are given
by tangential conformal Killing fields and

K1 ⊂ K.

For general ρ, one has

(3.92) dimJ1 = Dρ − i, dimK1 = 2− i.
Each ν ∈ J1 is the normal component of some Killing field on (M, g).

Proof: The same argument as the proof of Corollary 3.12 gives

Dρ + 2− i = 2 + j1 + index(DΠ),

where for the right side we use (3.71)-(3.72), (3.85) and (3.87). Thus the first equality in (3.91)
follows from (3.88), while the second then follows from (3.86). The same argument of course gives
(3.92). The last statement follows t hen again from (3.86).

The analog of (3.82) in this setting is

K̂ ' K/K1,

and one has K/K ⊂ K/K1. As before, we use the slice K̂ for the mapping D̂Π, with representatives

k̂ as in (3.83). However in this case, there is no slice for K1, of dimension 2 − i, so that there is
only a partial slice to ImL.

Nevertheless, it follows by the canonical extension process as before that for all boundary data
([hT ], [H ′h]) in a space G of codimension 2− i = dimK1 in Cm,α×Cm−1,α(∂M), there is a canonical
extension h such that (3.84) holds for any κ ∈ KerDΠ and thus

(3.93)

∫
∂M
〈τ ′κ, hT 〉 = −

∫
∂M

ϕκH
′
h.

30



Hence, for κ ∈ K (where τ ′κ = 0) the associated trace terms ϕκ on ∂M are constrained to lie in
a space of dimension dimK1 = 2 − i in Cm−1,α(∂M), namely the space orthogonal to the space
of variations {H ′h} for canonical extensions h with boundary data in G. Together with (2.24), it
follows that

(3.94) dimK = 2− i,
and hence by Corollary 3.13

K = K1.

It also follows that

(3.95) K = K1 = K.

To see this, one sets hT = 0 in (3.93) and lets {H ′h} vary over the space (corresponding to G above)
of codimension 2− i. Since, as above, the boundary values ϕκ can thus range only over a space of
dimension 2− i, the claim follows by Proposition 3.9.

The relations (3.94) and (3.95) are the genus 1 analog of Theorem 1.1, i.e. K = 0 when
genus(∂M) ≥ 2.

We thus have three cases to consider;

i = 0, 1 or 2.

We first rule out the case i = 0 corresponding to dimK = 2.

Proposition 3.14. For ∂M = T 2 minimal, one has

dimK ≤ 1.

Proof: Suppose instead dimK = 2, (so i = 0). Then K = K = K1 is generated by 2 tangential
conformal Killing fields on T 2, the translations Ti = ∂xi :

(3.96) LTiγ = ϕiγ.

It is well-known, cf. [22], that the metric γ̃ = λγ is flat, where λ = |A|. Since the translations Ti
are Killing vector fields for γ̃, LTi γ̃ = 0, one has

(3.97) ϕi = −∂xi(log λ).

We may assume that ϕi are not identically zero on any open set in T 2. For if this were so for
ϕ1, then by analyticity ϕ1 ≡ 0 on ∂M and hence T1 is a non-zero Killing field on (T 2, γ) giving a
contradiction, i.e. we are in the cases i = 1 or i = 2.

Since the second fundamental form A is a holomorphic quadratic differential, it has constant
coefficients in the basis Ti; by a change of basis if necessary we may assume that Ti = ∂xi are
eigenvectors of A, so that

(3.98) A = dx21 − dx22.
By Corollary 3.13, the conformal factors ϕi are normal components of Killing fields Zi = Vi+ϕiN ,

ZTi = Vi, so that

(3.99) 1
2LViγ + ϕiA = 0.

The proof is now essentially a computation using (3.96)-(3.99).
Let Z be the Lie algebra of Killing fields on (M, g) with tangential and normal projections

Z = V + νN as above. Observe that the induced spaces V and N of tangential and normal
components are also Lie algebras. This follows from the expansion

[Z1, Z2] = [V1, V2] + (V1(ν2)− V2(ν1))N + (ν1N(ν2)− ν2N(ν1))N,

and the fact that the Killing property implies N(νi) = 0.
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Define a linear map F : T → V by F (T ) = V , where Z = V + ϕTN . Here ϕT is the conformal
factor given by (3.96); ϕT determines uniquely a Killing field Z ∈ Z since there are no tangential
Killing fields. We next claim that the bracket

{T1, T2} = [T1, F (T2)]− [T2, F (T1)]

is a Lie bracket on T .
To see this, from (3.99), one has

1
2LT2LV1γ + T2(ϕ1)A = 0,

1
2LT1LV2γ + T1(ϕ2)A = 0,

since LTiA = 0. Since also T2(ϕ1) = T1(ϕ2) by (3.97), we obtain

LT2LV1γ = LT1LV2γ.

On the other hand,

LV1LT2γ = LV1ϕ2γ = V1(ϕ2)γ − 2ϕ1ϕ2A,

LV2LT1γ = LV2ϕ1γ = V2(ϕ1)γ − 2ϕ2ϕ1A,

so that

LV1LT2γ − LV2LT1γ = (V1(ϕ2)− V2(ϕ1))γ.

Hence

L[T2,V1]γ − L[T1,V2]γ = χγ,

χ = V1(ϕ2) − V2(ϕ1), so that [T2, V1] − [T1, V2] is a tangential conformal Killing field on (T 2, γ),
and so in T . It is easily verified that the Jacobi identity holds.

Thus {, } is a Lie bracket on T . Since the only two-dimensional Lie algebra is abelian, it follows
that {, } = 0. In particular,

(3.100) [T2, V1] = [T1, V2].

It follows also that χ = 0, i.e. the normal component of [Z1, Z2] vanishes. Again since there are no
tangential Killing fields, one has [Z1, Z2] = 0, i.e.

(3.101) [V1, V2] = 0 and V1(ϕ2)− V2(ϕ1) = 0.

Write Vi = aiT1 + biT2 = ai∂x1 + bi∂x2 . Expanding (3.100) out gives

(3.102) ∂x2a1 = ∂x1a2, ∂x2b1 = ∂x1b2.

Next one also has from (3.99)

LV2LV1γ + V2(ϕ1)A+ ϕ1LV2A = 0,

LV1LV2γ + V1(ϕ2)A+ ϕ2LV1A = 0,

and since [Z1, Z2] = 0, it follows that

LV2A =
ϕ2

ϕ1
LV1A,

so that these two forms are proportional. By (3.98)

LV1A = 2(dx1 · da1 − dx2 · db1),

LV2A = 2(dx1 · da2 − dx2 · db2),
and hence

(3.103) ∂x1a2 =
ϕ2

ϕ1
∂x1a1, ∂x2b2 =

ϕ2

ϕ1
∂x2b1, ∂x2a2 − ∂x1b2 =

ϕ2

ϕ1
(∂x2a1 − ∂x1b1).
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On other hand, expanding out (3.99) and using (3.98) gives 1
2(aiϕi+biϕi)γ+dai ·dx1+dbi ·dx2 =

−ϕi(dx21 − dx22). Since there are no cross terms in γ or A, it follows that

∂x2ai + ∂x1bi = 0.

Setting here i = 1 gives ∂x2a1 + ∂x1b1 = 0 and using (3.102) gives ∂x1a2 + ∂x1b1 = 0. Similarly
setting i = 2 gives ∂x2a2 + ∂x1b2 = 0 and using (3.102) again gives ∂x2a2 + ∂x2b1 = 0. Combining
these, it follows that

(3.104) a2 + b1 = const.

Returning to (3.103) and using (3.104), (3.102) gives then

∂x1a2 =
ϕ2

ϕ1
∂x1a1, ∂x2b2 =

ϕ2

ϕ1
∂x2b1, ∂x2a2 =

ϕ2

ϕ1
∂x2a1,

so that

(3.105)
∂x1a2
∂x1a1

=
∂x2a2
∂x2a1

=
∂x2b2
∂x2b1

=
∂x1b2
∂x1b1

.

Now by (3.102), the 1-form W a = a1dx1 + a2dx2 is closed, and similarly for W b, so they are
locally exact. All harmonic 1-forms on (T 2, γ̃) are constant (parallel). Thus by subtracting off
constants, we may assume that Wa and Wb are globally exact 1-forms, so that ai = ∂iα, bi = ∂iβ.

It follows then from (3.105) that

∂x1x1α · ∂x2x2α = (∂x1x2α)2 ≥ 0.

The function α : T 2 → R is smooth and the second partials ∂x1x1α, ∂x2x2α have the same sign
everywhere. Hence ∆α = ∂x1x1α+ ∂x2x2α ≥ 0 or ∆α ≤ 0 everywhere on (T 2, γ̃). By the maximum
principle, α = const and, for the same reasons, β = const as well.

It follows that the vector fields Vi are harmonic on (T 2, γ̃), hence parallel, and so linear com-
binations of T1, T2. They both thus satisfy (3.96) and (3.99), which implies that A = −γ, a
contradiction.

Proof of Theorem 1.2.
Proposition 3.14 implies that for (M, g) ∈M with toral boundary, either

dimK = 0 or dimK = 1.

In the first case (i = 2), the boundary (T 2, γ) has two linearly independent Killing fields Ti which
are restrictions of ambient Killing fields on (M, g). For (M, g) immersed in S3, ρ = e, it follows
immediately that T 2 is a Clifford torus, (up to rigid motion). In the second case (i = 1), the
boundary (T 2, γ) has a non-zero Killing field T which is the restriction of an ambient Killing field
on (M, g). Hence for (M, g) immersed in S3, M and ∂M are invariant under an isometric S1 action,
with S1 ⊂ SO(4). By a classical result of Hsiang-Lawson [17], the only such cohomogeneity one
minimal torus embedded in S3 is the Clifford torus.

We conclude this section with the proof of Theorem 1.3, formulated more precisely in the next
two results.

Theorem 3.15. Suppose genus(∂M) = 1. If some (M, g) ∈M has

(3.106) K = KerDΠ = 0,

then (3.106) holds at all points in the connected component M0 of M containing (M, g). The map

(3.107) Π :M0 → T (∂M),
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is a global diffeomorphism, equivariant with respect to the action of the mapping class group
SL(2,Z). The holonomy map

χ :M0 → R(M),

is surjective and for generic ρ, χ−1(ρ) consists of 4 minimal boundaries in a space Mρ of fixed
holonomy.

The boundary ∂M of each element (M, g) ∈M0 is a “Clifford torus”, invariant under the action
of two Killing fields on (M, g), tangent to ∂M . In particular (∂M, γ) is a flat metric on a torus,
and the second fundamental form A is parallel with respect to γ.

Proof: Since i = 2, any (M, g) ∈ M with K = 0 has two linearly independent Killing fields
on (∂M, γ), both restrictions of ambient Killing fields on (M, g). Hence (∂M, γ) is flat and A is
parallel with respect to γ. This structure is unique up to global isometries of (M, g). In particular,
any Jacobi field preserving this structure is a Killing field. Note that generically, there are no
non-trivial rigid motions (Dρ = 2 generically).

Recall from Section 2.2 that R(T 2) = T 2/W , where the Weyl group W = Z2⊕Z2. The holonomy
representation ρ is determined by a single element g = ρ(1) in the maximal torus T 2

max ⊂ SO(4),
modulo conjugation by an element in the Weyl group. We may assume that g is rotation (eiθ1 , eiθ2)
in R2×R2 = R4 by angles θ1, θ2. The standard Clifford torus in S3 is just these two circles S1×S1,
i.e. is naturally identified with the maximal torus of SO(4).

View θi ∈ R = S̃1 and recall M̃ = D2 × R. Suppose the second S1 is essential in π1(M) and
so lifts to the line R with coordinate θ2. The holonomy element ρ(1) = g1 = (eiθ1 , 1) describes a
twist by θ1 of the disc D2 and translation by 2π = 2πe0 along the line R; the space M = Mρ is

the quotient of M̃ by this action. The holonomy element ρ(1) = g2 = (1, eiθ2) gives no twist of
D2 and a translation by 2πeθ2 along R, again with Mρ the corresponding quotient. These are the

Fenchel-Nielsen coordinates on the Teichmüller space (R2)+ = (θ1, 2πe
θ2) of T 2.

Each quotient of M̃ by ρ(1) = g ∈ SO(4) gives M = Mρ with “Clifford torus” boundary, so ∂M
is minimal, with flat metric and parallel second fundamental form. This shows that Π in (3.107) is
a global diffeomorphism.

Recall that (M, g) ∈M is determined up to isometry only by tangential diffeomorphisms of ∂M
isotopic to the identity and not translations. In this case, the translations are isometries (generated
by tangential Killing fields) and so act trivially on M0. However the diffeomorphisms of ∂M not
isotopic to the identity (and extended to M) act non-trivially on M. This is the action of the
mapping class group SL(2,Z) and it is clear that Π descends to a diffeomorphism of moduli spaces

Π :M0/SL(2,Z)→ T (∂M)/SL(2,Z).

Regarding the map to the representation variety R(M), in Fenchel-Nielsen coordinates on M0

one has
χ̂ :M0 → T 2,

χ̂(θ1, 2πe
θ2) = (eiθ1 , eiθ2),

where T 2 is viewed as the maximal torus of SO(4). Thus

χ = π ◦ χ̂,
where π : T 2 → T 2/W = R(M) is the quotient map.

For a generic point in R(M), the orbit of W has order 4. Thus, for a generic ρ, the space Mρ

has 4 isometrically distinct minimally embedded Clifford tori Σj , 1 ≤ j ≤ 4; each of these forms
a distinct boundary for Mρ and are obtained from each other by deformation within the fixed
holonomy space Mρ. Thus, the unique (up to rigid motion) Clifford torus in S3 bifurcates into 2
or 4 Clifford tori in Mρ, depending on whether ρ is a singular or regular point in R(M).
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Theorem 3.16. Suppose genus(∂M) = 1. If some (M, g) ∈M has

(3.108) dimK = dimKerDΠ = 1,

then (3.108) holds at all points in the connected componentM1 ofM containing (M, g). The space
M1 is a smooth 2-dimensional manifold and has a foliation F by curves σ with tangent vectors in
K. The boundary map

Π :M1 → T (∂M)

is of index 0, with image in T (∂M) a curve ζ̃ = Π(ζ), where ζ is a curve in M1 transverse to the
foliation F .

The boundary ∂M of each element (M, g) ∈ M is a surface of revolution, i.e. invariant under
an isometric S1 action S1 ⊂ Isom(M, g).

Proof: Since i = 1 in this case, there is one tangential Killing field on ∂M extending to a Killing
field on (M, g) and one conformal Killing (but not Killing) field T on ∂M . Hence (M, g) is a surface
of revolution. The form δ∗T generates the kernel K = K1 = K. By Corollary 3.13, the conformal
factor ϕ for T generates a Killing Jacobi field ϕN , so that Z = ZT + ϕN is Killing, as in (3.99)
and (3.96).

Observe that by (3.93) the element (0, ϕ) lies in the cokernel of DΠ (its orthogonal to ImDΠ).
Since DΠ has index 0, (0, ϕ) = Coker(DΠ). It follows that π ◦ DΠ : E → TC is surjective,
where π : TC × C → TC is projection on the first factor. Hence by the implicit function theorem

for Banach manifolds, the component M̃1 = Π−1(C × {0}) containing (M, g) is locally a smooth

Banach manifold and Π : M̃1 → C is Fredholm, of index 0. Dividing out by the free action
of the diffeomorphism group Diff0(M) shows that M1 is a smooth 2-dimensional manifold with
Π :M1 → T (∂M) of index 0.

It is clear from Proposition 3.14 and Theorem 3.15 that (3.108) then holds on the full component
M1 of M.

The conformal translation field T generates a flow of diffeomorphisms, which in turn generates a
non-trivial curve σ through each point in M1. Clearly Π maps each σ to a point in T (∂M). This
completes the proof.

4. Further Results

In this section, we discuss generalizations of the results above to constant mean curvature (CMC)
surfaces, and surfaces in flat and hyperbolic space forms.

We begin with the proof of Theorem 1.4.

Proof of Theorem 1.4.
The general framework presented in the Introduction holds without change for 3-manifolds of

constant positive curvature (M, g) with constant mean curvature (CMC) boundary ∂M , so H = H0,
for some constant H0 ∈ R.

All of the results and discussion of Section 2 also hold for H = H0 ∈ R with the only modification
that the Frankel-Lawson result (2.27) holds provided

H = H0 ≥ 0;

this is assumed henceforth.
Most all of the results and discussion of Section 3 also hold, without change, in the CMC case.

We list below the only modifications that need to be made to pass from H = 0 to H = H0 ∈ R+.
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1. Proposition 3.1: the main formula (3.4) is valid, when τ ′κ is replaced by τ ′κ + 1
2ϕκH0γ =

A′κ −
trA′κ
2 γ, cf. (3.7). This change should be made throughout Section 3. Note that this term is

trace-free and that τ ′κ = A′κ when ϕκ = 0 on ∂M .
2. Proposition 3.8: This deals with case ϕκ = 0 in which case τ ′κ + 1

2ϕκH0γ = τ ′κ = A′κ, so the
proof is exactly the same when H = H0.

3. Proposition 3.10: The proof is exactly the same, modulo the following minor modifications.
First choose f such that 2N(f)−H0f = 0 so that (3.61) holds automatically and (3.32) becomes∫

M
〈q, k〉 =

∫
∂M

f [2H ′k + 〈A, k〉 − 1
2ϕkH0trγσ].

Then (3.62) is replaced by 〈A, k〉 − 1
2ϕkH0trγσ 6= 0 with similar modification to (3.63) while (3.64)

becomes ∫
M
〈q, k̃〉 =

∫
∂M

f [2H ′
k̃

+ 〈A, k̃〉 − ϕ
k̃
H0] =

∫
dm

2fH ′
k̃
,

since k̃ = ϕγ.

For k̃ ∈ Kγ,σ one has 〈τ ′κ̃, σ〉−〈τ, κ̃〉 = 0. As following (3.64), if H ′
k̃

= 0, then k̃ ∈ Kγ . As before,

since K = 0, there is an open set of σ near γ in the space orthogonal to 〈γ〉 such that 〈(τ ′
k̃
)0, σ〉 6= 0,

for all k̃ ∈ Kγ ; here (τ ′
k̃
)0 is the trace-free part of τ ′

k̃
. Write then σ = αγ + σ⊥ where α ∈ R and

trγσ
⊥ = 0. By (3.21), we must impose α = 1. However, 〈τ ′κ̃, γ〉 − 〈τ, κ̃〉 = H ′

k̃
= 0, and so σ⊥ may

be arbitrarily prescribed. Hence, again as before, there is an open set of σ in the space orthogonal

to 〈γ〉 such that for k̃ ∈ Kγ,σ, H ′
k̃
6= 0. The proof then proceeds as in the proof of Proposition 3.10.

With the modifications above, the proof of Theorem 3.3 applies verbatim to CMC boundaries,
and it follows that Theorem 3.3 holds for such configurations. Moreover, besides the use of 1 above,
there are no further changes needed to the proof of Theorem 1.1. This proves Theorem 1.1 for CMC
boundaries.

In addition, Theorems 1.2 and 1.3 also hold for CMC boundaries. The only change to the proofs
is that in the proof of Proposition 3.14, A should be replaced by its trace-free part A0, which
is a holomorphic quadratic differential as in (2.23). The proof runs exactly the same with this
modification.

To conclude, we consider other constant curvature metrics. Suppose then the compact 3-manifold
(M, g) is of constant curvature Λ with Λ = 0,−1, so flat or hyperbolic. Again, all of the methods
and results in Sections 2 and 3 hold in these cases also, with two modifications.

First, as above, (2.27) does not hold in general anymore. Thus, in the following, we simply

assume that M is a handlebody. Second, via the developing map, the universal cover M̃ immerses
isometrically into R3 or H3 respectively. In analogy to Isom(S3) = SO(4), one has here

Isom+(R3) ' R3 ×α SO(3), Isom+(H3) = PSL(2,C).

Note that both groups are 6-dimensional, as is Isom(S3). In contrast to the positive case, M itself
never immerses in R3 or H3, since there are no compact minimal surfaces in R3 or H3. Instead,
the handlebody M may immerse in a flat space-form R3/Γ or hyperbolic space-form H3/Γ. In
particular, the holonomy representation

ρ : π1(M)→ PSL(2,C) or R3 ×α SO(3),

is always non-trivial.
By the Gauss equation (2.4) there are no minimal boundaries of genus 0 or 1 when Λ = −1.

When Λ = 0, there are no minimal boundaries of genus 0 and the only minimal boundaries of genus
1 are totally geodesic and flat. Thus, in the following we assume genus(∂M) ≥ 2 and consider only
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Theorem 1.1, i.e. the moduli space of flat or hyperbolic metrics on a handlebody M with minimal
(or CMC) boundary ∂M .

An especially interesting case is a Heegaard decomposition of a compact hyperbolic 3-manifold
N = M1∪M2, with common boundary ∂M i = Σ a minimal surface embedded in N ; such boundaries
exist in quite general circumstances, cf. [25]. The hyperbolic structure on N is rigid, but one may
consider hyperbolic deformations of each of the Heegaard components Mi. Note that the two
components M1 and M2 in N are glued together by an element of the mapping class group Γ(Σ)
of Σ.

It is easily verified that the proof of Theorem 1.1 carries over without further changes to flat and
hyperbolic handlebodies with minimal or CMC boundary. We state the result in the hyperbolic
case; the same result holds in the flat case.

Theorem 4.1. The space M of hyperbolic metrics on a handlebody M with boundary ∂M = Σ a
minimal (or CMC) surface with genus(Σ) ≥ 2, is a smooth manifold, and the boundary map

(4.1) Π :M→ T (∂M),

is everywhere a local diffeomorphism. The map Π is equivariant with respect to the action of the
mapping class group on each factor.

Again the full boundary map Π in (1.2) is a local diffeomorphism at any (M, g) ∈M.

It is worth considering this result in the context of work of Uhlenbeck [28] and Taubes [26],
who show that moduli spaces of minimal surfaces Σ in local hyperbolic 3-manifolds of the form
N = Σ× I are parametrized by the cotangent bundle of Teichmüller space T (Σ). Here the central
fiber Σ× {0} is minimal, but does not bound in N . In addition, in most situations the hyperbolic
metric on N is incomplete.
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