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Abstract. We study the initial boundary value problem (IBVP) for the vacuum Einstein equa-
tions in harmonic gauge by adding a new field corresponding to the choice of harmonic gauge. For
the gauge-type field, both free initial and Dirichlet boundary data as well as initial and bound-
ary data coupled to the metric are analysed and shown to lead to well-posed formulations of the
IBVP. In addition, these formulations lead to a solution of the problem of geometric uniqueness,
as emphasized by H. Friedrich. In analogy to the solution to the Cauchy problem, we also prove
the existence of a unique maximal globally hyperbolic vacuum development of the initial boundary
data.

1. Introduction

This article is concerned with the initial boundary value problem (IBVP) for the vacuum Einstein
equations on a spacetime M of the form M ∼= I × S, where S is a compact 3-manifold with non-
empty boundary ∂S = Σ. The boundary ∂M consists of two parts; the initial surface S and
boundary C = I × Σ. These 3-manifolds are glued along their common boundary Σ giving M the
structure of a manifold with corner. The initial boundary value problem is the problem of finding
Lorentz metrics g on M satisfying the vacuum Einstein equations

(1.1) Ricg = 0,

together with prescribed initial conditions along S and boundary conditions along C.
The Cauchy problem for the equation (1.1) has been well-understood since the fundamental work

of Choquet-Bruhat [4] and has been extensively studied in the literature, cf. [6], [10], [13] and [21]
for example. Given sufficient regularity, the Cauchy problem is well-posed in various choices of
gauge and there is a unique maximal globally hyperbolic development of the initial data on S up
to isometry. Moreover, the initial data on S are geometric or gauge-invariant; they consist of the
specification of a 3-metric and symmetric bilinear form on S, corresponding to the induced metric
and second fundamental form induced by the solution g on S.

In comparison, the IBVP has been much less understood, primarily due to gauge problems
associated with the choice of boundary data. Ideally, one would like the boundary data to also
be geometric, in that it is determined from the gauge-invariant Cauchy data at C, i.e. the induced
metric and second fundamental form of C in (M, g). It remains a basic open problem (not answered
here) of whether there is a choice of gauge for which the IBVP is well-posed for some choice of such
geometric boundary data.

A number of distinct approaches to the IBVP have been developed. The IBVP was first seri-
ously investigated and proved to have a well-posed solution by Friedrich-Nagy in [9]. This approach
is based on the system of Bianchi equations satisfied by the Einstein equations and replaces the
metric unknown g by a system comprised of an orthonormal tetrad, associated connection coeffi-
cients and Weyl curvature components. The boundary data consist of the mean curvature of the
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boundary, (which is geometric), components of the Weyl curvature at the boundary (which are
gauge-dependent) as well as gauge conditions at the boundary.

In [15], cf. also [16], Kreiss-Reula-Sarbach-Winicour prove well-posedness of the IBVP in a har-
monic (i.e. wave) coordinate gauge, analogous to the gauge most often used for the Cauchy problem.
The boundary conditions here are gauge conditions on the boundary as well as gauge-dependent
Sommerfeld-type boundary conditions for the metric. A somewhat simpler set of boundary condi-
tions has been considered by Kreiss-Winicour in [14].

Another approach, well-developed in the literature on numerical relativity is the BSSN formu-
lation, cf. [2]. Further, we mention the recent work of Fournadavlos-Smulevici [7] using a 3 + 1
decomposition based on a maximal hypersurface formulation. A comprehensive survey and numer-
ous further references regarding the IBVP for the Einstein equations are given in [22].

A fundamental issue with these approaches to the IBVP, discussed in detail by Friedrich in [11],
is the problem of geometric uniqueness. There are two basic related aspects of this problem. The
first is the gauge-dependence of the solutions of the IBVP constructed for instance in [9] or [15];
given an arbitrary or random solution g̃ satisfying given initial and boundary conditions, it is not
known in general if such a solution is isometric to a solution constructed in [9] or [15] with the
same initial-boundary data. (This is resolved in the case the mean curvature of the boundary
cylinder C is constant in the Friedrich-Nagy framework, cf. [9, Theorem 8.1 and Remark 8.1(i)]).
In particular, one does not know whether all vacuum Einstein metrics on M , locally near S, are
effectively parametrized by their initial and boundary data. A second, somewhat related, aspect
of this problem is the dependence of the boundary data on a choice of unit time-like vector field
T on the time-like boundary C. To date, a canonical or geometrically natural choice of T , with
corresponding boundary conditions for which the IBVP is well-posed, has not been found. Given
two distinct choices T and T ′ of time-like vector field, it is not clear how to determine whether
boundary data associated to T and T ′ lead to equivalent solutions, i.e. isometric vacuum space-
times. This issue cannot be resolved without solving globally for the system and then checking (by
inspection).1

In this paper, we will only consider formulations of the IBVP using harmonic gauge. Now the
choice of a harmonic gauge is not unique; it depends on a suitable choice of boundary data. Thus,
working locally for the moment (as in the Cauchy problem), local harmonic or wave coordinates
xα, α = 0, 1, 2, 3 with �gx

α = 0 and with given natural choices of fixed initial data on S, are
only uniquely determined by their boundary data on C. One may choose (for instance) Dirichlet
or Sommerfeld-type boundary data for xα on C. The boundary C may defined locally as the locus
{x1 = 0}, so that x1 is a local defining function for C; this gives a fixed Dirichlet boundary value
to x1. There remain 3 degrees of freedom in the choice of boundary data for xi, i = 0, 2, 3 on C.
This freedom formally corresponds to the freedom in the choice of T above.

There appears to be no general method to remove this freedom by some more canonical choice,
(although see the remarks in [11]). Thus, we first take the approach to widen the number of
variables or unknowns g = gαβ and correspondingly increase the number of equations.

To do this, we first formulate the issue globally. As above, let S be a compact connected oriented
3-manifold with nonempty boundary ∂S = Σ; this will serve as the initial or time zero slice. A
typical case is S a 3-ball, with boundary Σ = S2. Let C = R+ ×Σ, with a fixed product structure,
and so with a fixed global time function t0. (This will later serve as the timelike boundary). The
initial boundary data set is defined by T = S ∪ C, where S and C are glued along their common
boundary Σ. Let M be the space R+ × S, so that M is a manifold with corner Σ, and T can
be considered in a natural way as the boundary of M . Define the function t0 on M by t0 ◦ π1,

1The issue of existence and geometric uniqueness has very recently been resolved by Fournadavlos-Smulevici [8]
in the special case of totally geodesic boundary data on C.
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where π1 : R+ × S → R+ is projection on the first factor. Thus S = {t0 = 0}. Throughout
the paper, let Sτ = {t0 = τ} ⊂ M and Στ = Sτ ∩ C denote the level sets of t0 on M and C
respectively. Throughout the paper, Cτ will denote a domain of the boundary manifold of the
form Cτ = {x ∈ C : 0 ≤ t0(x) < τ}, while T denotes a domain in M , diffeomorphic to M with
{x ∈ M : t0(x) ≤ τ0} ⊂ T , where τ0 is a small positive constant. Finally, r0 will denote a fixed
defining function for C in M , so that C = r−1

0 (0).

On a thickening M̃ ⊃M of M , choose a fixed background smooth complete Riemannian metric
gR. As an example, when Σ = ∂S is embedded in R3 as the boundary of a handlebody, one may
choose gR to be the flat Euclidean metric on R4. As noted in Remark 4.10 below, the main results
described below do not depend on these choices of (t0, gR).

Now in addition to Lorentz metrics g, consider wave maps

(1.2) F : (T , g)→ (M̃, gR)

coupled to g, i.e. critical points of the Dirichlet energy
∫
T |DF |

2dVg, cf. [12] for instance. Such
maps satisfy an equation of the form

(1.3) �gF + Γ(F )g(∇F,∇F ) = 0,

or in local coordinates on the target space,

�gF
α + (Γαβγ ◦ F )g(∇F β,∇F γ) = 0,

where Γαβγ are the Christoffel symbols of gR and ∇ is taken with respect to g. (The equation (1.3)

expresses the vanishing of the tension field τ(F ) of the map F ). Given g, this is a system of semi-
linear hyperbolic wave equations for F . For simplicity, we impose Dirichlet boundary conditions
for F on the boundary C∩T . Moreover, we prescribe initial and boundary data for F so that F is a
diffeomorphism onto its image in a small tubular neighborhood of C∩T . Thus, locally and near the
boundary, F gives a gauge choice of generalized harmonic (or wave) coordinate system depending
on the choice of Dirichlet boundary values, as described above with the local chart {xα}. We
note however that this specification of Dirichlet boundary data for F (which may be considered as
gauge source functions in the terminology of [9]) will be removed later, cf. the discussion following
Theorem 1.4.

In the bulk T , consider evolution equations for the pair (g, F ),

Ricg = 0,

�gF + Γ(F )g(∇F,∇F ) = 0.
(1.4)

Note that while F is coupled to g, g is not coupled to F , i.e. we are not considering the coupled
system of Einstein-wave map equations. The initial data for (g, F ) on S are given by

I = {(gS ,K), (E0, E1)},(1.5)

where gS is a Riemannian metric and K is a symmetric 2-tensor on S. The pair (gS ,K) is under-
stood as the geometric initial data of g and it satisfies the Hamiltonian and momentum (or Gauss
and Gauss-Codazzi) constraint equations:

|K|2 − (trK)2 −RgS = 0,

δ[K − (trK)gS ] = 0.
(1.6)

Here RgS denotes the scalar curvature of the Riemannian metric gS on S, while the norm |.|, trace tr
and divergence δ are all with respect to gS . The pair (E0, E1), assigning initial conditions for F , are
given by a map E0 : S →M such that E0 : S → S ⊂M with E0|Σ : Σ→ Σ a diffeomorphism, and
a vector field E1 : S → (TM)|S transverse to S. The compatibility conditions between the initial
and boundary data discussed later then imply that F also induces a diffeomorphism F |Σ : Σ→ Σ.
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The boundary data for F are chosen as (free) Dirichlet data. Thus, let G : C → M be a map
with G : C → C which is the restriction of a diffeomorphism in a thickening of C; we assume
F |C∩T = G|C∩T so that r0 ◦ F = 0 on C ∩ T . The main issue is then the choice of boundary
data for g. This data is coupled to F in that the boundary geometry of g is expressed in terms
of the wave map F above. Namely, the level sets (ΣG)τ = G−1(Στ ) ⊂ C and correspondingly
(SF )τ = F−1(Sτ ) ⊂M induce foliations of C and T in a neighborhood of Σ, and the geometry of g
is expressed in terms of these foliations, cf. §2 for further details. This is equivalent to decomposing
the pull-back metric (F−1)∗g with respect to the foliation Sτ near T . As will be seen below, there
are a number of natural choices of boundary data for the system (1.4); in this paper, we concentrate
on two main classes.

The first collection of free data on the boundary C consists of data

B = {G, [γ],Θ},(1.7)

where as above, G : C → C ⊂ M is a diffeomorphism on C which maps the edge Σ to Σ, Θ is a
vector field on M restricted to C and [γ] defines a conformal class of Riemannian metrics on the
level sets Στ of C ∩ T .The geometric meaning of the vector field Θ is given in (1.10) below. It will
always be assumed that G is both an orientation and time-orientation preserving diffeomorphism.

A rough version of the first main theorem is as follows; a more precise statement is given in
Theorem 4.1. cf. also Theorem 5.2 and Remark 5.9.

Theorem 1.1. (Well-Posedness I) The IBVP for the system (1.4) with initial data I as in (1.5)
and boundary data B as in (1.7) is well-posed in C∞. Thus, given smooth initial data (gS ,K)
satisfying the constraint equations (1.6), smooth initial data (E0, E1) and smooth boundary data
(G, [γ],Θ) as in (1.5)-(1.7), all defined on T and satisfying smooth compatibility conditions at the
corner Σ, there exists a smooth triple (T , g, F ), where g is a spacetime metric on a solid cylinder

T ⊂M and F : T → M̃ is a wave map with respect to g, such that{
Ricg = 0

�gF + Γ(F )g(∇F,∇F ) = 0
in T(1.8)

{
g|S = gS , Kg|S = K

F = E0, F∗(Tg) = E1
on S(1.9)

and 
F = G

[gtF ] = [γ]

F∗(Tg + νg) = Θ

on C ∩ T .(1.10)

Further, the constructed solution (T , g, F ) depends continuously on the initial and boundary data.

In (1.9) the initial conditions for g are that the induced metric g|S on S equals the prescribed
gS while the second fundamental form Kg|S of S ⊂ (T , g) equals the prescribed K. The initial
conditions for F are that F induces the map E0 on S and the push-forward vector field F∗(Tg)
equals the prescribed vector field E1. Here and thoughout the paper, Tg denotes the future-pointing
unit time-like normal of the level set (SF )τ in T with respect to g. Thus in the initial condition Tg
is simply the unit normal to S in T since F : S → S.

The first boundary condition in (1.10) states that the map F |C∩T : C ∩ T → C ⊂ M̃ induced
by F equals the restriction G|C∩T of the prescribed diffeomorphism G. The metric gF denotes the
pull-back

gF = (F−1)∗g,
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which is well-defined at least in a neighborhood of C in F (T ). Let gtF denote the induced 2-
dimensional metric on the level set Στ ⊂ C ∩ T . Then the second equation in (1.10) states that gtF
is in the same conformal class as the given conformal class [γ]. The last boundary equation means
the push forward of the vector field Tg + νg by F equals the prescribed vector field Θ. Here and
throughout the paper νg denotes the outward unit spacelike normal to (C ∩ T ) ⊂ (T , g). Observe
the last equation in (1.10) can be equivalently written as

TgF + νgF = Θ,

where TgF , νgF denote the timelike unit normal to Sτ and spacelike unit normal to C in (T , gF )
respectively.

As noted above, locally F may be viewed as a (generalized) harmonic or wave coordinate chart
near Σ. Thus, Theorem 1.1 gives the existence of vacuum Einstein metrics g satisfying boundary
conditions which locally are expressed in this chart. This IBVP will be shown to be locally well-
posed in Sobolev spaces Hs in Theorem 4.1 below.

Let Diff(M) be the group of diffeomorphisms ψ of M . A map ψ : M → M is a diffeomorphism
if it extends to a diffeomorphism of an open neighborhood of M into itself. Note that ψ induces
diffeomorphisms ψC : C → C, ψS : S → S and ψΣ : Σ → Σ. The same notion applies to Diff(T ).
The group Diff(T ) acts on solutions (T , g, F ) by pull-back:

(1.11) (ψ, (g, F ))→ (ψ∗g, ψ∗F ),

where ψ∗F = F ◦ ψ. It is important to understand how Diff(T ) acts on the initial and boundary
data. Using the fact that Tψ∗g = (ψ−1)∗g and similarly for ν, one easily verifies the following
transformation rule:

(1.12) ψ∗I = {(ψ∗gS , ψ∗K), (E0 ◦ ψ,E1}, ψ∗B = {G ◦ ψ, [γ],Θ}.
It is crucial for the uniqueness results discussed below that the boundary data ([γ],Θ) are invariant
under the action of the gauge group Diff(T ), i.e. Diff(T ∩ C). On the other hand, the Dirichlet
boundary data G should be regarded as a choice of gauge, in that it transforms non-trivially
(although simply) under the action of Diff(T ∩ C).

Let Diff0(M) be the group of diffeomorphisms ψ of M equal to the identity on T = S ∪ C and
similarly for Diff0(T ). The action of Diff0(T ) preserves both the solutions (T , g, F ) as well as the
initial and boundary data, i.e. via (1.12),

ψ∗(I,B) = (ψ∗I, ψ∗B) = (I,B) ∀ ψ ∈ Diff0(T ).

In Theorem 1.3 below, we prove a natural converse statement that solutions (T , g, F ) are uniquely
determined by their initial and boundary data on a suitable sub-domain T ′ ⊂ T , up to the action
of Diff0(T ′). More generally, the action of the full group Diff(T ) on the initial boundary data (I,B)
as in (1.12) is equivalent to its action on the space of solutions (T , g, F ); again cf. Theorem 1.3
below for the precise statement.

Note that one has a natural short exact sequence of groups

(1.13) 0→ Diff0(T )→ Diff(T )→ Diff(T ∩ T )→ 0.

The quotient space Diff(T ∩ T ) = Diff(T )/Diff0(T ) has equivalence classes represented by maps
ψ : T ∩ T → T ∩ T which extend to diffeomorphisms ψ : T → T which are either not equal to the
identity on S ⊂ T or not equal to the identity on C ∩T ⊂ T . In particular, one has (non-canonical)
inclusions Diff(S) ↪→ Diff(T ) and Diff(C ∩ T ) ↪→ Diff(T ).

Focusing on the boundary data on C ∩ T as in (1.10), if one fixes a boundary gauge G = G0 at
C, there are 6 remaining degrees of freedom in the choice of boundary data for the metric gαβ. The
group Diff(C ∩ T ) ⊂ Diff(T ) has 3 degrees of freedom, leaving then 6− 3 = 3 degrees of freedom,
roughly corresponding to isometry classes of solutions. Two of these parameters, e.g. the conformal
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class [gtF ], correspond to the “gravitational degrees of freedom”, leaving then one degree of freedom
for evolution of the location of the boundary C.

The equations in (1.8) comprise 14 coupled equations for the 14 unknowns (g, F ), ((gαβ, F
α) in

components). There are only 10 boundary conditions in (1.10); 4 Dirichlet conditions on F and
6 on g coupled to F ; these latter will primarily be viewed as conditions for g (given F ). This
discrepancy corresponds to the fact that the equation Ricg = 0 is degenerate hyperbolic. As is
common and carried out in §2, one adds a gauge term δ∗V to make the equations (1.8) hyperbolic,
giving the gauge reduced Einstein equations. This requires adding the 4 extra boundary conditions
V = 0 at C to ensure that solutions of the gauge reduced Einstein equations are actually solutions
of the vacuum Einstein equations. Similarly, there are only 20 initial conditions in (1.9) for the 14
unknowns (g, F ). For the gauge reduced Einstein equations, the 8 extra components g0α and ∂tg0α

are added to the initial data, subject to the constraint V = 0 on S which consists of 4 equations; the
action of the diffeomorphism group Diff0(M) then accounts for the remaining 4 degrees of freedom;
this is described in detail in §2.

Observe that the 6 boundary data ([γ],Θ) are Dirichlet boundary conditions on the metric on
C, given the local chart F . We note here that there are a number of possible modifications to the
boundary conditions B for which Theorem 1.1 remains valid locally. As a trivial example, one may
change the last boundary condition for Θ in (1.10) locally to

(1.14) g0α + g1α = θα̃,

where θα̃ are the components of Θ expressed in some chart χ of T and gαβ are the components
of g expressed in the chart χ ◦ F , cf. Remark 4.7. However, for many or most of these possible
modifications, it may not be possible to extend the local existence to existence of solutions in a
full domain T containing S; it is the invariance of the boundary conditions ([γ],Θ) in (1.10) which
makes this possible.

It is of basic interest to understand if the boundary conditions (1.7) can be made more geometric,
in particular whether the 4 degrees of freedom in the choice of Θ can be reduced to 3 (or less).
Using harmonic gauges, it appears to be unlikely that they can be made “fully geometric”, (in that
the boundary data is expressed completely in terms of the induced metric and second fundamental
form of the boundary C), but we present below a class of more geometric formulations based on
the mean curvature of various slices of C.

Prescribe then a collection of boundary data on C

BC = {G, [γ], H,ΘC},(1.15)

where G, [γ] have the same meaning as in the B boundary data, H is a scalar field on C and ΘC
is a vector field tangent to C. The function H prescribes a combination of various mean curvature
terms at C; we refer to Proposition 3.4 for the exact definition. The vector field ΘC is a projection
of Θ to TC, so that ΘC is intrinsic to the boundary C, in contrast to the boundary condition Θ in
(1.7).

Pairing with BC , we define a collection of initial data on S

I = {(gS ,K), (E0, E1)},(1.16)

of exactly the same type as in (1.5).

Theorem 1.2. (Well-Posedness II) The IBVP for the system (1.4) with boundary data BC as in
(1.15) and initial data I as in (1.16) is well-posed in C∞. Thus, given smooth initial data (gS ,K)
satisfying the constraint equations (1.6), smooth initial data (E0, E1) and smooth boundary data
(G, [γ], H,Θ) as in (1.16)-(1.15), all defined on T and satisfying smooth compatibility conditions at
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the corner Σ, there exists a smooth pair (g, F ), where g is a spacetime metric on the solid cylinder

T and F : T → M̃ is a wave map with respect to g, such that{
Ricg = 0

�gF + Γ(F )g(∇F,∇F ) = 0
in T(1.17)

{
g|S = gS , Kg|S = K

F = E0, F∗(Tg) = E1
on S(1.18)

and 
F = G

[gtF ] = [γ]

HgF = H

F∗(Tg + νg)
T = ΘC

on C ∩ T .(1.19)

Further, the constructed solution (T , g, F ) depends continuously on the initial and boundary data.

Here the notation is the same as in (1.8)-(1.10), where in addition the boundary data HgF is a
linear combination of different types of mean curvature measured on the boundary (cf. (3.35) and
Proposition 3.4). In the last boundary equation the superscript (·)T denotes the projection of a
vector to C with respect to gR, i.e.

(1.20) F∗(Tg + νg)
T = F∗(Tg + νg)− gR(F∗(Tg + νg), νgR) · νgR ,

where νgR is the outward unit normal to (C ∩ T ) ⊂ (T , gR).
We note Theorems 1.1 and 1.2 hold with Tg +νg replaced by λTg +µνg for any smooth functions

0 < λ, µ < ∞, cf. Remark 3.5. The allowable choices for HgF however depend on λ, µ. Also, in
Theorem 1.2, Tg may be replaced by the time-like unit normal to the foliation (ΣG)τ within TC,
cf. the discussion preceding Proposition 2.7. As above, this IBVP is proved to be locally well-posed
in Sobolev spaces Hs in Theorem 4.3.

The proofs of Theorems 1.1 and 1.2 rely on the existence of strong or boundary stable energy
estimates for the localized or frozen coefficient system which are derived in §3. These together
with basically standard methods from the theory of quasi-linear hyperbolic systems of IBVP’s are
used to establish local versions of Theorems 1.1 and 1.2, i.e. existence (and gauged-uniqueness) in
sufficiently small neighborhoods of a corner point p ∈ Σ, cf. Theorems 4.1 and 4.3 respectively. It
is then shown in §5 that such local solutions can be patched or glued together to obtain the full
solutions (g, F ) on a solid cylinder T containing S. For this gluing process, the role of the wave
map F is crucial.

It is worth pointing out that the local existence statement in Theorems 1.1 and 1.2 holds without
introduction of the wave map F . Thus, the proof of Theorem 1.1 gives also local existence of
solutions of the IBVP

Ricg = 0 in U

(g|S ,Kg|S) = (gS ,K) on S ∩ U
[gt] = [γ], Tg + νg = Θ on C ∩ U,

for U a sufficiently small (depending on the initial-boundary data (gS ,K, [γ],Θ)) neighborhood of
a boundary point p ∈ Σ. Here one chooses a fixed foliation Sτ near C. The same result holds with
respect to the BC boundary data. The construction of such solutions is discussed in Remark 4.4.
With very special choices of an atlas, it is also possible to glue together such local solutions to larger
domains, cf. Remark 5.3. However, it does not seem at all possible to extend this to more general
gluings. More importantly, it does not seem at all possible to prove that such a construction gives
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rise to all possible local vacuum Einstein metrics satisfying the initial-boundary conditions, i.e. to
prove that a general solution can be brought into such a form via diffeomorphisms in Diff0(U).
This is essentially the problem of geometric uniqueness mentioned above.

One of the main reasons for introduction of the wave map F , and one of the main consequences
of the results above, is that it is possible to resolve, in a relatively simple way, the geometric
uniqueness problem, (and the related gluing problem), for both sets of data (I,B) and (I,BC).

First we discuss B boundary data. Define two collections of initial data Ii = {((gS)i,Ki, (E0)i, (E1)i}
and boundary data Bi = {Gi, [γi],Θi}, (i = 1, 2) to be equivalent if there is a diffeomorphism
ψ ∈ Diff(T ), with ψ(S) = S and ψ(C) = C, such that

(1.21) ψ∗(I2,B2) = (I1,B1),

where the action ψ∗(I2,B2) is as given in (1.12).

Theorem 1.3. (Geometric Uniqueness I) Let (T1, g1, F1) and (T2, g2, F2) be two solutions of the
system (1.8)-(1.10) with respect to initial and boundary data (I1,B1) and (I2,B2) respectively. If
(I1,B1) and (I2,B2) are equivalent in the sense of (1.21), then there are domains M1 ⊂ T1 and
M2 ⊂ T2, diffeomorphic to solid cylinders and with S ⊂ M1 and S ⊂ M2, such that Ψ∗g2 = g1

and Ψ∗F2 = F1 for some diffeomorphism Ψ :M1 →M2 with Ψ|T∩M1 = ψ|T∩M1.

In particular, (T1, g1) and (T2, g2) have a common isometric domain. We note that this is an
exact analog of the uniqueness for solutions of the Cauchy problem. Note also that the converse of
Theorem 1.3 is obvious.

A similar equivalence relation is defined for initial and boundary data (I,BC) as above, and the
same geometric uniqueness result holds:

Theorem 1.4. (Geometric Uniqueness II) Let (T1, g1, F1) and (T2, g2, F2) be two solutions of
the system (1.17)-(1.19) with respect to initial and boundary data (I1, (BC)1) and (I2, (BC)2) re-
spectively. If (I1, (BC)1) and (I2, (BC)2) are equivalent in the sense of (1.21), where ψ∗BC =
{G◦ψ, [γ], H,ΘC}, then there are domainsM1 ⊂ T1 andM2 ⊂ T2, diffeomorphic to solid cylinders
and with S ⊂ M1 and S ⊂ M2, such that Ψ∗g2 = g1 and Ψ∗F2 = F1 for some diffeomorphism
Ψ :M1 →M2 with Ψ|T∩M1 = ψ|T∩M1.

Although phrased independently, the proofs of Theorems 1.1 and 1.3, and those of Theorems 1.2
and 1.4, given in §4 and §5, are not independent of each other but are closely interrelated.

We note that the results above for the B and BC boundary conditions hold also for other choices
of (related) boundary data. The issue of identifying or classifying all possible such boundary data
for which these results hold (with for instance Dirichlet boundary data for F ), is beyond the scope
of this work.

As pointed out to us recently by H. Friedrich and J. Smulevici, Theorems 1.3 and 1.4 do not es-
tablish the geometric uniqueness property for the vacuum metric g itself. For instance two solutions
(g, F1) and (g, F2) may be metrically the same (or isometric), and yet may not be equivalent in
the sense above; thus the equivalence relation does not capture the relation of isometry of vacuum
solutions on suitable subdomains.

To address this issue, it is useful to change the perspective somewhat. Dirichlet boundary data
for F (i.e. gauge source functions in the terminology of [9]) will no longer be freely specified in
advance, but instead will be (indirectly) coupled to g. In addition, the initial data for F will be
also be coupled equivariantly to g; here equivariance is with respect to the action of diffeomorphisms
on the pair (g, F ) as in (1.11).

We first discuss the choice of initial data for F . For this, we use a slice to the action of dif-
feomorphisms on the space of metrics on a surface Σ given by the uniformization theorem. For
Σ = S2, fix three distinct points pi ∈ S2 (to break the action of the conformal group of S2). For
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Σ = T 2, fix one point p ∈ T 2 (to break the action of translations). For Σ of higher genus, such
base points are not needed. Let Diff ′(Σ) be the group of diffeomorphisms of Σ, homotopic to the
identity, fixing {pi} in the case of S2 and fixing p in the case of T 2. By the uniformization theorem
for surfaces, for any metric γ on Σ, there is a unique diffeomorphism Eγ ∈ Diff ′(Σ) such that the
pullback metric (E−1

γ )∗γ is pointwise conformal to a space-form metric γ0 on Σ; γ = E∗γ(λ2γ0).

Here γ0 is the round metric on S2(1) for Σ = S2, while γ0 is a quotient of the Euclidean plane R2

or hyperbolic plane H2 by a lattice in case Σ has genus at least zero. In suitable function space
topologies, the mapping γ → Eγ is smooth.

Next, given an arbitrary Riemannian metric gS on S, let νgS be the inward pointing unit vector
field normal to the equidistant foliation from ∂S = Σ in S, defined in a neighborhood V ⊂ S of Σ.
Define EgS : V → S by

(1.22) (EgS )∗(νgS ) = ∂r0 ,

with EgS |Σ = Eγ , where γ = gS |Σ; as noted above, r0 is fixed defining function for ∂Σ in S. Clearly
EgS is a diffeomorphism onto its image in S and note that EgS depends smoothly on gS . This gives
the coupling of the (previously free) initial data for F to the initial data gS of the metric g.

The choice of the coupling (1.22) is not unique. The main reason for the choice (1.22) is that it
satisfies the following equivariance property: for any ψ ∈ Diff ′(S) := {ψ ∈ Diff(S) : ψ|Σ ∈ Diff ′(Σ)}
(1.23) Eψ∗gS = ψ∗EgS = EgS ◦ ψ.

Next we turn to the boundary data. The BC boundary data is more natural or geometric in
this context, so we focus on this case. Thus, let U be an open neighborhood of C in M which is a
thickening of the boundary, i.e. U ∼= [0, r0)×Cτ . Consider the following system for the pair (g, ϕg):{

Ricg = 0

�gϕg + Γ(ϕg)g(∇ϕg,∇ϕg) = 0
in U(1.24)

{
g|S = gS , Kg|S = K

ϕg = EgS , (ϕg)∗(Tg) = TgR
on S ∩ U(1.25)

and 
[(ϕ−1

g )∗gt] = [γ]

H(ϕ−1
g )∗g = H

(ϕg)∗(Tg + νg)
T = T cgR

on C ∩ U .(1.26)

Here the notation is the same as discussed above; the field TgR is the unit normal to S with respect
to the background metric gR while T cgR is the future-pointing unit normal to Στ ⊂ (C, gR). The
initial data EgS for the wave map ϕg (replacing F from before) is constructed as above with respect
to the given initial data (S, gS).

Observe there is no Dirichlet boundary data for ϕg. As mentioned following (1.12), Dirichlet
boundary data is regarded as “pure-gauge” boundary data. It will be shown in §5 that when
([γ], H) is fixed, different choices of Dirichlet boundary data for ϕg only result in different solutions
(g, ϕg) in the same equivalence (and so isometry) class.

Given the fixed choice T cgR (representing a fixed choice for ΘC in (1.19)), as shown below the sub-
system of (1.24)-(1.26) obtained by fixing an arbitrary g has a unique solution ϕg. The equivariance
property (1.23) implies that ϕg also transforms equivariantly, i.e.

(1.27) ϕΨ∗g = ϕg ◦Ψ,

for any Ψ ∈ Diff ′(U) = {Ψ ∈ Diff(U) : Ψ|Σ ∈ Diff ′(Σ)}. The particular choice T cgR is mainly for
convenience; any other choice for the value of ΘC satisfying the compatibility conditions would
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also give rise to a unique ϕg. Moreover, the results to follow show that for any such choice of
ΘC , any vacuum metric g (together with its unique ϕg) can be constructed from the system above
by assigning the appropriate boundary data ([γ], H). We thus view the pair ([γ], H) as the free
geometric boundary data in (1.24)-(1.26). In comparison with the discussion following (1.12), note
that all the boundary conditions in (1.26) are invariant under the action of diffeomorphisms of C
mapping Σ to Σ.

In the following and throughout the paper, we use (I,B) to denote the free geometric initial and
boundary data in (1.25)-(1.26),

(1.28) I = (gS ,K), B = ([γ], H).

Theorem 1.5. (Well-Posedness III) The IBVP for the coupled system (1.24)-(1.26) with initial
data I = (gS ,K) and boundary data B = ([γ], H) is well-posed in C∞. Thus, given smooth initial
data (gS ,K) satisfying the constraint equations (1.6), and smooth boundary data ([γ], H), both
defined on T and satisfying smooth compatibility conditions at the corner Σ, there exists a smooth
pair (T , g), where g is a spacetime metric on a solid cylinder T ⊂M , such that

Ricg = 0 in T(1.29)

g|S = gS , Kg|S = K on S(1.30) {
[(ϕ−1

g )∗gt] = [γ]

H(ϕ−1
g )∗g = H

on C ∩ T(1.31)

where ϕg is the unique wave map associated to g on some neighborhood U ∼= [0, r0)× (C ∩ T ) of the
boundary C in T such that

�gϕg + Γ(ϕg)g(∇ϕg,∇ϕg) = 0 in U(1.32)

ϕ|S = EgS , ϕ∗(Tg) = TgR on S ∩ U(1.33) {
(ϕg)∗(Tg + νg)

T = T cgR
r0 ◦ ϕg = 0

on C ∩ U .(1.34)

Further, the constructed solution (T , g) depends continuously on the initial and boundary data.

Note that ϕg is only defined in a neighborhood U of the boundary C ∩ T . This is sufficient to
provide a foliation on C in which to describe the geometry of g. Thus ϕg can be understood as a
preferred gauge near the boundary assigned in a unique way to each metric g.

Note also that the first boundary equation (1.34) has a dual interpretation. On the one hand, it
provides well-posed Sommerfeld-type boundary data for the map ϕg. Allowing the datum T cgR to
vary over all choices of ΘC as in (1.19), one sees that Dirichlet data for ϕg are determined as the
value of the corresponding Sommerfeld-to-Dirichlet map for solutions ϕg of (1.32)-(1.34). (Recall
that the condition r0 ◦ F = 0 on C is kept the same here). On the other hand, given the map ϕg,
the first boundary condition (1.34) can be viewed as boundary data for the metric g; this gives
3 degrees of freedom when varying T cgR which, when combined with the 3 degrees of freedom in
([γ], H), gives the (expected) 6 degrees of freedom for the boundary data of g on C.

The 3 degrees of freedom in the free boundary data (1.31) corresponds roughly to the degeneracy
due to the action of boundary diffeomorphisms Diff(C) on the space of vacuum metrics. Thus the
Dirichlet boundary values of the diffeomorphisms ϕg roughly parametrize Diff(C); the remaining
“free” boundary data ([γ].H) then roughly parametrize the space of vacuum solutions modulo
isometry, i.e. modulo the action of Diff(C ∩ T ) ⊂ Diff(T ); this is analogous to the discussion
following (1.13).

The uniqueness statement for Theorem 1.5, i.e. the analog of Theorem 1.4 also holds here; this
addresses the geometric uniqueness issue of Friedrich [11].
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Theorem 1.6. (Geometric Uniqueness III) Let (T1, g1) and (T2, g2) be two solutions of the system
(1.29)-(1.31) with respect to initial and boundary data ((I1,B1) and (I2,B2) respectively. If (I1,B1)
and (I2,B2) are equivalent in the sense that there exists a diffeomorphism ψ ∈ Diff ′(S) such that

(1.35) {ψ∗(gS)1, ψ
∗K1, [γ1], H1} = ψ∗(I1,B1) = (I2,B2) = {(gS)2,K2, [γ2], H2},

then there are domains M1 ⊂ T1 and M2 ⊂ T2, diffeomorphic to solid cylinders and with S ⊂M1

and S ⊂M2, such that

Ψ∗g2 = g1

for some diffeomorphism Ψ : M1 → M2. In addition, Ψ|S = ψ and Ψ|U = ϕ−1
g2 ◦ ϕg1 |U where U

is a neighborhood of C ∩M1 and ϕg1 , ϕg2 are the unique diffeomorphisms associated to g1, g2 via
(1.32)-(1.34).

Here the diffeomorphism ψ must belong to Diff ′(S). It remains open if this can be generalized
to ψ ∈ Diff(S), since for general ψ ∈ Diff(S), one may lose track of the boundary data when
transforming from g to ψ∗g. We refer to Remark 5.8 for more detail.

Analogs of Theorems 1.5 and 1.6, with the same proofs, also hold with respect to B boundary
data, where one replaces the boundary data ([γ], H) by ([γ], η), where η is the normal component

(1.36) η = gR((ϕg)∗(Tg + νg), νgR);

see Remark 5.10.
We point out that the proofs of Theorems 1.5-1.6 rely on the “free-gauge-source” results Theorems

1.1-1.4.

The results above on the structure of solutions (T , g) to the IBVP closely parallel the well-known
results on the structure of solutions (TS , g) to the Cauchy problem on S. In [5], Choquet-Bruhat
and Geroch proved the existence of a unique maximal globally hyperbolic vacuum development

(M̃S , g̃S) of the Cauchy problem on (S, I). We show that their techniques extend to cover the
analogous result for the IBVP.

Theorem 1.7. Given an initial boundary data set (T, I,B), there exists a unique (up to isometry)

maximal globally hyperbolic vacuum development (M̃, g̃). The development (M̃, g̃) is an extension
of any other globally hyperbolic vacuum development of (T, I,B).

We refer to the discussion in §5 regarding globally hyperbolic manifolds with boundary and
related issues, cf. Theorem 5.14.

The contents of the paper are briefly as follows. In §2, we discuss in detail the gauge reduced
Einstein equations and derive the corresponding frozen coefficient linear system, for both sets of
initial boundary conditions (I,B) and (I,BC). In §3, we derive the requisite energy estimates for
these linear systems, based on Sommerfeld and Dirichlet energy estimates. These are then used in
§4 to prove local existence and well-posedness of the gauge reduced and ungauged IBVP’s. We also
prove local versions of Theorems 1.1-1.4 in §4. Building on these prior results, the main section of
the paper, Section 5, then discusses the gluing of local solutions to obtain the global solutions of the
IBVP’s, both in the context of pairs (g, F ) (Theorems 1.1-1.4) as well as in the context of vacuum
solutions g (Theorems 1.5-1.7). Finally in the Appendix, §6, we collect and derive a number of
results used in the main text.

This work benefited greatly from participation at the BIRS-CMO conference on Time-like Bound-
aries in General Relativistic Evolution Problems held at Oaxaca, Mexico in July 2019. We would
like to thank P. Bizon, H. Friedrich, O. Reula and O. Sarbach for organizing such a fine meeting
and thank in particular Helmut Friedrich and Jacques Smulevici for very useful discussions and
comments on an earlier draft of this work.
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2. Initial Set-up

In this section, we discuss details of the formulations in Theorems 1.1 and 1.2. In particular
following the standard localization or frozen coefficient method of proving well-posedness, we set
up the linearizations of these problems at background flat solutions. The data (I,B) (Theorem 1.1)
is discussed first, and then followed with a similar analysis for the data (IC ,BC) (Theorem 1.2).
The following conventional index notation will be used throughout: Greek letters α ∈ {0, 1, 2, 3},
lower case Roman indices i ∈ {1, 2, 3} while upper case Roman A ∈ {2, 3}. Similarly, the Einstein
summation convention that repeated indices are summed will always be used.

As discussed in the Introduction, we first work locally and in a neighborhood U ⊂ M of an
arbitrary corner point p ∈ Σ = S ∩ C. Choose standard Cartesian coordinates (xα0 = {(t0, xi0)}) on
R4. The standard corner domain is given by R = {t0 ≥ 0, x1

0 ≤ 0}, so that ∂1 = ∂x10 is outward

pointing and ∂0 = ∂t0 is future pointing.
For U as above, assume that U is in the domain of a chart χ : U → R such that χ(p) = 0. In

addition, χ carries the boundary C ∩ U to the locus {x1
0 = 0} and carries the initial surface S ∩ U

to the locus {t0 = 0}. The corner Σ is thus mapped to a flat domain in R2 with coordinates xA0 .
In addition, it will always be assumed that the time function t0 in the chart χ equals the fixed
time function t0 choosen on M . In the following we call a local chart which satisfies the conditions
above a standard corner chart at p.

To solve for a local solution of the system (1.8)-(1.10) on U , we will expand the coordinate-
free system to a system of (nonlinear) hyperbolic equations with complete initial and boundary
conditions in the chart χ. To begin, according to common practice we introduce a local gauge
condition. Let V be the vector field on U given by

(2.1) V = (�gx
α
0 ) · ∂xα0 .

(The field V may be viewed as the tension field of the identity map Id : (U, g)→ (R4, gR), cf. [12]
for example). When V = 0, the coordinates xα0 of χ are harmonic (wave) coordinates with respect
to g. For the data (I,B) (Theorem 1.1), we then consider the following system of reduced Einstein
equations coupled to the gauge-type field F :{

Ricg + δ∗gV = 0

�gF + Γ(F )g(∇F,∇F ) + F∗(V ) = 0
in U(2.2)

with initial conditions: {
g = q, 1

2L∂t0g = k, V = 0

F = E0, F∗(Tg) = E1
on U ∩ S(2.3)

and boundary conditions: 
V = 0

F = G

[gtF ] = [γ]

F∗(Tg + νg) = Θ

on U ∩ C.(2.4)

It is well-known that the first equation in (2.2) is of the form

(2.5) �ggαβ +Qαβ(g, ∂g) = 0,

where Q is quadratic in g and ∂g. When the equations for (g, F ) are uncoupled by fixing either
the coefficients g or F , one obtains a system of wave-type equations for the unknown F or g.

Here we regard F as a map from U to another open set U ′ ⊂ M , cf. also Remark 2.1(ii)
below. When the initial and boundary Dirichlet data E0, G are given, U ′ is understood as an open
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neighborhood of the target corner point p′ = E0(p) = G(p) ∈ M . Local representations Floc of F
are given by Floc = χ′ ◦ F ◦ χ−1 : χ(U) ⊂ R → R, where χ′ is a standard corner chart at p′. The
term F∗(V ) in the second equation in (2.2) is introduced to simplify the form of the linearization,
cf. (2.9) below.

The initial and boundary conditions (2.3)-(2.4) are understood to be the restriction of equations
(1.9)-(1.10) to U plus gauge choices on the (local) initial and boundary surface. In (2.3), q is a
4-dimensional Lorentz metric on M restricted to S while k is a 4-dimensional symmetric bilinear
form on M restricted to S. The pair (q, k) is understood as an extension of the 3-dimensional
geometric initial data (gS ,K) via a certain choice of gauge (lapse and shift). The initial condition
V = 0 in (2.3) is an implicit restriction on the choice of the initial data (q, k). We write it explicitly
to emphasize this gauge condition.

We recall that (I,B) denotes the geometric (or ungauged) initial boundary data as in (1.9)-
(1.10). In contrast, we use (I,B) to denote the local gauged initial boundary data as in (2.3)-(2.4),
i.e. I = {(q, k), (E0, E1)}, B = {G, [γ],Θ} on the initial and boundary surface of U .

Throughout the paper, we will make the following assumptions on the data (I,B). This in return
yield restrictions on the choice of global initial and boundary data (I,B) in Theorem 1.1.

• The gauge independent Riemanian metric gS and symmetric 2-tensor K in (1.9) satisfy the
constraint equations (1.6);
• The gauge dependent Lorentzian metric q and symmetric 2-tensor k are chosen so that the

induced metric on S∩U by q is equal to the restriction (gS)|S∩U on S∩U , i.e. qi0j0 = (gS)i0j0
in the standard corner chart χ;
• The extrinsic curvature of the initial surface (S ∩ U) ⊂ (U, g) computed from (q, k) is

equal to the restriction K|S∩U of the geometric initial data K. In the chart χ, this can be
expressed as

Ki0j0 = ∇i0(Tg)j0 = ∂i0
(
(Tg)j0

)
− (Γg)

α
i0j0(Tg)α,

where the unit timelike normal (Tg)α0 and the Christoffel symbol (Γg)
γ0
α0β0

are uniquely

determined by qα0β0 , kα0β0 .
• Moreover, we assume (qα0β0 , kα0β0) are chosen so that �gx

α
0 = 0 on S, which is exactly the

gauge constraint V = 0 listed explicitly in (2.3).
• The map E0|U : S ∩ U → S ∩ U ′ in (2.3) is an orientation preserving diffeomorphism

onto its image in S. (Correspondingly, we assume the global initial data E0 : S → S is
diffeomorphism in a neighborhood of Σ).
• The vector field E1|U : S ∩ U → E∗0(TM)|S∩U ′ is transverse to S.
• The map G|U : C ∩ U → C ∩ U ′ in (2.4) is the restriction of a diffeomorphism C → C which

is both orientation and time-orientation preserving.
• The initial data I and boundary data B satisfy Ck compatibility assumptions at the corner

Σ, for suitable k ≥ 1.

The Ck compatibility conditions are the relations induced between the initial data I and bound-
ary data B at the corner Σ by a solution (g, F ) of the system (2.2)-(2.4) which is Ck × Ck+1 up
to the boundary T = ∂M = S ∪ C, (i.e. the data (g, F ) extend as Ck × Ck+1 data to an open
neighborhood of the closed domain M).

For the C0 compatibility conditions, we first require

E0|Σ = G|Σ and [γ] = [(qF )AB] at Σ.

In addition, note that gS and E0 uniquely determine the pull-back metric (E−1
0 )∗gS on S (near Σ)

which is supposed to be the induced metric by gF . Moreover, E1 gives its time-like unit normal since
E1 = F∗(Tg) = TgF . Thus the 4-dimensional Lorentzian metric gF on S near Σ is fully determined
by the initial data gS , E0, E1. Consequently, since Θ = F∗(Tg + νg) = TgF + νgF , Θ must satisfy a
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C0 compatibility condition Θ = Θ(gS , E0, E1) at Σ. Similarly, C1 compatibility requires L∂tΘ is
determined by an algebraic expression in (q, k).

The C1 compatibility condition of G is related with the gauged initial data q. Because q =
F ∗(gF ) where gF on S is determined as above and the linearization DF at the edge Σ is uniquely
determined by DE0 and DG, so we must have q = q(g,E0, E1, G) at Σ which can be understood
as a C0 compatibility condition on q. On the other hand, this can also be interpreted as DG =
DG(q, E0, E1), i.e. a C1 condition on G.

For k ≥ 2, Ck compatibility requires using the bulk equations (2.2) and (2.5) to replace ∂2
t and

higher order t-derivatives by xα derivatives of lower order in t. Since it will not be necessary, we
do not explicitly express the (complicated) higher order compatibility relations. The compatibility
assumptions for the linearized equations are discussed in more detail below.

Remark 2.1. (i). As stated in the Introduction, νg is the unit space-like outward unit normal to
C ∩ U ⊂ (U, g). In particular νg is never a null-vector and so never tangent to C. It follows then
from the B-boundary condition in (2.4), (as well as the boundary condtions in (1.10) or (1.19)),
that (C ∩ U, g) is Lorentzian (i.e. C ∩ U is time-like with respect to g) on its full domain,

(ii). Note also that the assumptions above that E0 : S → S and G : C → C are diffeomorphisms
near Σ and that the vector field E1 is transverse to S imply that on any solution (T , g, F ), there
are neighborhoods N and N ′ of Σ in M such that F induces a diffeomorphism F |N : N → N ′ =
F (N ) ⊂M .

The following result is well-known.

Lemma 2.2. Under the initial and boundary conditions that V = 0 on T ∩ U = (S ∪ C) ∩ U , one
has

(2.6) V = 0 on U.

Thus a solution of the system (2.2) is a Ricci flat metric g with harmonic (or wave) coordinate
chart χ (as well as wave map chart F ). Moreover, if (h, F ′), h = g′ is a solution of the linearization
of the system (2.2) at a given solution (g, F ), with V ′h = 0 on T ∩ U , then

V ′h = 0 on U.

Proof. Let β = βg = δg + 1
2 trg be the Bianchi operator with respect to g on symmetric bilinear

forms. The Bianchi identity applied to (2.2) gives

βδ∗V = 0 on U.

By a standard Weitzenbock formula, 2βδ∗V = D∗DV − 2Ric(V ) = 0. This is a linear system of
wave equations, coupled only at first order. As is well-known, cf. [13], given V = 0 on B0, the
constraint equations (1.6) imply that ∂tV = 0 on B0, so the initial data for V vanish. Since V = 0
also on the boundary C ∩U , standard results on uniqueness of solutions of such linear wave systems
imply (2.6), cf. [3] for instance. The same argument applies to the linearization (h, F ′).

Conversely, we will need to know that a general (ungauged) solution to the system (1.8)-(1.10)
restricted on U can be brought into the background gauge V = 0 by suitable diffeomorphisms in
Diff1(U) – the group consisting of diffeomorphisms that are equal to the identity to the first order
on S and equal to the identity to the zero order on C. It is easy to check that diffeomorphisms in
Diff1(U) preserve the initial and boundary conditions in (1.9)-(1.10). (In fact, they also preserve
the gauged initial and boundary data (I,B) in (2.3)-(2.4)).

Lemma 2.3. Let (g, F ) be a local solution to the IBVP (1.8)-(1.10) in U and let χ = {xα0 }
be a standard corner chart on U . Then there is an open subset U ′ ⊂ U covering S ∩ U and a
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diffeomorphism ϕ ∈ Diff1(U ′), such that

(2.7) V (ϕ∗g) = �ϕ∗gx
α
0 = 0 on U ′.

In addition, the pair (ϕ∗g, ϕ∗F ) satisfies the same IBVP (with same initial and boundary data)
restricted in U ′.

Proof. Given the background coordinates xα0 on U , define new coordinates x̃α0 by solving the wave
equation

�gx̃
α
0 = 0,

with the same initial and boundary conditions as that formed by xα0 , i.e. x̃a0 = xa0, ∂t0 x̃
α
0 = ∂t0x

α
0

on U ∩ S and x̃α0 = xa0 on C ∩ U . This a well-posed IBVP for the simple linear wave equation, and
so there is a unique solution. Define then a map ϕ : U → U by x̃α0 |ϕ(q) = xα0 |q ∀q ∈ U . Based
on the initial and boundary conditions of x̃α0 , ϕ is diffeomorphism in a neighborhood U ′ of S ∩ U .

Clearly ϕ ∈ Diff1(U ′). Then the pull-back g̃ = ϕ∗g (and F̃ = ϕ∗F ) satisfies (2.7). Moreover, it is
proved in [19], see also [18], that for g ∈ Hs(St), the new background coordinates x̃α0 ∈ Hs+1(St).

Remark 2.4. In the notation above, we have Diff1(M) ⊂ Diff0(M) ⊂ Diff(M). The quotient
Diff0(M)/Diff1(M) corresponds to diffeomorphisms which shift the time direction ∂t transverse to
S while keeping S fixed. Such diffeomorphisms shift the components g0α of the initial metric g at
S. In U , such diffeomorphisms may be realized by changing the initial data E1 for F , keeping E0

fixed. Roughly speaking E1 is isomorphic to the tangent space T (Diff0(M)/Diff1(M)).

The system (2.2)-(2.4) is a quasi-linear hyperbolic system with mixed boundary conditions. The
well-posedness of such an IBVP rests upon analysing the behavior in small regions, linearized around
a point p ∈ Σ, (the frozen coefficient method). We next discuss in detail how this localization is
done in the current setting.

For convenience, consider first a special case. Let (ḡ0)R = dt20 +
∑

(dxi0)2 be the standard
Euclidean metric on R4 ⊃ R. The pair (ḡ0, F̄0) consisting of the Minkowski metric ḡ0 = −dt20 +∑

(dxi0)2 and the identity map F̄0 = Id : R → R is then the unique solution to (2.2)-(2.4) on R
with Cartesian initial and boundary data (Ī0, B̄0):

Ī0 = {qαβ = ηαβ, kαβ = 0, E0 = Id{t0=0}, E1 = ∂t0},
B̄0 = {G = Id{x10=0}, [γ] = [δAB], Θ = ∂t0 + ∂x10}.

Here ηαβ = diag(−1, 1, 1, 1) and δAB = diag(1, 1).

More generally, let (g0)R =
∑

((g0)R)αβdx
α
0 ·dx

β
0 be a complete flat Riemannian metric on R, with

((g0)R)αβ constant functions on R. Then the pair (g0, F0) consisting of a flat Lorentz (Minkowski-

type) metric g0 =
∑

(g0)αβdx
α
0 · dx

β
0 and F0 = L : R → R a linear map (F0(eα) = `αβe

β in
the standard basis) is the unique solution to (2.2)-(2.4) on R with flat initial and boundary data
(I0, B0):

I0 = {qαβ = (g0)αβ, kαβ = 0, E0 = L|{t0=0}, E1 = L∗(Tg0)|{t0=0}}
B0 = {G = L|{x10=0}, [γ] = [((L−1)∗g0)AB], Θ = L∗(Tg0 + νg0)|{x10=0}}.

(2.8)

Since we always assume the wave map F sends the initial and boundary surfaces to themselves,
here we require L : {t0 = 0} → {t0 = 0}, L : {x1

0 = 0} → {x1
0 = 0}. Then it follows that

L : {t0 = constant} → {t0 = constant}, since L is a constant linear map.
We now show that for a general choice of initial and boundary data (I,B) in (2.3)-(2.4), the

IBVP can be reduced to a problem with initial and boundary data sufficiently close to the flat data
(2.8) above.
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Choose given local data I = (q, k, E0, E1), B = (G, [γ],Θ) in a neighborhood of a corner point
p ∈ Σ. The map E0 maps p to p′ = E0(p) ∈ Σ. Choose a pair χ, χ′ of standard corner charts at
p, p′ so that χ(p) = 0 and χ′(p′) = 0. Let xα0 denote the coordinates in χ and xα the coordinates
in χ′. Now choose new coordinates x̃α0 = λ−1xα0 near p and correspondingly x̃α = λ−1xα near p′.
Define new initial data for g in the following way

q̃α̃0β̃0
(x̃0) = qα0β0(λx̃0), k̃α̃0β̃0

(x̃0) = λkα0β0(λx̃0).

Here q̃α̃0β̃0
(x̃0) denotes the component of q̃ at the point x̃0 in the new coordinates (x̃α0 ). It equals

the corresponding component qα0β0(x0) of q at the point x0 = λx̃0 in the original coordinates (xα0 ).

The same explanation applies to the defining equations of k̃. Notice that when λ is very small, q̃

is very close to the Minkowski-type metric g̃0 =
∑
qα0β0(0)dx̃α0 · dx̃

β
0 where the components of the

metric are constants (g̃0)α̃0β̃0
= qα0β0(0); similarly k̃ is very close to zero.

Define new initial data for F as

Ẽα̃0 (x̃0) = λ−1Eα0 (λx̃0), Ẽα̃1 (x̃0) = Eα1 (λx̃0).

Here Ẽα̃0 (x̃0) denotes the x̃α component of the image Ẽ0(x̃0) in the new chart x̃. It equals to the

rescaled (λ−1) component of the image E0(λx̃0) expressed in the chart χ′. The equation for Ẽ1

has the same meaning. As λ → 0, the map Ẽ0 approaches the constant linear map L0 given in

the standard basis by L0(eα̃0) = lα̃0β̃
eβ̃ (α0, β = 1, 2, 3) where lα̃0β̃

equal the coefficients of E0

linearized at p in the chart χ, i.e. lα̃0β̃
= (DE0|p)α0β. Since E0 : S → S maps {x1

0 = 0} to {x1 = 0}
(edge to edge), the map L0 : {t̃0 = 0} × R3 → {t̃ = 0} × R3 also maps {x̃1

0 = 0} to {x̃1 = 0}. At

the same time Ẽ1 approaches the constant vector field Eα1 (0)∂α̃.
Similarly define new boundary data as

G̃α̃(x̃0) = λ−1Gα(λx̃0), [γ̃ÃB̃](x̃0) = [γAB](λx̃0), Θ̃α̃(x̃0) = Θα(λx̃0).

It is easy to check that when λ → 0, one has G̃ → L1 = DG|p in the same sense as the limiting

approach of Ẽ0 above. In addition, since G maps {t0 = 0} to {t = 0} (edge to edge), the map
L1 : R × {x̃1

0 = 0} × R2 → R × {x̃1 = 0} × R2 also maps {t̃0 = 0} to {t̃ = 0}. In addition,
since E0 = G on the edge Σ, L0 = L1 on {t̃0 = 0} ∩ {x̃1

0 = 0}. Thus there is a unique constant

linear transformation L̃ : R4 → R4 such that L̃|{t̃0=0} = L0 and L̃|{x̃10=0} = L1. At the same time,

Θ̃→ Θα(p′)∂α̃ and [γ̃ÃB̃]→ [γAB](p′).
Based on the compatibility conditions of (I,B) at Σ, we must have E1(p) = DF |p(Tq) where

DF |p is uniquely determined by DE0|p and DG|p. Thus the limit (as λ → 0) of Ẽ1, which is

given by Eα1 (0)∂α̃, is equal to DF |p(Tq̃) = L̃∗(Tg̃0). For the same reason, the limit of Θ̃ makes

Θα(p′)∂α̃ = L̃∗(Tg̃0 + νg̃0) and the limit of γ̃ÃB̃ is [γAB](p′) = [(L̃−1)∗(q(0))t] = [(L̃−1)∗(g̃0)t].

The analysis above shows that the rescaled initial and boundary data (Ĩ = {q̃, k̃, Ẽ0, Ẽ1}, B̃ =

{G̃, [γ̃], Θ̃}) limits to a set of flat initial and boundary data which is exactly (2.8) with g0 = g̃0

and L = L̃ in the chart (x̃α0 ). Meanwhile, the same rescaling process is also applied to the given
background Riemannian metric gR on U ⊂M , i.e. (g̃R)α̃β̃(x̃) = (gR)αβ(λx̃). It then limits to a flat

metric (g̃0)R = Σ(gR)αβ(p′)dx̃α · dx̃β as λ→ 0.
One may now set up a hyperbolic system in the same way as (2.2)-(2.4) in the new chart (x̃α0 ) with

initial and boundary data (Ĩ , B̃) constructed above in a fixed size neighborhood Ũ of p and with

the rescaled background metric g̃R. Choose λ small enough so that the data (Ĩ , B̃) is sufficiently
close to flat-type data as described above, and the terms in the wave equation of F with coefficients
contributed by Γg̃R are close to zero. If (g̃, F̃ ) is a solution of this rescaled IBVP in a (possibly
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smaller) domain Ũ , then the pair g(x) = λ2g̃(λ−1x) and F (x) = F̃ (λ−1x) solves the system (2.2)-
(2.4) with the original initial and boundary data (I,B) and background metric gR. Thus there
is a one-to-one correspondence between such local solutions in sufficiently small neighborhoods of
corner points p ∈ Σ.

For the rest of this section, we assume that the initial and boundary data (I,B) have been
localized as above, so they are close to flat data with harmonic coordinates xα0 . The general case
will be discussed in detail in §5. To analyse the solvability of the system (2.2)-(2.4) near flat data
(g0, F0), (with the background flat Riemannian metric (g0)R), we first consider its linearization
at (g0, F0) with infinitesimal deformation denoted as (h, F ′). Without loss of generality (by linear
transformation of the chart), we can assume g0 = −(dt0)2+(dx1

0)2+(g0)ABdx
A
0 ·dxB0 in the standard

corner chart χ at p. For convenience, we also make the assumption that C ∩ U is orthogonal to
S ∩ U with respect to the flat metric g0. This assumption, although not necessary, simplifies some
of the computations to follow in §3. As noted in [14], it can always be realized by choosing a new
initial slice S′ ⊂ V ⊂M , with ∂S′ = ∂S = Σ; here V is the (maximal) Cauchy development of the
initial data set (S, I). In particular, one has then Tg0 = ∂t0 and νg0 = ∂x10 .

It is well-known that the linearization of the first equation in (2.2) at g0 is given by the standard
system �g0h = 0 of wave equations. Here and in the following, we work in R with harmonic
coordinates xα0 . For the second equation in (2.2), observe that the linearization of the Γ term at
(g0)R vanishes and

(�gF + F∗(V ))′ = �g0F
′ + �′hF0 + (F0)∗(V

′
h)

= �g0F
′ + g0(D2

g0F0, h)− g0(dF0, βg0h) + (F0)∗(V
′
h) = �g0F

′,
(2.9)

where we use the fact that Vg0 = 0, V ′h = βg0h and D2
g0F0 = 0. Thus the corresponding linear

hyperbolic system is given by: {
�g0h = 0

�g0F
′ = 0

in R(2.10)

with initial and boundary conditions{
hαβ = q′αβ, ∂t0hαβ = k′αβ V ′h = 0

F ′ = E′0, ∂t0F
′ + (F0)∗(T

′) = E′1
on {t0 = 0}(2.11)

and 

V ′h = 0

F ′ = G′

h22 − h33 = c2

h23 = c3

T ′ + ν ′ = b

on {x1
0 = 0}.(2.12)

We discuss in more detail the linearization of the initial and boundary conditions. To begin,
T ′ = T ′h + T ′F ′ , where T ′h = 1

2h00∂0 − h0i∂i (cf. §6.2) and T ′F ′ denotes the variation of T caused

by the variation of the level set (SF )τ = F−1(Sτ ). In addition, since νg does not depend on the
foliation, ν ′ = ν ′h = h10∂0 − 1

2h11∂1 − h1A∂A. All the subscript indices here are with respect to the
standard coordinates xα0 .

Note that since F |S : S → S, T ′F ′ = 0 on S. Thus the term (F0)∗(T
′) on S is determined by q′αβ

and k′αβ. The last equation in (2.11) can thus be rewritten as ∂t0F
′ = E′ where E′ involves E′1, q

′

and k′.
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The third and fourth equations in (2.12) come from the linearization of the boundary data of
conformal metric [gtF ] = [γ]. Since the conformal class of a 2-dim metric γ uniquely determines

(det γ)−1/2γ, the linearization of this boundary equation at (g0, F0) yields

(gtF )′ − 1
2(tr(g0)tF0

(gtF )′)(g0)F0 =

√
det(g0)F0

det γ [γ′ − 1
2trγγ

′].

Here (gtF )′ = ((F−1
0 )∗h)t + (LF ′g0)t with LF ′ denoting the Lie derivative. Since F0 is a constant

linear mapping sending {t0 = constant} to {t0 = constant} on C, we have ((F−1
0 )∗h)t = (F−1

0 )∗(ht).
Thus the linearized equation above yields ht − (trg0h

t)g0 = c, where c is a tensor involving only
γ, g0, F0 and γ′, F ′.

The last equation in (2.12) comes from the linearization of the boundary equation F∗(Tg + νg) =
Θ:

(F0)∗(T
′
h + ν ′) + (F0)∗(T

′
F ′) + LF ′(T0 + ν0) = Θ′.

Here LF ′ denotes the Lie derivative with respect to the deformation F ′. This equation further
implies T ′h + ν ′ = (F−1

0 )∗[−(F0)∗(T
′
F ′) − LF ′(T0 + ν0) + Θ′]. Denoting the right-side term as b we

obtain the last boundary equation (2.12).
As noted above we view the flat data (g0, F0) to be defined on the standard corner R (via

the chart χ−1) with coordinates xα0 . Moreover the linearization of the initial and boundary data
(I ′, B′) = {(q′, k′), (E′0, E′1), (γ′, G′,Θ′)} are extended to be defined on R by composing with a
compactly supported bump function on the initial and boundary surface which equals to 1 on a
subset V ⊂ V̄ ⊂ U ∩ (S ∪ C). We always assume that the linearized initial and boundary data
(I ′, B′) satisfies the linearized compatibility conditions and the pair (q′, k′) satisfy the linearized
constraint equations. Note that, given fixed boundary data, the system for (h, F ′) decouples into
two independent systems for h and F ′.

This leads to the following result.

Proposition 2.5. Let g0 = η be the standard Minkowski metric on R. The frozen coefficient or
blow-up linearization of the equations (2.2)-(2.4) at a solution (g, F ) at a corner point p ∈ Σ may
be written in the form {

�g0h = 0

�g0F
′ = 0

in R(2.13)

with initial and boundary conditions
hαβ = q′αβ, ∂t0hαβ = k′αβ
F ′ = E′0, ∂t0F

′ = E′

V ′h = 0

on {t0 = 0}(2.14)

and 

V ′h = 0

F ′ = G′

h22 − h33 = c2

h23 = c3
1
2h00 + h10 = b0

h01 + 1
2h11 = b1

h0A + h1A = bA A = 2, 3

on {x1
0 = 0}.(2.15)

Remark 2.6. Based on this form of the linearized system, we note that one has to set Tg to be
the unit normal to (SF )τ in M instead of the unit normal to (ΣG)τ tangent to C. Namely, if Tg
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is chosen to be the unit time-like normal to (ΣG)τ then its linearization at (g0, F0) only involves
1
2h00∂0 − h0A∂A, i.e. the term h01 does not appear in the linearization. This will be problematic
for the energy estimates discussed in the next section.

The compatibility or corner conditions for (h, F ′) at Σ are somewhat simpler to express in the
system (2.13)-(2.15). Thus, the C0 and C1 compatibility conditions for F ′ are

(2.16) G′ = E′0, ∂tG
′ = E′ on Σ.

At 2nd order and 3rd order, ∂2
tG
′ = ∆E′0 and ∂3

tG
′ = ∆E′ on Σ respectively and thus similarly

at higher order. The C0 compatibility conditions for h are b0 = 1
2q
′
00 + q′10,b1 = q′01 + 1

2q
′
11 and

bA = q′0a + q′1A (A = 2, 3). The terms cA are determined by the trace-free part of q′AB. The
t-derivatives of bα and cA are similarly determined by k′αβ. One may compute the higher order

compatibility conditions in a simlar way. A detailed analysis of the linearized IBVP (2.13)-(2.15)
is given in the next section.

Next we provide a similar discussion for the boundary data BC (or BC). To begin, (2.2)-(2.4) is
replaced by {

Ricg + δ∗gV = 0

�gF + Γ(F )g(∇F,∇F ) + F∗(V ) = 0
in U(2.17)

with initial conditions: {
gαβ = qαβ, ∂t0gαβ = kαβ, V = 0

F = E0, F∗(Tg) = E1
on S ∩ U(2.18)

and boundary conditions: 

V = 0

F = G

[gtF ] = [γ]

HgF = H

F∗(Tg + νg)
T = ΘC

on C ∩ U.(2.19)

Recall here from (1.20) that F∗(Tg + νg)
T = F∗(Tg + νg) − gR(F∗(Tg + νg), νgR)νgR , where νgR

denotes the unit outward normal to (C ∩U) ⊂ (U, gR). For the (IC , BC) (and so {IC ,BC}) data, we
impose the extra corner condition that

(2.20) F∗(νg) ∈ span{νgR},

on the edge Σ. As noted in the C0 compatibility conditions preceding Remark 2.1, F∗ and νg are
determined at Σ by the initial and boundary data q, E0, E1, G at Σ. Thus, the extra condition
(2.20) is understood as a restriction on the choice of the data q, E0, E1, G at Σ. We point out that
both Lemma 2.1 and Lemma 2.2 remain valid.

As before in (2.8), the flat data (g0, F0) in the chart (xα0 ) with background flat Riemannian
metric (gR)0 satisfy this system with initial and boundary conditions:

(IC)0 = {qαβ = (g0)αβ, kαβ = 0, E0 = L|{t0=0}, E1 = L∗(Tg0)},
(BC)0 = {[γ] = [(gt0)AB], G = L|{x10=0}, H = 0, ΘC = L∗(Tg0 + νg0)T }.

Since (I,B) and (IC , BC) differ only by the last two terms in the boundary data, the same discussion
as following (2.8) holds here, except that in the rescaling process one defines

H̃(x̃0) = λH(λx̃0), Θ̃α̃
C (x̃0) = Θα

C (λx̃0).
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Making λ sufficiently small, H̃ is close to zero and Θ̃C is close to L̃(Ng̃0 + νg̃0)T , where g̃0, L̃ are
the same as in the rescaling discussion for the data (I,B), and the projection operator T is respect
to the rescaled Riemannian metric g̃R. Given these minor modifications, the proof of the validity
of the blow-up or rescaling process is exactly the same as in the (I,B) conditions above.

Passing then to the linearization at the flat data (g0, F0) as before, the linearization of ΘC
condition at (g0, F0) is given by

(F0)∗(T
′
h + ν ′)− (g0)R((F0)∗(T

′ + ν ′), ν(g0)R)ν(g0)R = b,

where b, as before, only involves F ′ in addition to g0, F0, (g0)R. As before, the conditions on E0

and G imply that (F0)∗ : span{∂x20 , ∂x30} → span{∂x20 , ∂x30}, and (F0)∗(∂t0) → span{∂t0 , ∂x20 , ∂x30}.
Further, (2.20) implies that (F0)∗(∂1) ∈ span{ν(gR)0}. Now recall that T ′h + ν ′ = (1

2h00 + h10)∂0 −
(h01 + 1

2h11)∂1 − (h0A + h1A)∂A, cf. also §6.2. Therefore, the linearization of the last equation in
(2.19) has the form

(1
2h00 + h10)∂0 − (h0A + h1A)∂A = (F0)−1

∗ (b).

Note that in contrast with the boundary condition (1.10) with data B (cf. Remark 2.6), for the
BC boundary conditions one may choose here Tg to be the unit timelike normal to (ΣG)τ ⊂ (C, g).
This is because by taking the tangential projection as above, one obtains the same linearized term
for these different choices of the timelike normal.

The analysis above leads to the analog of Proposition 2.5.

Proposition 2.7. Let g0 = η be the standard Minkowski metric on R. The frozen coefficient or
blow-up linearization of the equations (2.17)-(2.19) at a solution (g, F ) at a corner point p ∈ Σ may
be written in the form {

�g0h = 0

�g0F
′ = 0

in R(2.21)

with initial and boundary conditions
hαβ = q′αβ, ∂t0hαβ = k′αβ
F ′ = E′0, ∂t0F

′ = E′

V ′h = 0

on {t0 = 0}(2.22)

and 

V ′h = 0

F ′ = G′

h22 − h33 = c2

h23 = c3

(HgF )′h,F ′ = H ′

1
2h00 + h10 = b0

h0A + h1A = bA A = 2, 3

on {x1
0 = 0}.(2.23)

The compatibility conditions are essentially the same as those in and following (2.16). In the
next section we discuss the precise definition of HgF and its linearization.

3. Analysis of Linearized Equations

In this section, we derive the main H1 and Hs energy estimates for the linearized systems (2.13)-
(2.15) and (2.21)-(2.23) at the core of the existence and well-posedness results, Theorems 1.1 and
1.2.
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As in §2, we work in the domain R = R+ × (R3)+ and set St = {t = const}, Σt = {t =
const} ∩ {x1 = 0} and let Ct = ∪{Σs : 0 ≤ s ≤ t}, Tt = ∪{Ss : 0 ≤ s ≤ t}. As in §2, we assume the
initial and boundary data in (2.13)-(2.15) and (2.21)-(2.23) are of compact support in R.

As a simple model for the systems (2.13)-(2.15) and (2.21)-(2.23) consider a scalar function u on
R satisfying the inhomogeneous wave equation

(3.1) �g0u = ϕ,

with initial conditions u(0, ·) = u0, ∂t(0, ·) = u1 and boundary data B(u) = b on C, all of compact
support. The boundary operator B, specified further below, is assumed to contain derivative
operators of order at most j, with j = 0 or j = 1. As usual, define the bulk and boundary energies
by

ESt(u) =

∫
St

u2
t + |du|2 + u2 and ECt(u) =

∫ t

0

∫
Σt

u2
t + |du|2 + u2,

where du is the full collection of spatial derivatives ∂iu, i = 1, 2, 3 and the integration is with respect
to the volume forms induced on St, Σt by g0.

For Ω = St,Σt or Ct, let Hs(Ω) denote the Sobolev space of functions with weak derivatives up
to order s in L2(Ω), s ∈ R+. For notational convenience, we let H̄s denote the analogous norm
consisting of all space-time derivatives, (not just those tangent to Ω). In this notation,

ESt(u) = ||u||2H̄1(St)
, and ECt(u) = ||u||2H̄1(Ct).

As is well-known, the well-posedness of (3.1) and similar more complicated systems of wave
equations rests on the existence of the main H1 energy estimate

(3.2) ESt(u) + cECt(u) ≤ C[ES0(u) + ||ϕ||2L2(Mt)
+ ||b||2H1−j(Ct)],

for constants c, C > 0 independent of u and b. Similarly, one requires higher order energy estimates
of the form

(3.3) ||u||2H̄s(St)
+ c||u||2H̄s(Ct) ≤ C[||u||2H̄s(S0) + ||ϕ||2H̄s−1(Tt) + ||b||2Hs−j(Ct)].

These estimates require that u is a smooth, (or at least sufficiently smooth) solution of (3.1). It
will always be assumed s > n

2 + 1 = 5
2 , so that by Sobolev embedding C1,α ⊂ Hs in dimension 3.

It is important to observe that the last term in (3.2) or (3.3) involves only derivatives of b tangent
to C.

For completeness, these energy estimates for solutions u of (3.1) are derived in Appendix §6.1
for Sommerfeld (b = ∂x0 + ∂x1) and Dirichlet boundary conditions, which suffice for our purposes.
It is well-known, cf. [3] for example, that the IBVP for (3.1) is well-posed with respect to either of
these boundary conditions.

Returning to the linearized systems (2.13)-(2.15) and (2.21)-(2.23), throughout the following,
we assume the initial data (g′S ,K

′) for g′ are in Hs(S)×Hs−1(S) and the boundary data (bα, cA)
are in Hs(C). Similarly, we assume the initial data (E′0, E

′
1) for F ′ are in Hs+1(S) ×Hs(S) while

the boundary data G′ for F ′ are in Hs+1(C). In addition, we assume the Cs−1 × Cs compatibility
conditions hold for (g′, F ′) at the corner Σ.

We first prove the energy estimates for F ′.

Proposition 3.1. Under the assumptions on the initial and boundary data above, one has an Hs+1

energy estimate for F ′. Thus

||F ′||2H̄s+1(St)
+ c||F ′||2H̄s+1(Ct) ≤ C[||F ′||2H̄s+1(S0) + ||G′||2Hs+1(Ct)].
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Proof. As already noted in §2, the system for F ′ in (2.13)-(2.15) and (2.21)-(2.23) decouples from
the h-system. In both cases of initial-boundary data one has the system

�g0F
′ = 0 in R

F ′ = E′0, ∂t0F
′ = E′, on {t = 0}

F ′ = G′ on {x1
0 = 0}.

(3.4)

The system (3.4) is an uncoupled system of wave equations for F ′ with (inhomogeneous) Dirichlet
boundary data. It is well-known that such systems admit H1 energy estimates as in (3.2) and higher
order energy estimates (3.3) given the Cs compatability conditions; cf. again [3] or the Appendix
§6.1.

Next we turn to energy estimates for the blow-up linearization (2.13)-(2.15) of the system (2.2)-
(2.4) with boundary data B.

Proposition 3.2. For the linear system (2.13)-(2.15) , one has an Hs energy estimate

|||h||2H̄s(St)
+ c||h||2H̄s(Ct) ≤ C[||h||2H̄s(S0) + ||b||2H̄s(Ct) + ||c||2Hs(Ct)],

where b = {bα}, α = 0, 1, 2, 3, c = {cA}, A = 2, 3.

Proof. We begin by analysing the gauge boundary conditions V ′h = 0 on the boundary C = {x1
0 = 0},

which have the form:

(V ′h)0 = −∂0h00 + ∂1h01 + ∂Ah0A − 1
2∂0(trh) = 0

(V ′h)1 = −∂0h01 + ∂1h11 + ∂Ah1A − 1
2∂1(trh) = 0

(V ′h)A = −∂0h0A + ∂1h1A + ∂BhBA − 1
2∂A(trh) = 0.

(3.5)

We recall that A = 2, 3, B = 2, 3 and the Einstein summation convention is used. Let τ =
1
2(h22 + h33). Since trh = −h00 + h11 + 2τ , this gives

− 1
2∂0(h00 + h11) + ∂1h01 − ∂0τ + ∂Ah0A = 0

1
2∂1(h00 + h11)− ∂0h01 − ∂1τ + ∂Ah1A = 0

− ∂0h0A + ∂1h1A + 1
2∂A(h00 − h11 − 2τ) + ∂BhAB = 0.

(3.6)

Simple modification of the equations gives

− (∂0 + 1
2∂1)h00 − ∂0τ − 1

2∂0(h11 − h00) + ∂1(h01 + 1
2h00) + ∂Ah0A = 0

(1
2∂0 + ∂1)h00 − ∂1τ + 1

2∂1(h11 − h00)− ∂0(h01 + 1
2h00) + ∂Ah1A = 0

− ∂0h0A + ∂1h1A + 1
2∂A(h00 − h11 − 2τ) + ∂BhAB = 0.

(3.7)

which leads easily to the following system:

− (∂0 + 1
2∂1)h00 − ∂0τ − 1

2∂0(h11 − h00) + ∂1(h01 + 1
2h00) + ∂Ah0A = 0(3.8)

(1
2∂0 + ∂1)h00 − ∂1τ + 1

2∂1(h11 − h00)− ∂0(h01 + 1
2h00) + ∂Ah1A = 0(3.9)

− (∂0 + ∂1)(h0A − h1A)− (∂0 − ∂1)(h0A + h1A) + ∂A(h00 − h11)− 2∂Aτ + 2∂BhAB = 0.(3.10)

In light of (3.8)-(3.10) and the well-known existence of energy estimates for Sommerfeld and Dirich-
let boundary data discussed in §6.1, it is then natural to impose Dirichlet boundary data on the
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terms h11 − h00, 1
2h00 + h01 and h0A + h1A. Note that these terms are all included in the Dirichlet

boundary conditions in (2.15). Namely, the full set of boundary data in (2.15) are

h22 − h33 = c2(3.11)

h23 = c3(3.12)

1
2h00 + h01 = b0(3.13)

1
2h11 + h01 = b1(3.14)

h0A + h1A = bA.(3.15)

Observe that (3.13)−(3.14) gives h00−h11 = 2(b0− b1). All of these linearly combined components
of h i.e. h22 − h33, h23, h00 − h11, 1

2h00 + h01 and h0A + h1A, satisfy the wave equation (3.1) with
Dirichlet boundary conditions. Hence the Hs energy estimate (3.3) holds for them.

Next in (3.10), fix the index A, say A = 2. Then the last two terms are −2∂2τ+2∂2h22+2∂3h23 =
−∂2(h22 +h33)+2∂2h22 +2∂3h23 = ∂2(h22−h33)+2∂3h23. Thus by (3.11)-(3.12) and (3.13)-(3.14),
one has Hs−1 control of the last 3 terms in (3.10). Further, as discussed in the Appendix §6.1,
control of the Dirichlet boundary value gives control of the Neumann (normal derivative) boundary
value; this is the boundedness of the Dirichlet-to-Neumann map. Thus (3.15) gives Hs−1 control
of the second term in (3.10). It follows that (∂0 + ∂1)(h02 − h12) is controlled in Hs−1 on C.
This is a Sommerfeld boundary operator and since (h02 − h12) is a solution of the wave equation,
�g0(h02 − h12) = 0 (with H̄s initial conditions), this gives Hs control on h02 − h12. In addition we
already have Hs energy control of h02 + h12. Thus we obtain Hs energy estimates for h02 and h12.
The same argument applies to the case A = 3.

Now according to (3.8), (3.9), the Hs Dirichlet control on h0A, h1A, 1
2h00 + h01 and h00 − h11

at the boundary C gives Hs−1 control of u = (∂0 + 1
2∂1)h00 + ∂0τ and v = (1

2∂0 + ∂1)h00 − ∂1τ .

Consider the combination u−(2+
√

3)v, which is then also controlled in Hs−1. Simple computation
gives

u− (2 +
√

3)v = (∂0 + (2 +
√

3)∂1)(−
√

3
2 h00 + τ),

which is a Sommerfeld boundary operator on (−
√

3
2 h00+τ). Thus theHs energy of w = (−

√
3

2 h00+τ)

is controlled. Furthermore u = (∂0 + 1
2∂1)h00 +∂0(

√
3

2 h00−
√

3
2 h00 +τ) = [(1+

√
3

2 )∂0 + 1
2∂1]h00 +∂0w

which thus gives a bound on the Sommerfeld operator [(1+
√

3
2 )∂0 + 1

2∂1]h00 on h00. Thus we obtain
Hs energy estimates for h00, which further yields Hs energy estimates for τ via (3.8). Combined
with (3.11), (3.13), (3.14), this also gives energy estimates for h22, h33, h11 and h01.

Remark 3.3. The method of proof of Proposition 3.2 shows that the harmonic gauge condition
V = 0 on C determines a natural choice of Dirichlet-type boundary data (3.13)-(3.15), at least
given the choice of the conformal class [γ] as boundary data. The method of proof also has an
upper-triangular character, similar to the upper-triangular form or bootstrap method introduced
and employed in [15], [16], cf. also [14].

Next we consider boundary conditions more intrinsic to the boundary C. We will keep the three
boundary conditions for the projection ΘC = {θα}, α = 0, 2, 3 of Θ tangential to C, but drop the
condition for the normal or transverse component θ1; instead we seek a replacement for θ1 with
data more intrinsic or geometric to the boundary C. We first present below a general discussion of
this situation. The result of this analysis is then summarized in Proposition 3.4 below.

In the following, we denote by Oj a boundary term which has been controlled in Hs−j(C) by
preceding arguments and let O = O0. Thus from (3.11) or (2.23), we have h22 = h33 = τ + O,
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while from (2.23), h01 = −1
2h00 + O and h1A = −h0A + O. Applying these replacements in (3.5),

we obtain

− 1
2∂0h11 − 1

2(∂0 + ∂1)h00 − ∂0τ +X = O(3.16)

1
2∂1h11 + 1

2(∂0 + ∂1)h00 − ∂1τ −X = O(3.17)

− (∂0 + ∂1)h0A + 1
2∂A(h00 − h11) = O,(3.18)

where X denotes ∂Ah0A.
We first seek an equation involving only the terms h00 and h11. To do this, we use Hamiltonian

constraint (6.13), (6.16) on both the timelike boundary C = {x1 = 0} as well as the spacelike
hypersurfaces {t0 = constant}. The linearization of these equations is given in the Appendix §6.2.
From (6.15), on C one has

(∂0∂0 − ∂1∂1)h00 + (∂0∂0 + ∂1∂1)τ − 2∂0X = O2,(3.19)

while on the hypersurfaces {t0 = constant}, from (6.17) one has

(∂0∂0 − ∂1∂1)h11 + (∂1∂1 + ∂0∂0)τ + 2∂1X = O2.(3.20)

Taking the difference (3.19)−(3.20) gives

(3.21) (∂0∂0 − ∂1∂1)(h00 − h11)− 2(∂0 + ∂1)X = O2,

which is equivalent to

(3.22) (∂0 + ∂1)[(∂0 − ∂1)(h00 − h11)− 2X] = O2.

This is a Sommerfeld boundary condition on [(∂0−∂1)(h00−h11)− 2X] and thus as in Proposition
3.3, we obtain:

(∂0 − ∂1)(h00 − h11)− 2X = O1.(3.23)

Now taking ∂1(3.16)− ∂0(3.17) yields:

−∂0∂1h11 − 1
2(∂0 + ∂1)2h00 + (∂1 + ∂0)X = O2.(3.24)

Taking then 2×(3.24)+(3.21) gives

−2∂0∂1h11 − (∂0 + ∂1)2h00 + (∂0∂0 − ∂1∂1)(h00 − h11) = O2.

which can be simplified as:

(−∂0∂0 + ∂1∂1 − 2∂0∂1)h11 − 2∂1(∂0 + ∂1)h00 = O2.(3.25)

Factorizing gives (−∂0∂0 + ∂1∂1 − 2∂0∂1)h11 = (∂1 + (
√

2 − 1)∂0)(∂1 − (
√

2 + 1)∂0)h11. The first
factor, again of Sommerfeld type, leads to suitable energy estimates as in Proposition 3.2; the
second factor however does not. Thus we seek a remaining boundary operator of the form

(3.26) (∂0 + ∂1)h00 − α∂0h11 − β∂1h11 = O1.

Based on the Dirichlet-to-Neumann estimate as discussed in the proof of Proposition 3.2, taking
∂1 of (3.26) yields

(3.27) ∂1(∂0 + ∂1)h00 − α∂0∂1h11 − β∂1∂1h11 = O2,

and adding this to (3.25) gives (−∂0∂0 + ∂1∂1 − 2∂0∂1)h11 − 2α∂0∂1h11 − 2β∂1∂1h11 = O2, i.e.

(3.28) [∂0∂0 + 2(α+ 1)∂0∂1 + (2β − 1)∂1∂1]h11 = O2.

For this to be a well-posed (Sommerfeld-type) boundary condition, one must have

α+ 1 ≥ 0, 2β − 1 ≥ 0, (α+ 1)2 ≥ 2β − 1.(3.29)
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If the inequalities above are satisfied, (3.28) can be taken as a“double Sommerfeld” type boundary
condition on h11.

It remains to check what mean curvature condition HgF can lead to (3.26). Note that since we
already have energy estimate for F ′ by Proposition 3.1, in the following we only consider variation of
various mean curvature terms with respect to the deformation h. Let K be the second fundamental
form of t0-hypersurface in R, and A be the second fundamental form of the time-like boundary
{x1

0 = 0} ⊂ R. Let trStK denote the full trace of K on the t-hypersurface St and trΣtK the
restricted trace of K on Σt. Similarly, let trCA be the full trace of A on the time-like boundary,
with trΣtA the restricted trace. The linearizations of these terms are given by (cf. Appendix §6.2):

2(trStK)′h = ∂0(h11 + hAA)− 2∂1h01 − 2∂Ah0A = ∂0h11 + ∂1h00 + 2∂0τ − 2X +O1(3.30)

2(trΣtK)′h = ∂0hAA − 2∂Ah0A = 2(∂0τ −X) +O1(3.31)

2(trCA)′h = ∂1(−h00 + hAA) + 2∂0h10 − 2∂Ah1A = −(∂1 + ∂0)h00 + 2∂1τ + 2X +O1(3.32)

2(trΣtA)′h = ∂1hAA − 2∂Ah1A = 2(∂1τ +X) +O1.(3.33)

Here in (3.30) and (3.32) we have used the control on 1
2h00 + h01 as well as the control given by

the Dirichlet-to-Neumann map, as in the proof of Proposition 3.2 above. Substituting the relations
(3.16)-(3.18) into these equations one easily obtains

∂0h00 = −2(trStK)′h,

∂1h00 = 2(trΣtA)′h − 2(trCA)′h + 2(trStK)′h,

∂0h11 = −2(trΣtK)′h − 2(trΣtA)′h + 2(trCA)′h,

∂1h11 = 2(trCA)′h.

(3.34)

Substituting these into (3.26) transforms (3.26), after simple manipulations, into

α(trΣtK)′h − (α+ β + 1)(trCA)′h + (α+ 1)(trΣtA)′h = O1.

Thus we set

(3.35) HgF = αtrΣtKgF − (α+ β + 1)trCAgF + (α+ 1)trΣtAgF ,

and require that α, β satisfy (3.29).
This leads to the following analog of Proposition 3.2.

Proposition 3.4. For the gauged system (2.17)-(2.19) with BC boundary data where HgF = H
and HgF is given by (3.35) satisfying (3.29), its blow-up linearization (2.21)-(2.23) admits an Hs

energy estimate

|||h||2H̄s(Bt)
+ c||h||2H̄s(Ct) ≤ C[||h||2H̄s(B0) + ||b||2H̄s(Ct) + ||c||2Hs(Ct)],

where b = {bα}, α = 0, 2, 3, c = {cA}, A = 2, 3.

Proof. The proof is the same as that of Proposition 3.2. Namely, if α, β satisfy (3.29), then by (3.28)
one obtains an Hs energy estimate for h11. Via (3.26) and the Dirichlet-to-Neumann estimate in
§6.1, this gives an Hs energy estimate for h00. Since the Dirichlet condition on 1

2h00 + h01 gives
an Hs energy estimate for this term, one has the Hs energy estimate for h01. Now equation (3.18)
yields Hs control of h0A for A = 2, 3 and equation (3.16) yields Hs control of τ . The Dirichlet
boundary conditions give Hs control on the remaining components of h = hαβ.

Remark 3.5. There are many other expressions for HgF besides (3.35) for which Proposition 3.4
remains valid; this arises from the fact that there are numerous other variants of the algebraic
manipulations in (3.25)-(3.26). Similarly, other expressions for HgF preserving the validity of
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Proposition 3.4 may be obtained by changing the boundary condition 1
2h00 + h01 to λh00 + µh01,

for arbitrary smooth λ, µ > 0. We will not pursue this further in general here however.
It is worth noting that when α = 0 and β = 1, HgF is the mean curvature boundary condition L

in [14]. However, the method of proof of [14], relying on estimates with pure Neumann boundary
data, is rather different than the proof above.

Finally, it would be interesting to know if (with a suitable choice of λ, µ for instance), one can
choose HgF = trCA, the mean curvature of the boundary C, as in [9].

4. Local well-posedness and geometric uniqueness for the IBVP

In this section, we use the results above to prove local versions of Theorems 1.1-1.4. We first
prove well-posedness of the gauged IBVP’s in (2.2)-(2.4) and (2.17)-(2.19). Following this, we turn
to ungauged systems (1.8)-(1.10) and (1.17)-(1.19) and the issue of local uniqueness.

For the following results, let V be a neighborhood of p ∈ Σ in M and (given a metric g) let
D+(T ∩V ) denote the future domain of dependence of the initial boundary data set T ∩V in (V, g).

Theorem 4.1. The IBVP for the gauged system (2.2)-(2.4) with initial data I as in (2.3) and
boundary data B as in (2.4) is locally well-posed in

Hs ×Hs+1,

for s ≥ 4, s ∈ N+. More precisely, suppose in a neighborhood V of a corner point p, equipped with

a standard corner chart χ, one is given gauged g-initial data (q, k) ∈ Hs+ 1
2 (S ∩ V )×Hs− 1

2 (S ∩ V )

satisfying the constraint equations (1.6), and F -initial data (E0, E1) ∈ Hs+ 3
2 (S∩V )×Hs+ 1

2 (S∩V )

together with boundary data (G, [γ],Θ) ∈ Hs+ 3
2 (C∩V )×Hs+ 1

2 (C∩V )×Hs+ 1
2 (C∩V ) as in (2.3)-(2.4)

and satisfying the Cs−1 compatibility conditions at Σ ∩ V .
Then there exists a triple (U, g, F ) with U ⊂ V ⊂M , p ∈ U , satisfying the following properties:

• The pair (g, F ) is a solution of the system (2.2) with

(g, F ) ∈ Hs(U)×Hs+1(U).

The trace of (g, F ) on T ∩ U is in Hs(T ∩ U) ×Hs+1(T ∩ U) and realizes the initial and
boundary conditions (2.3)-(2.4).
• U = D+(T ∩ U).
• On the domain U , the solution (g, F ) is unique.
• The solution (U, g, F ) on the fixed domain depends continuously on the initial and boundary

data.

Proof. Proposition 3.2 gives the existence of strong or boundary stable energy estimates for the
frozen coefficient system, i.e. the linearization of the system at a standard flat configuration. The
proof of well-posedness then follows from the general theory of quasi-linear initial-boundary value
problems.

In more detail, consider the linearization of the system (2.2)-(2.4) at any smooth background
configuration (g, F ). The bulk equations are then a system of linear wave equations, coupled
only at lower order. As in Proposition 3.2, the boundary conditions are the 4 Dirichlet boundary
conditions for F , 6 Dirichlet boundary conditions for g and 4 gauge boundary conditions V ′h = 0,
all satisfying the compatibility conditions. Given the existence of energy estimates for the frozen
(constant) coefficient system, one obtains existence of energy estimates for the general linearized
system by localization in a sufficiently small neighborhood of any corner point p ∈ Σ. This uses a
partition of unity, giving local data of compact support, and rescaling, as discussed in §2. We refer
for example to [3, Theorem 9.1], for details of this extension of energy estimates for the constant
coefficient system to the general linear system. It follows that the general linearization of the system
(2.2)-(2.4) at any given background has boundary stable energy estimates.
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The frozen coefficient system admits a reduction to a first order symmetric hyperbolic sys-
tem, (i.e. there exists a Friedrichs symmetrizer) with non-characteristic boundary. The strong
or boundary stable Hs energy estimates are equivalent to the statement that the boundary con-
ditions (2.4) are strictly maximally dissipative, cf. [3], [22]. It then follows from [3, Theorem
9.16], that the system (2.2)-(2.4), linearized at any smooth background (g, F ), is well-posed in
Cr([0, t], Hs−r(S))× Cr([0, t], Hs+1−r(S)), 0 ≤ r ≤ s.

Finally, by a technically involved argument, the quasi-linear system is proved to be well-posed
by a standard iteration or contraction mapping principle applied to a sequence of solutions of the
linearized system, cf. [20], [17], [3]; the particular formulation given in Theorem 4.1 is an application
of [3, Theorem 11.1].

We note that of course the ‘size’ of the domain U depends on the initial boundary data (I,B).
However, the domain U on which a solution (g, F ) exists is not unique; for example one may consider
solutions on domains U ′ ⊂ U . It is only claimed that on the fixed point-set U ⊂ M , the solution

(g, F ) is unique. It is well-known that such uniqueness fails on domains Û which strictly contain

the domain of dependence of their initial boundary data, i.e. for Û such that D+(Û ∩ T ) ⊂⊂ Û .

Remark 4.2. The regularity stated in Theorem 4.1 is likely not optimal in that there is a loss of
half of derivative in the statement. This will not be pursued further here, cf. also [3, Ch. 11]. Note
that Theorem 4.1 also proves well-posedness in the space

(g, F ) ∈ Cr(I,Hs−1−r(S))× Cr(I,Hs−r(S)),

for 0 ≤ r ≤ s− 1.

The same result and proof holds for (IC , BC) initial and boundary data.

Theorem 4.3. The gauged IBVP for the system (2.17)-(2.19) with initial data IC as in (2.18) and
boundary data BC as in (2.19) is locally well-posed in

Hs ×Hs+1,

for s ≥ 4, s ∈ N+. More precisely, suppose in a neighborhood V of a corner point p, equipped with

a standard corner chart χ, one is given gauged g-initial data (q, k) ∈ Hs+ 1
2 (S ∩ V )×Hs− 1

2 (S ∩ V )

satisfying the constraint equations (1.6), and F -initial data (E0, E1) ∈ Hs+ 3
2 (S∩V )×Hs+ 1

2 (S∩V )

as in (2.18) together with boundary data (G, [γ],ΘC , H) ∈ Hs+ 3
2 (C ∩U)×Hs+ 1

2 (C ∩U)×Hs+ 1
2 (C ∩

U)×Hs− 1
2 (C ∩ U) as in (2.19), and satisfying the Cs−1 compatibility conditions at Σ ∩ V .

Then there exists a triple (U, g, F ) with U ⊂ V ⊂M , p ∈ U , satisfying the following properties:

• The pair (g, F ) is a solution of the system (2.2) with

(g, F ) ∈ Hs(U)×Hs+1(U).

The trace of (g, F ) on T ∩ U is in Hs(T ∩ U) ×Hs+1(T ∩ U) and realizes the initial and
boundary data (2.18)-(2.19).
• U = D+(T ∩ U).
• On the domain U , the solution (g, F ) is unique.
• The solution (U, g, F ) on the fixed domain depends continuously on the initial and boundary

data.

Proof. The proof is the same as that of Theorem 4.1, using Proposition 3.4 in place of Proposition
3.2.
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Remark 4.4. As mentioned in the Introduction, a simple inspection of the proofs shows that
Theorems 4.1 and 4.3 remain valid when the wave map variable F is dropped, specifying then
initial-boundary data solely for the gauge-reduced Einstein equations for g. Moreover, this may be
done with respect to an arbitrary fixed (smooth) foliation F = {τ = const} of U (not necessarily the
standard {t0 = const} foliation. However, as discussed further below, it does not appear possible
to glue such local solutions together to obtain solutions on larger domains in general.

The results above are for the reduced Einstein equations (2.2), so in the gauge Vg = 0 and with
gauged initial boundary data (I,B) or (IC , BC). While solutions of the reduced Einstein equations
give solutions of the Einstein equations (1.4), (by Lemma 2.1), with data (I,B) or (IC ,BC) the
uniqueness statement no longer holds. The next result removes this gauge condition and, when
used in conjunction with Theorem 4.1, gives a local version of Theorem 1.1 and Theorem 1.3.

Proposition 4.5. (Local Geometric Uniqueness I) A local solution (U, g, F ) to the IBVP (1.8)-

(1.10) with U = D+(T ∩ U) is locally unique up to the action of Diff0(U), i.e. if (g, F ) and (g̃, F̃ )
are solutions in U with the same (I,B) data, then there exists an open subset U ′ ⊂ U covering
S ∩ U and a diffeomorphism ϕ ∈ Diff0(U ′) such that

(4.1) ϕ∗(g̃, F̃ ) = (g, F ).

In particular g̃ is isometric to g in U ′.

Proof. Fix a standard corner chart χ = (xα) on U . Since g and g̃ induce the same Riemannian
metric gS and second fundamental form K on S ∩ U , there exists a diffeomorphism ψ fixing the
initial surface and boundary such that in χ the coordinate components of ψ∗g̃ and its time derivative
on S ∩ U agree with the gauged initial data (q = gαβ, k = ∂tgαβ) of g. Meanwhile, ψ preserves the
gauge independent initial and boundary data (I,B). By Lemma 2.3, there is an open subset U ′ ⊂ U
covering S∩U and a diffeomorphism ϕ1 ∈ Diff1(U ′) such that (g1, F1) = (ϕ∗1g, F ◦ϕ1) is a solution to
(2.2)-(2.4) with the (I,B) data restricted to U ′. Similarly there is a diffeomorphism ϕ2 ∈ Diff1(U ′)

(shrink U ′ if necessary) such that (g2, F2) = (ϕ∗2ψ
∗g̃, F̃ ◦ ψ ◦ ϕ2) is also a solution to (2.2)-(2.4)

with the same geometric initial and boundary data. Moreover, because the diffeomorphisms ϕ1, ϕ2

are equal to identity to the first order at S ∩ U ′, they preserve the gauged initial data of the
metric. Hence in the chart χ|U ′ , (g1, F1) and (g2, F2) have the same gauged data (I,B). Therefore,
(g2, F2) = (g1, F1) by the uniqueness in Theorem 4.1 above. This proves the result.

Of course the domain U in Proposition 4.5 is not unique. For instance if (U, g, F ) is a solution,
then so is (U ′, g, F ) for any open subset U ′ ⊂ U with T ∩ U ′ = T ∩ U and U ′ = D+(T ∩ U ′).
Nevertheless, the same proof as above shows that if (U1, g1, F1) and (U2, g2, F2) are two such
solutions with the same initial and boundary data on T ∩U1 = T ∩U2, then there are subdomains
V1 ⊂ U1, V2 ⊂ U2 with S ∩ Vi = S ∩ Ui, Vi = D+(T ∩ Vi) and a diffeomorphism ϕ : V1 → V2, equal
to the identity on T ∩ Vi, such that ϕ∗(g2, F2) = (g1, F1).

The same discussion and result holds for (IC , BC) data, leading to the local version of Theorem
1.2.

Proposition 4.6. (Local Geometric Uniqueness II) A local solution (U, g, F ) to the IBVP in (1.17)-

(1.19) with U = D+(T ∩ U) is locally unique up to the action of Diff0(U), i.e. if (g, F ) and (g̃, F̃ )
are solutions in U with the same (IC ,BC) data, then there exists an open subset U ′ ⊂ U covering
S ∩ U and a diffeomorphism ϕ ∈ Diff0(U ′) such that

(4.2) ϕ∗(g̃, F̃ ) = (g, F ).

In particular g̃ is isometric to g in U ′.

Proof. The proof is the same as the proof of Proposition 4.5.
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Remark 4.7. These uniqueness results in Propositions 4.5 and 4.6 no longer hold when the wave
map F is dropped from the data as in Remark 4.4. The reason is that boundary data consisting
of g alone are not invariant under Diff1(U) or Diff0(U). In particular, the normal component νg is
not invariant under Diff1(U).

Also, as noted in (1.14), there are a number of alternate boundary conditions one may impose in
place of those for Θ or ΘC in (1.10) or (1.19) to obtain existence results analogous to Theorems 4.1
and 4.3. For this, one only requires the linearization of the Θ-term at flat data (g0, F0) to have the
same basic form as that analysed in §3. However, to preserve the uniqueness results above requires
significant restrictions on the choice of boundary conditions for Θ; in particular the boundary data
must be invariant under Diff0(U).

Now recall the equivalence relation (1.21) on the initial boundary data (I,B), applied here
locally in U . The same relation holds for the (IC ,BC) initial boundary data, i.e. ((IC)1, (BC)1)) ∼
((IC)2, (BC)2) in U if and only if there is a diffeomorphism ψ ∈ Diff(T ∩ U) such that

(4.3) ψ∗((IC)2, (BC)2) = ((IC)1, (BC)1).

Corollary 4.8. (Local Geometric Uniqueness) If the initial and boundary data of two pairs (U, g1, F1)
and (U, g2, F2) are equivalent in the sense of either (1.21) or (4.3), then there exists an open subset
U ′ ⊂ U covering S ∩ U and a diffeomorphism Ψ ∈ Diff(U ′) such that

(4.4) Ψ∗(g2) = g1 and Ψ∗F2 = F1 in U ′.

Proof. The proof is the same for both sets of boundary data, so we work with (I,B) boundary
data. Let (g1, F1) and (g2, F2) be solutions in U satisfying (1.17)-(1.19) with initial and boundary
data (I1,B1) and (I2,B2) respectively. Suppose (I1,B1) and (I2,B2) are related as in (1.21), so
that there is a diffeomorphism ψ ∈ Diff(T ∩ U) such that ψ∗(I2,B2) = (I1,B1). Extend ψ to a
diffeomorphism ψ ∈ Diff(U). Then ψ∗(g2, F2) is a solution with initial and boundary data (I1,B1).
By Proposition 4.5, there is a diffeomorphism ϕ ∈ Diff0(U ′) for some U ′ ⊂ U covering S ∩ U such
that ϕ∗ψ∗(g2, F2) = (g1, F1) in U ′. Thus (4.4) holds with Ψ = ϕ ◦ ψ. In particular we have
Ψ|T∩U ′ = ψ.

Remark 4.9. The local geometric uniqueness above for the IBVP is the same as that for the
Cauchy problem. Namely, for the Cauchy problem recall that if two solutions have equivalent
geometric initial data (S, g,K), then there exists a local 4-diffeomorphism, i.e. isometry, relating
the two solutions, restricting to suitable domains if necessary. In the terminology used in §5, any two
vacuum developments of (S, g,K) have a common sub-development. Similarly here, to demonstrate
that equivalent boundary data generate isometric solutions, one does not need to solve the IBVP.

However, while for the Cauchy problem the choice of initial data is geometric and independent
of any gauge choice, this is not the case for the IBVP. The choice of possible boundary conditions
giving rise to a well-posed IBVP is strongly dependent on the choice of gauge V = 0.

Remark 4.10. The existence and uniqueness results above show that local solutions (U, g, F ) of
the system (1.4) are (bijectively) parametrized by their initial-boundary data (I,B) or (IC ,BC) on
T ∩U . We note that this parametrization depends on the choice of time function t0 and background
metric gR. However, this choice is not essential; different choices of (t0, gR) give different bijective
parametrizations of the space of solutions on U .

5. Gluing and geometric uniqueness for the IBVP.

Up until this point, all the discussion has been local, in a sufficiently small neighborhood U
of a corner point p ∈ Σ and for the pair (g, F ) consisting of a vacuum solution together with a
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(free) wave map gauge. We now turn to the global (in space) issue of well-posedness in a full
neighborhood of the initial surface S in M . This is obtained by gluing local solutions together,
using local geometric uniqueness. This gluing is first carried out in a full neighborhood U of the
corner Σ for the pair (g, F ) in Theorem 5.2 below and then followed by a similar analysis for the
vacuum metric g alone in Theorems 5.5.

To pass to the interior, away from the corner Σ, recall that given initial data (gS ,K) on S, it
is proved in [5] that there is a maximal solution of the Einstein vacuum equations, i.e. a maximal
globally hyperbolic vacuum spacetime (MS , g) where S\∂S is embedded in MS as a Cauchy surface
with induced metric and second fundamental form equal to I = (gS ,K). (It is easy to generalize
this result to the Cauchy problem for (MS , g, F ), with F being the wave map satisfying (1.3) and
initial conditions as in (1.9)). To obtain vacuum developments of the full initial boundary data
(T, I,B), we will show that the solution (U , g) above may be smoothly patched with the interior
solution (MS , g), giving then a global development. (The same may done when including the free
wave map F ).

Note that (up to isometry) solutions g of the Cauchy problem for the vacuum Einstein equations
do not depend on any choice of gauge or local coordinates while the definition of boundary data
is gauge (i.e. ϕg or F ) dependent. This is another reason that the analysis needs to be separated
into the (pure) Cauchy problem (without boundary) and the IBVP in a neighborhood U of the
boundary C.

We first make a couple of definitions. The arguments to follow regarding pairs (g, F ) do not
depend on the choice of B or BC boundary data, so we will not distinguish B and BC and use
B to denote either one of them. An initial boundary data set (T, I,B) is an initial boundary set
T = S ∪ C ⊂ M together with initial and boundary data (I,B) as in (1.5)-(1.7) or (IC ,BC) as in
(1.15)-(1.16) on T satisfying the Cs−1 compatibility conditions on Σ. As previously, we fix a time

function t0 on M and a complete Riemannian metric gR on the target space M̃ ⊃M ⊃ T .
Let r0 denote the distance function to Σ on S with respect to the background Riemannian metric

gR. A partial initial boundary set P ⊂ T is an initial boundary set of the form

P = Pr0 ∪ (CG)τ

where Pr0 ⊂ S is the r0-tubular neighborhood of Σ = ∂S with respect to gR and (CG)τ = {p ∈ C :
t0(G(p)) ∈ [0, τ)} with G the Dirichlet boundary data of F given in B. We will allow τ = ∞ but
assume r0 is small, so that Pr0

∼= I × Σ. A partial initial boundary data set (P, I,B) is defined as
the restriction of (T, I,B) to the subset P .

Definition 5.1. A boundary vacuum development with gauge for the partial data set (P, I,B) is a
manifold-with-corner U , equipped with a pair (g, F ) solving (1.8) in U such that:

(1) U ∼= [0, r0)×(CG)τ ⊂M is diffeomorphic to a product neighborhood of (CG)τ with its initial
and boundary surface identified with P in a natural way.

(2) Pr0 ∩ U is spacelike and (CG)τ ∩ U is timelike in (U , g).
(3) F is a diffeomorphism in U and (SF )t = F−1({t0 = t}) is spacelike in (U , g) for all t ∈ [0, τ).
(4) (U , g, F ) satisfies the conditions (1.9)-(1.10) or (1.18)-(1.19) with the given initial and

boundary data {I,B} on P .
(5) By choosing a smaller neighborhood if necessary, we require that U = D+(P ), i.e. U is the

future domain of dependence of P in (U , g).

We also recall from Remark 2.1(ii) that for any local solution (U, g, F ) near Σ, the map F is a
diffeomorphism from its domain onto its image F (U) ⊂M in a neighborhood of Σ.

The semi-global analog of Theorems 4.1 and 4.3 is:

Theorem 5.2. Let (P, I,B) be a partial initial boundary data set on P = Pr0 ∪ (CG)τ , with g-initial

data (gS ,K) ∈ Hs+ 1
2 (Pr0) × Hs− 1

2 (Pr0) satisfying the constraint equations (1.6), and F -initial
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data (E0, E1) ∈ Hs+ 3
2 (Pr0) × Hs+ 1

2 (Pr0) as in (1.5), together with boundary data (G, [γ],Θ) ∈
Hs+ 3

2 ((CG)τ ) × Hs+ 1
2 ((CG)τ ) × Hs+ 1

2 ((CG)τ ) as in (1.7) (or (G, [γ], H,ΘC) ∈ Hs+ 3
2 ((CG)τ ) ×

Hs+ 1
2 ((CG)τ ) × Hs− 1

2 ((CG)τ ) × Hs+ 1
2 ((CG)τ ) as in (2.19)), satisfying the Cs−1 compatibility con-

ditions. Then there exists τ ′ > 0, r′0 > 0 so that the subset P ′ = Pr′0 ∪ (CG)τ ′ admits a boundary

vacuum development with gauge, i.e. (U , g, F ) with

(5.1) (g, F ) ∈ Hs(U)×Hs+1(U),

and (g, F ) has trace on P ′ in Hs(P ′)×Hs+1(P ′) realizing the conditions in Definition 5.1.
Two boundary vacuum developments of the same partial initial boundary data (P, I,B) are equiv-

alent in a neighborhood of P ′ ⊂ P .

Proof. Here we give the proof in the case B = B. The same proof works for B = BC . By the local
existence theorem, Theorem 4.1, for any point p ∈ Σ, there exists an open neighborhood Vp in T
admitting a vacuum development. Choose then a finite collection of open subsets {Vn}mn=1 of T
covering the corner Σ. Each Vn is equipped with initial and boundary data (In,Bn) obtained by
restricting (I,B) to Vn and each (Vn, In,Bn) admits a vacuum development (Un, gn, Fn). When two
subsets Vn and Vm overlap, their vacuum developments can be patched together in the following
way.

Let U ′n denote the image of Un under Fn i.e. U ′n = Fn(Un) and let (gF )n denote the pull-back
metric (F−1

n )∗gn on U ′n. Then ((gF )n, IdU ′n) is a solution to (1.8)-(1.10) on U ′n with the initial and
boundary data (I′n,B

′
n) on T ∩ U ′n given by

I′n = {
(
(E−1

0 )∗gS , (E
−1
0 )∗K

)
, (IdS∩U ′n , E1)}, B′n = {IdC∩U ′n , [γ],Θ}.

The same applies to (Um, gm, Fm), so we obtain (U ′m, (gF )m, IdU ′m). Observe that on the common
overlapping initial boundary surface T ∩ U ′n ∩ U ′m, ((gF )n, IdU ′n) and ((gF )m, IdU ′m) have the same
initial and boundary data. By geometric uniqueness Theorem 4.5, there is a subdomain U ′nm
covering P ′∩U ′n∩U ′m for some P ′ = Pr′0∪(CG)τ ′ with τ ′ small and a diffeomorphism ϕ ∈ Diff0(U ′mn)

such that (gF )n = ϕ∗(gF )m and IdU ′nm = IdU ′nm◦ϕ. Obviously from the latter equation, ϕ = IdU ′nm .
Hence

(gF )n = (gF )m

in the overlap U ′mn. It follows by induction that the local metrics g′n can be trivially glued together
to obtain a solution (gF , IdU ′) on some neighborhood U ′ of Σ in M satisfying (1.8)-(1.10) with
initial and boundary data given by

I′ = {
(
(E−1

0 )∗gS , (E
−1
0 )∗K

)
, (IdS∩U ′n , E1)}, B′ = {IdC∩U ′n , [γ],Θ}.

Since U ′ is patched up by finite local solutions, it is easy to adjust the domain so that C ∩ U ′ =
{t0 ∈ [0, τ)} for some τ > 0 and S∩U ′ = E0(Pr′0) for some r′0 > 0. Now construct a diffeomorphism

F : M → M such that F |S = E0 and F |C = G. Let g = F ∗gF and U = F−1(U ′). Then it is easy
to check that (U , g, F ) is a boundary vacuum development with gauge of some sub-data (P ′, I,B)
of (P, I,B).

Next let (U1, g1, F1) and (U2, g2, F2) be a pair of boundary vacuum developments with gauge of
the same (P, I,B). By local uniqueness, at every corner point p ∈ Σ there is an open neighborhood
U and a diffeomorphism ϕ ∈ Diff0(U) such that ϕ∗g1 = g2 and F1 ◦ϕ = F2 on U . Since Fi (i = 1, 2)
is a local diffeomorphism, the second equation uniquely determines ϕ = F−1

1 ◦ F2. Patching up
naturally such local neighborhoods, we obtain an open neighborhood U covering a subset P ′ ⊂ P
in which Φ∗g1 = g2 and F1 ◦ Φ = F2 for the unique Φ ∈ Diff0(U) determined by Φ = F−1

1 ◦ F2.
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Remark 5.3. As noted in Remark 4.4, with regard to local existence one may drop the wave map
F and locally solve the IBVP for the metric g with B or BC boundary conditions. This is done
with respect to a local chart χ : U → R in which the coordinate functions are g-harmonic. Suppose
χ′ : U ′ → R is another local chart with U ∩ U ′ 6= ∅ giving rise to a solution g′ in U ′. If the chart
χ is affinely related to the χ chart on U ∩ U ′, then the coordinates of χ′ are also harmonic with
respect to g, and so the uniqueness in Theorem 4.1 implies that g′ = g on U ∩ U ′.

In this very special case, where the domain of g has an atlas of affinely related charts preserving
the manifold-with-corner structure, (so the domain has an affine-flat structure) with corresponding
affine-related initial and boundary data, one may patch together local solutions to obtain a larger
solution g. However, there appears to be no method to prove such solutions are unique.

Theorem 5.2 contains the main part of the proofs of Theorems 1.1 and 1.2, as well as the main
parts of the uniqueness results in Theorems 1.3-1.4; it remains only to show that solutions (U , g, F )
may be consistently glued with the maximal solution to the Cauchy problem with initial data I on
S. This is now quite straightforward; see Remark 5.9. Instead, we proceed to discuss the analog of
Theorem 5.2 for the coupled system (g, ϕg) with preferred gauge ϕg as in Theorem 1.5.

Note first that given a fixed metric g, there is a unique solution ϕg of the system (1.32)-(1.34)
in a domain U containing Σ. Since the boundary conditions for ϕg are a simple combination of
Sommerfeld and Dirichlet boundary conditions, this existence and uniqueness follows by standard
results for IBVP’s of systems of semi-linear wave equations. The conditions on the initial data
(EgS , TgR) imply that ϕg : U → U ′ ⊂ M is a diffeomorphism onto its image U ′. The uniqueness
also gives the equivariance property (1.27).

Recall that I = (gS ,K), B = ([γ], H) denote the initial and boundary data in the system (1.29)-
(1.31). In the following the initial boundary data set (T, I,B) and partial initial boundary data set
(P, I,B) are naturally defined as above.

Definition 5.4. A boundary vacuum development for the partial data set (P, I,B) is a manifold-
with-corner U , equipped a Ricci-flat Lorentz metric g in U such that:

(1) U ∼= [0, r0) × (Cϕg)τ ⊂ M is diffeomorphic to a product neighborhood of (Cϕg)τ with its
initial and boundary surface identified with P naturally.

(2) The unique wave map ϕg associated to g via (1.32)-(1.34) is a diffeomorphism in U ; and
the partial level set (Sϕg)t = ϕ−1

g (St) ∩ U is space-like in (U , g) for all t ∈ [0, τ).
(3) Pr0 ∩ U is spacelike and (Cϕg)τ ∩ U is timelike in (U , g).
(4) (U , g) satisfies the conditions (1.30)-(1.31) with the given initial and boundary data (I,B)

on P .
(5) By choosing a smaller neighborhood if necessary, we require that U = D+(P ), i.e. U is the

future domain of dependence of P in (U , g).

The semi-global analog of Theorem 4.3 is:

Theorem 5.5. Let (P, I,B) be a partial initial boundary data set on P = Pr0 ∪ Cτ , with g-initial

data (gS ,K) ∈ Hs+ 1
2 (Pr0) × Hs− 1

2 (Pr0) satisfying the constraint equations (1.6), together with

boundary data ([γ], H) ∈ Hs+ 1
2 ((CG)τ )×Hs− 1

2 ((CG)τ ) as in (1.28) satisfying the Cs−1 compatibility
conditions. Then there exists τ ′ > 0, r′0 > 0 so that there is a boundary vacuum development (U , g)
for the subset P ′ = Pr′0 ∪ (Cϕg)τ ′ ⊂ P with

(5.2) g ∈ Hs(U),

and g has trace on P ′ in Hs(P ′) realizing the conditions in Definition 5.1.
Two boundary vacuum developments of the same partial initial boundary data (P, I,B) are equiv-

alent, and so in particular isometric, in a neighborhood of P ′ ⊂ P .
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Proof. To show existence of a vacuum development (U , g), we expand the initial and boundary data
(I,B) to

I = {gS ,K,E0 = EgS , E1 = TgR}, B = {G, [γ], H,ΘC = T cgR},

where the notation is the same as in the coupled system (1.24)-(1.26). Here G is an arbitrary
diffeomorphism G : C → C satisfying the compatibility conditions. Then Theorem 5.2 shows that
there is a boundary vacuum development with gauge (g, F ) for some subset P ′ of the partial
initial boundary data (P, I,B). Observe here that the wave map F must be equal to the unique
diffeomorphism ϕg determined by (1.32)-(1.34). It then follows that the so obtained (U , g) is a
boundary vacuum development of P ′.

Suppose (U1, g1) and (U2, g2) are two boundary vacuum developments of the same partial initial
boundary data (P, I,B). We can set g = g1 (and g = g2) in the system (1.32)-(1.34) and then solve
for the unique ϕg1 in U1 (and ϕg2 in U2). Next consider the pull-back metrics gϕ1 = (ϕ−1

g1 )∗g1 and

gϕ2 = (ϕ−1
g2 )∗g2. Let U = ϕg1(U1) ∩ ϕg2(U2). Then the triples (U , gϕ1 , IdU ) and (U , gϕ2 , IdU ) are

both vacuum developments with gauge of some common subset P ′ ⊂ (P, I,B) where

I = {gS ,K,E0 = IdS , E1 = TgR}, B = {G = IdC , [γ], H,ΘC = T cgR}.

By the uniqueness result in Theorem 5.2, there exists a diffeomorphism Φ ∈ Diff0(U) such that
Φ∗gϕ1 = gϕ2 and ϕg1 ◦ Φ = ϕg2 . Therefore, g1 and g2 are equivalent – in fact they are related by
the unique diffeomorphisms determined by (1.32)-(1.34), i.e. (ϕ−1

g1 ◦ ϕg2)∗gϕ1 = gϕ2 .

Next we define the vacuum development of global initial and boundary data (T, I,B) on M .

Definition 5.6. A vacuum development of the initial boundary data (T, I,B) is an open subset
M ⊂ M such that {p ∈ M : t0(p) < τ} ⊂ M for some τ > 0, equipped with a Ricci-flat Lorentz
metric g such that:

(1) S is spacelike and C ∩M is timelike with respect to g. In addition, M = D+(T ∩M) i.e.
M is the future domain of dependence of T ∩M in (M, g).

(2) The unique wave map ϕg associated to g via (1.32)-(1.34) is a diffeomorphism in a neigh-
borhood U of C ∩M; and the partial level set (Sϕg)t = ϕ−1

g (St) ∩ U is space-like in (M, g)
for all t ∈ [0, τ).

(3) (M, g) satisfies the initial and boundary conditions in (1.30)-(1.31) with the given initial
and boundary data (I,B) restricted to T ∩M.

(4) The boundary MC =M∩ C has the form MC = (Cg)τ = ϕ−1
g {t0 ∈ [0, τ)} where ϕg is the

unique diffeomorphism determined by g via (1.32)-(1.34).

Regarding condition (4) above, because the boundary conditions include the specification of a
conformal class of metrics on the surfaces (Σϕg)τ = ϕg

−1{t0 = τ}, the domain of MC must be a

union of such surfaces. Since MC is path connected, one has either MC = ϕg
−1{t0 ∈ [0, τ)} or

MC = ϕg
−1{t0 ∈ [0, τ ]}, for some τ > 0. Note that, without loss of generality, one may chooseMC

to be open in C. Namely, any slice (Σϕg)τ ′ ⊂MC extends to a partial initial data set Pr0 ⊂ (Sϕg)τ ′
which is spacelike for r0 small, giving then a local partial initial boundary data set (P, I,B) at
(Σϕg)τ ′ . By Theorem 5.2, one may then extend the given vacuum development for a small time to
the future of (Σϕg)τ ′ .

Combining Theorem 5.5 with the solution of the Cauchy problem gives the following result,
which is a more precise version of Theorem 1.5 (and part of Theorem 1.6). Let Tτ = Cτ ∪S = {p ∈
T : t0(p) ∈ [0, τ)}.
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Theorem 5.7. Let (T, I,B) be an initial boundary data set satisfying the assumptions of Theorem
5.5. Then (T, I,B) admits a vacuum development, i.e. there exists a pair (M, g) such that

(5.3) g ∈ Hs(M),

and with trace on T ∩M in Hs(T ∩M) realizing the conditions in Definition 5.6.
Two vacuum developments of the same initial boundary data (T, I,B) are equivalent, and so in

particular isometric, in a neighborhood of Tτ , for some τ > 0.

Proof. By Theorem 5.5, there is a partial initial boundary data (P, I,B) of (T, I,B) admitting a
boundary vacuum development (U , g) defined in a neighborhood U of the corner Σ and unique up
to diffeomorphisms equal to the identity on S ∩ P . On the other hand, by the solution to the
Cauchy problem for the vacuum Einstein equations, the interior initial data (S, I) = (S, (gS ,K))
also admits a vacuum development (Uint, gint), unique up to diffeomorphism in Diff0(Uint). For
convenience, we choose Uint to be the maximal Cauchy development of the initial data and view
Uint ⊂M .

By construction Uint ∩ U is an open neighborhood of U ∩ S in M . Since g and gint both solve
the Ricci-flat equation (1.8) in Uint ∩U and satisfy the same geometric initial condition I on S ∩U ,
there is an open V ⊂ Uint∩U covering S∩U and a diffeomorphism ϕ : V → V fixing S∩U such that
g = ϕ∗gint on V. By shrinking the open sets U and Uint, we can assume U∩Uint = V and then extend
ϕ to be a diffeomorphism Uint → Uint which fixes S. We can then glue (U , g) with ϕ∗(Uint, gint)
naturally to obtain (M, g) which solves (1.29) and satisfies condition (2),(3) in Definition 5.6. It
is easy to adjust the spacetime (M, g) so that it satisfies the other two conditions (1),(4) in the
definition.

Next suppose (M1, g1) and (M2, g2) are both vacuum developments of the same initial boundary
data (T, I,B). Then by Theorem 5.5 there is a neighborhood U of the partial boundary P = Pr0∪Cτ
for some r0 > 0 and τ > 0 so that (ϕ−1

g1 ◦ ϕg2)∗g1 = g2 in U . By standard uniqueness results in the
solution of the Cauchy problem on (S, I), there is a neighborhood US of the initial surface S and
a diffeomorphism ϕ fixing S such that ϕ∗g1 = g2 on US . Observe that in the overlap U ∩ US , the
maps (ϕ−1

g1 ◦ϕg2) and ϕ both equal the identity on S and push forward Tg1 to Tg2 . In addition they

both pull back the metric g1 to g2. It follows that ϕ−1
g1 ◦ ϕg2 = ϕ in U ∩ US . The map ϕ may thus

be naturally extended to a map ϕ :M′ = U ∪ US → M which is a diffeomorphism onto its image
and which fixes the initial surface S. Hence g1 and g2 are related by ϕ in M′ and in particular
related by (ϕ−1

g1 ◦ ϕg2) in a neighborhood of the time-like boundary.

At this point, we make several remarks.

Remark 5.8. The proof of Theorem 1.6 (Geometric Uniqueness III) now basically follows as in the
proof of Corollary 4.8. Suppose g1, g2 are two vacuum solutions inM with ψ∗(I2,B2) = (I1,B1) as
in (1.35) for some ψ ∈ Diff ′(S). First extend ψ to a diffeomorphism ofM and set g̃2 = ψ∗g2. Their
initial data is then related by (g̃2)S = (ψ|S)∗(g2)S , so it follows that the initial data constructed
for the system (1.32)-(1.34) are related by E(g̃2)S = E(g2)S ◦ ψ|S in a neighborhood of Σ. Thus
the unique wave map associated to g̃2 is given by ϕg̃2 = ϕg2 ◦ ψ in some neighborhood U of the

boundary C ∩ M. Consequently, g̃2 and g2 have the same boundary data ([(ϕ−1
g )∗gt], H(ϕ−1

g )∗g)

when expressed in their preferred gauge. Now initial and boundary data of g1 and g̃2 are equal

(̃I2, B̃2) = (I1,B1). It follows from the theorem above that g̃2 and g1 are isometric in a common
subdomain of M and hence so are g2 and g1.

Remark 5.9. The proof of Theorem 5.7 also holds for the systems (g, F ) in (1.8)-(1.10) and (1.17)-
(1.19). To see this, note that it is straightforward to extend the existence of a maximal Cauchy
development (MS , g) of initial data (S, I) to existence of a maximal Cauchy development (MS , g, F )
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where F is a wave map as in (3.1) satisfying initial conditions I as in (1.5). The proof of Theorem
5.7 for triples (M, g, F ) then proceeds in the same way. This completes the proofs of Theorems 1.1
and 1.2. The proofs of Theorems 1.3 and 1.4 then follow again in the same way as in Corollary 4.8.

Remark 5.10. Finally, we note that Theorem 5.7, and hence Theorems 1.5 and 1.6, also holds
with boundary data B = ([γ], H) replaced by the data ([γ], η) for η as in (1.36). The proof is the
same.

Theorem 5.7 is an exact analog of the situation for vacuum developments of Cauchy data (S, I)
on an initial time surface and so it is natural to consider the existence and uniqueness of a maximal
vacuum development of an initial boundary data set (T, I,B). To do this, we proceed along the
same lines as in [5], following the exposition in [13], cf. also especially [21], (as well as [23], [25] for
related but distinct approaches).

To begin, as with the Cauchy problem, we pass to the abstract setting and will include both

future and past developments. Fix M ∼= R×S with a time function t0 on it. Let M̃ be a thickening
of M equipped with a Riemmanian metric gR. The boundary data B are now defined on C ' R×Σ
(and not [0,∞) × Σ as before). As previously, we use Sτ and Στ to denote the level sets of t0 on
M and C. The initial boundary set T is now given by S ∪C, with ∂S identified with {0}×Σ in the
natural way. For simplicity, we work in the C∞ setting in the analysis below.

Definition 5.11. An (abstract) vacuum development for the initial boundary data (T, I,B) is a
manifold-with-boundary M with ∂M' C equipped with a Ricci-flat Lorentz metric g on M such
that:

(1) (M, g) is a globally hyperbolic spacetime with timelike boundary admitting a Cauchy
hypersurface-with-boundary S.

(2) The unique wave map ϕg associated to g via (1.32)-(1.34) is a diffeomorphism in a neigh-
borhood U of ∂M; and the partial level set (Sϕg)t = ϕ−1

g (St)∩U is space-like in (M, g) for
all t ∈ (τ1, τ2) with some τ1 < 0, τ2 > 0.

(3) There is an embedding ι : T ′ →M of some T ′ ⊂ T such that ι(S) = S, ι(C ∩ T ′) = ∂M.
In addition g induces the data ι∗(I,B) on T ′ and ι(C ∩T ′) = ϕ−1

g ({p ∈ C : t0(p) ∈ (τ1, τ2)}).
Here we regard ϕg as a map from a neighborhood of ∂M in the (abstract) manifold M to a

neighborhood of C in the fixed manifold (M̃, t0, gR), determined by g via (1.32)-(1.34). In the
following we use T ∩M to denote both the subset T ′ ⊂ T and the image ι(T ′) ⊂M which can be
identified via the embedding ι.

Globally hyperbolic manifolds with timelike boundary are defined in the same way as globally
hyperbolic manifolds (without boundary) and have the same essential properties, cf. [1] for a recent
analysis. In particular, inextendible time-like curves intersect the Cauchy surface S exactly once
andM is diffeomorphic to M = R×S. Note that by definitionM includes its boundary ∂M⊂M.
Further, one has

(5.4) M = D(M∩ T ),

where D is the full (future and past) domain of dependence. In particular, any (abstract) vacuum
development can be realized as a solution (M, g) with M⊂M , as in Theorem 5.7.

Conversely, by taking the union of both future and past vacuum developments in M , Theorem
5.7 shows that any initial boundary data set (T, I,B) admits an (abstract) vacuum development.

We now turn to the existence of maximal developments. First we give a precise definition of
extension.

Definition 5.12. An extension of the vacuum development (M, g) of the data set (T, I,B) is a
development (M′, g′) of the same initial and boundary data such that there exists an isometric
embedding ψ : (M, g)→ (M′, g′) with ψ|S∩M = IdS∩M, ψ|∂M = ϕ−1

g′ ◦ ϕg|∂M.
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Lemma 5.13. The isometric embedding from a vacuum development to its extension is unique.

Proof. The proof is the standard one from [5]. Suppose (M′, g′) is an extension of (M, g) with
embedding ψ : (M, g) → (M′, g′). Take any point p ∈ M and let σ be an inextendible timelike
geodesic in M starting from p. By (5.4), σ must hit the boundary T ∩M at a unique point q,
for which the image ψ(q) is uniquely determined by ψ|T∩M. The length or proper time `(σ) and
angle α between σ′ and the tangent space of T uniquely determine σ. This data is preserved under
an isometric embedding. Since the point ψ(p) is uniquely determined by this data and ψ(q), the
embedding ψ is unique.

Theorem 5.14. Given an initial boundary data set (T, I,B), up to isometry there exists a unique

maximal development (M̃, g̃). The vacuum development (M̃, g̃) is an extension of any other vacuum
development of (T, I,B).

Proof. The proof follows closely that in [5], cf. also [13].
Let D = D(T, I,B) be the set of all vacuum developments of a given initial boundary data set

(T, I,B). By Theorem 5.7, D is nonempty. This set is partially ordered by the extension relation;
M1 ≤ M2 in D if M2 is an extension of M1. If {Mα} is a totally ordered subset, then the
uniqueness from Lemma 5.13 implies that the union ∪Mα is also a vacuum development which is
clearly an upper bound for {Mα}. It follows from Zorn’s Lemma that D has a maximal element

(M̃, g̃). Any extension of M̃ thus equals M̃.
The main issue is to prove uniqueness. Suppose (M′, g′) is another vacuum development of

(T, I,B); we need to prove M̃ is an extension of M′.
By Theorem 5.7, any two vacuum developments of (T, I,B) are extensions of a common sub-

development. Given M̃ andM′, consider then the set C(M̃,M′) of all common sub-developments

of M̃ andM′. This set is again partially ordered by extension and hence it has a maximal element

(M̂, ĝ, F̂ ), with isometric embeddings ψ1 : (M̂, ĝ)→ (M̃, g̃) and ψ2 : (M̂, ĝ)→ (M′, g′).
One then forms the union M′ ∪ M̂ ∪ M̃′ and divides by the equivalence relation

M = M̃ ∪ M̂ ∪M′/ ∼,

where for p ∈ M̂, p ∼ ψ1(p) ∈ M̃ and p ∼ ψ2(p) ∈ M′. Thus one is gluing the spaces M̃
and M′ together along their common isometrically embedded subspace M̂. The data ḡ on M is
well-defined.

The main claim is thatM is Hausdorff. Given this, the spaceM is then a vacuum development

of (T, I,B) which is an extension of both M̃ andM′. Since the only extension of M̃ is M̃ itself, it

follows that M̃ is an extension of M′. This proves the uniqueness and the fact that any vacuum

development has an extension to the maximal development M̃.
The proof of the Hausdorff property is by contradiction. If M is not Hausdorff, then there are

points p̃ ∈ ∂(ψ1(M̂)) ∈ M̃ and p′ ∈ ∂(ψ2(M̂)) ∈ M ′ such that every neighborhood U ⊂ M̃ of p̃

has the property that the closure ψ2ψ
−1
1 (U) ⊂ M′ contains p′. Given p̃, the associated point p′ is

unique and there exist neighborhoods Ũ of p̃ in M̃ and U ′ of p′ in M′ such that ψ2 ◦ ψ−1
1 maps

Ũ ∩ ψ1(M̂) to U ′ ∩ ψ2(M̂) and it can be extended to a diffeomorphism Ψ : U → U ′ (cf. [13]). It

follows that the set H of all non-Hausdorff points of ∂(ψ1(M̂)) ⊂ M̃ is open in ∂(ψ1(M̂)) and thus

H ∩ M̃int is nonempty where M̃int denotes the interior of M̃.

Without loss of generality, assume a non-Hausdorff point p̃ ∈ H ∩ M̃int is in the future domain

of dependence of S in M̃ . Let σ̃ be an inextendible past-directed null geodesic in M̃ starting at p̃.
By the diffeomorphism Ψ above, σ′ = Ψ(σ̃) ∈M′ extends similarly to a past directed null geodesic
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starting at p′ in M′int. To each point of σ̃ ∩ ∂(ψ1(M̂)) there corresponds a point of σ′ ∩ ∂(ψ2(M̂))

and so σ̃ ∩ ∂(ψ1(M̂)) ⊂ H.
Now the globally hyperbolic property (5.4) implies either

(i) σ̃ leaves ∂(ψ1(M̂)) and enters the interior of ψ1(M̂) ⊂ M̃ at some point q̃ ∈ H ∩ M̃int,
or
(ii) for some time s > 0, σ̃([0, s)) ∈ H ∩ M̃int and σ̃ hits the timelike boundary ∂M̃ at q̃ = σ̃(s).
In Case (i), one obtains the same contradiction as in [5], [13]. Thus we consider only Case (ii).

In Case (ii), at the point q̃ ∈ H ∩ C ⊂ M̃, σ̃ can be taken as a future-directed null geodesic

starting from q̃ pointing inwards M̃. By the definition of vacuum development, q̃ ∈ (Σϕg̃)τ for

some τ > 0 where (Σϕg̃)τ is the boundary of the spacelike hypersurface (Sϕg̃)τ = ϕ−1
g̃ (Sτ ). Here

Sτ denotes a collar neighborhood of Στ in the t0−level set Sτ , since ϕg̃ is only defined near ∂M̃. It
follows that there is an open neighborhood Sq̃ of q̃ in the partial level set (Sϕg̃)τ providing a local

spacelike hypersurface such that Sq̃ \ ((Σϕg̃)τ ∩ Sq̃) ⊂ ψ1(M̂).

Now the same process can be carried out for σ′ hitting the timelike boundary C ∩M′ for the
first time at q′ ∈ Ψ(H) ∩M′. Then we must have q′ ∈ (Σϕg′ )τ with the same τ as for q̃. Setting

Sq′ = Ψ(Sq̃) for Ψ as above based at q̃ in place of p̃ gives a local spacelike hypersurface containing

q′ with Sq′ \ ((Σϕg′ )τ ∩ Sq′) ⊂ ψ2(M̂). In fact, Sq′ is a neighborhood of q′ in the partial level set

(Sϕg′ )τ . The initial data I induced on Sq̃ and Sq′ by g̃ and g′ respectively are equivalent, and the

boundary data induced on C are the same. Neighborhoods of each of these local initial boundary

data sets in M̃ and M′ respectively are local vacuum developments and hence by the uniqueness
of local solutions in Theorem 5.5, there is a common sub-developmentM∗ of these neighborhoods.

Joining M∗ with M̂ gives an extension of M̂ of which both M̃ and M′ are extensions. This

contradicts the maximality of M̂ ∈ C(M̃,M′), which (together with Case (i)) proves the Hausdorff
property.

We conclude the paper with a few final remarks.

Remark 5.15. (i). For initial data set S ⊂ T , letMS be the unique maximal Cauchy development

of S. Clearly MS ⊂ M̃. The existence of boundary vacuum developments U ⊂ M̃ as in Theorem
5.2 implies that in small neighborhoods U of Σ, MS ∩ U has a Cauchy horizon in U . In general,
the “boundary” of MS may be very complicated, consisting of regions where the solution g has
(curvature) singularities and is in general not well understood. Thus, the presence of boundary
data near Σ has the effect of regulating the metric near the boundary Σ.

(ii). For a maximal solution (M̃, g̃), let τ0 = sup{τ : M̃ ∩ (Cϕg̃)τ 6= ∅}; τ0 is the maximal

time of existence of the solution M̃ at the boundary, measured in the time coordinate t0. The

solution (M̃, g̃) may break down or degenerate at t0 in two ways. One way is that the metric g̃
becomes degenerate so we cannot extend the solution further. On the other hand, it may happen
that the solution breaks down only because the wave map ϕg̃ becomes degenerate (i.e. is no longer

a diffeomorphism) at t0. In the latter case it is possible to extend (M̃, g̃) to a larger domain by
defining the new initial data EgS on the partial level set ((Sϕg̃)τ0 , g̃) for a new (or continuing) wave
map and then solving for a continuing vacuum metric in this preferred gauge. In addition, it may
be possible that such an extension could be done only near certain regions of (Σϕg̃)τ0 .

(iii). We note finally that the analog of Theorem 1.7 holds with ‘free’ wave map gauge F ,

i.e. there exists a maximal vacuum development with gauge (M̃, g̃, F̃ ) for a given initial boundary
data (T, I,B), unique up to the action of Diff0(M). In this case, as a vacuum solution g̃ to the

Einstein equations, the maximal development (M̃, g̃, F̃ ) depends on the choice of gauge F̃ , i.e. on
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the initial boundary data (E0, E1, G). Of course one may act by diffeomorphisms in Diff(M̃) to
relate the maximal developments of equivalent boundary data in the sense of (1.21) or (4.3).

6. Appendix

In this section we collect a number of results and formulas (mostly standard) used in the main
text.

6.1. Boundary Conditions and Energy Estimates.

In this subsection, we summarize the energy estimates for the IBVP for a scalar wave equation
on a Minkowski half-space with Sommerfeld, Dirichlet and also Neumann boundary data. These
estimates are basically well-known and included for completeness.

Consider the scalar wave equation

(6.1) �g0u = ϕ.

on the region R = [0,∞) × (R3)+ of Minkowski spacetime with standard coordinates (t, xi). The
stress-energy tensor S of u is given by

S = du2 − 1
2 |du|

2g,

As is well-known, the symmetric bilinear form S is conserved on-shell, i.e. if u solves the equation
of motion (6.1), then

δS = −�g0udu = −ϕdu,
(cf. [13] for example). For any smooth vector field Z, one then has

δ(S(Z)) = (δS)(Z) + 〈S, δ∗Z〉 = −ϕZ(u) + 〈S, δ∗Z〉.

Let U be any open domain in R with compact closure and piecewise smooth boundary ∂U . Applying
the divergence theorem to the left side then gives

(6.2)

∫
∂U
S(Z,N) =

∫
U
〈S, δ∗Z〉 − ϕZ(u),

where N is the outward g-unit normal at the boundary. The equation (6.2) leads to the basic
energy estimates.

Let

ESt(u) = 1
2

∫
St

u2
t + |du|2,

where du is the full spatial derivative. Here and below, integration is with respect to the standard
measures. As in the main text, let St be the level set of t, Cs = {x1 = 0} ∩ {t ∈ [0, s]}, Σt = C ∩ St
and Ms = {t ∈ [0, s]}. Also for this section, let x = x1, and (x2, x3) = (y, z).

Consider first Z = ∂t. Then δ∗Z = 0 and one obtains from (6.2)

(6.3)
d

dt
ESt(u) +

∫
St

ϕut =

∫
Σt

uxut.

For ϕ = 0, this immediately gives the relation

ESt(u) = ES0(u) +

∫
Ct
uxut.

For general ϕ, since |ϕut| ≤ 1
2(u2

t + ϕ2), one has

ESt(u) ≤ ES0(u) +

∫ t

0
ESs(u)ds+ 1

2

∫
Mt

ϕ2 +

∫
Ct
uxut.
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The integral form of the standard Gronwall inequality then gives the bound

(6.4) ESt(u) ≤ ES0(u) + Cet[

∫
Mt

ϕ2 +

∫
Ct
uxut].

For data ϕ of compact support, the factor et may be absorbed into the constant C.
Next for Z = ∂x again first with ϕ = 0, (6.2) gives

(6.5)
d

dt

∫
St

uxut =

∫
Σt

u2
x − 1

2 |du|
2 = 1

2

∫
Σt

u2
x + u2

t − |dAu|2.

Thus

(6.6) 1
2

∫
Ct
|dAu|2 = 1

2

∫
Ct
u2
x + u2

t −
∫
St

uxut ≤ 1
2

∫
Ct
u2
x + u2

t + ESt(u) + ES0(u).

For the inhomogeneous equation, using (6.4) one obtains in the same way that

(6.7) 1
2

∫
Ct
|dAu|2 ≤ 1

2

∫
Ct
u2
x + u2

t + C(ESt(u) + ES0(u) +

∫
Mt

ϕ2),

with again C depending only on t.

Sommerfeld Boundary data: This is boundary data of the form

(6.8) ut + ux = b,

where b is a given function on the boundary cylinder C. Then ux = b− ut so that∫
Σt

utux = −
∫

Σt

u2
t +

∫
Σt

but.

Since |but| ≤ 1
2(u2

t + b2), we obtain from (6.3)

(6.9)
d

dt

∫
St

u2
t + |du|2 +

∫
Σt

u2
t ≤

∫
Σt

b2,

giving the basic energy estimate

ESt(u) +

∫
Ct
u2
t ≤ ES0(u) +

∫
Ct
b2.

To extend this to a strong or boundary stable estimate, note that u2
x ≤ 2(u2

t +b2), so that u2
t +u2

x ≤
3u2

t + 2b2. Substituting this in (6.9) gives

d

dt

∫
St

u2
t + |du|2 + 1

3

∫
Σt

u2
t + u2

x ≤ 2

∫
Σt

b2.

Using the relation (6.6), one easily derives that∫
St

u2
t + |du|2 + 1

4

∫
Ct
u2
t + u2

x + |dAu|2 ≤ ES0(t) + 3

∫
Ct
b2,

for solutions u of (6.1) with ϕ = 0. When ϕ 6= 0, using (6.7), the same arguments give∫
St

u2
t + |du|2 + 1

4

∫
Ct
u2
t + u2

x + |dAu|2 ≤ ES0(u) + C[

∫
Ct
b2 +

∫
Mt

ϕ2].

As is well-known, this estimate can be promoted to a full energy estimate, i.e. including the L2

norm of u, by noting that if u satisfies (6.1), then v = ectu satisfies

(� + c2)v = ϕv + 2cvt.
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The same arguments then give an energy estimate for v including the L2 norm, which then translates
to a similar energy estimate for u. In sum and in the notation of §3, this gives the strong or boundary
stable H1 estimate

(6.10) ESt(u) + 1
2ECt(u) ≤ ES0(u) + C[

∫
Ct
b2 +

∫
Mt

ϕ2],

for solutions u of (6.1) with Sommerfeld boundary condition.
One obtains higher order Hs energy estimates by simple differentiation. Thus, for i = 0, 2, 3, so

∂i is tangent to the boundary C, one has, for ui = ∂iu,

�g0ui = ∂iϕ,

and the boundary condition (6.8) becomes

(ui)t + (ui)x = ∂ib.

It follows that one has the H1 energy estimate for each ui, given H1 control on b and ϕ. For the
normal derivative ux, the bulk equation (6.1) gives uxx = �Cu−ϕ. The term �Cu is bounded in L2

by the estimate above giving then an L2 bound on uxx, which gives then a full H2 energy estimate.
One continues in this way inductively for each s.

Dirichlet Boundary Data: Here
u = b

on C. In this context one has∫
Σt

uxut ≤ ε
∫

Σt

u2
x + ε−1

∫
Σt

u2
t = ε

∫
Σt

u2
x + ε−1

∫
Σt

b2t ,

so that to control ESt(u), it suffices to control the Neumann derivative ux. Also, as in (6.5), we
have

(6.11) 1
2

∫
Ct
u2
x + u2

t ≤ ESt(u) + ES0(u) + 1
2

∫
Ct
|dAu|2,

so that

(6.12) 1
2

∫
Ct
u2
x ≤ ESt(u) + ES0(u) + 1

2

∫
Ct
|dAb|2.

The estimate (6.12) shows that one can control Neumann boundary data of u at C in terms of
Dirichlet control of u on C (and the energy). In other words, consider the Dirichlet-to-Neumann
map N (b) = ux, where u is the unique solution to the IBVP (6.1) with Dirichlet boundary data
b and zero initial data. Then (6.12) gives an L2(C) bound for N . This estimate is important for
boundary stable energy estimates.

The same arguments as above then give the energy estimate (6.10) with Dirichlet boundary value
b, with constants suitably adjusted. Similarly, in the same way as above, one obtains higher order
Hs energy estimates.

Remark 6.1. An estimate of the form (6.12) with Dirichlet and Neumann data interchanged,
i.e. an estimate of the form ∫

Ct
|du|2 ≤ C[ESt(u) + ES0(u) +

∫
Ct
u2
x]

does not hold, i.e. Dirichlet data cannot be controlled by Neumann data at the same level of
differentiability. There is a definite loss of regularity or diffentiability, cf. [24] for a detailed analysis.

We note that in proving the well-posedness of the IBVP of quasi-linear systems such as those in
(2.2)-(2.4), it is important to have boundary stable energy estimates as in (6.10).
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6.2. Linearization Formulas.

In this subsection, for convenience we derive the formulas (3.30)-(3.33) and (3.19)-(3.20). Con-
sidering linearizations at the standard configuration (R, η), the linearization of the normal vectors
T (normal to S) and ν (normal to C) are

T ′h = 1
2h00∂0 − h0i∂i, ν ′h = h10∂0 − 1

2h11∂1 − h1A∂A.

For the second fundamental form K, one has 2K = LT g, so that 2K ′h = LTh+LT ′g. This gives

2K ′h = ∇Th+ dh00 · dt0 − 2dh0idx
i
0.

Taking the trace with respect to η then gives (3.30) as well as (3.31). Replacing T by ν, similar
computation gives (3.32)-(3.33).

Next, the Hamiltonian constraint (Gauss equation) for a vacuum solution Ricg = 0 on the
timelike boundary C is

RC − (trCA)2 + |A|2 = 0,(6.13)

where A is the second fundamental form of C ⊂ (U, g). For a linearization h at the flat metric η
with Ric′h = 0, it follows that

(6.14) (RC)
′
h = 0.

It is standard that (RC)
′
h = −�C(trCh) + δCδChC − gC(RicC , h), which is computed as follows:

(RC)
′
h = −�C(−h00 + 2τ) + ∂0∂0h00 − 2∂0∂Ah0A + ∂A∂BhAB

= ∆Σth00 + ∂0∂0(2τ)−∆Σt2τ − 2∂0∂Ah0A + ∂A∂AhAA +O2

= (∂0∂0 − ∂1∂1)h00 + ∂0∂0(2τ)−∆Σt2τ − 2∂0X + ∆Σtτ +O2

= (∂0∂0 − ∂1∂1)h00 + (∂0∂0 + ∂1∂1)τ − 2∂0X +O2

Here we have used the facts that h23 = O, h22 = τ + O, h33 = τ + O, �h00 = 0, �τ = 0, so that
for instance ∆Σtτ = ∂0∂0τ − ∂1∂1τ . Thus from (6.14) we obtain

(6.15) (∂0∂0 − ∂1∂1)h00 + (∂0∂0 + ∂1∂1)τ − 2∂0X = O2

Similarly, the Hamiltonian constraint or Gauss equation on the hypersurfaces St = {t = constant}
gives:

(6.16) RSt + (trStK)2 − |KSt |2 = 0

The same analysis as above then gives

(6.17) −∂1∂1τ − ∂0∂0τ −∆Σth11 − 2∂1∂Ah0A = O2.
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Ann. Henri Poincaré, 17, (2016), 301-329.
[24] D. Tataru, On the regularity of boundary traces for the wave equation, Ann. Scuo. Norm. Pisa, 26, (1998),

185-206.
[25] W. W-Y. Wong, A comment on the construction of the maximal globally hyperbolic vacuum development,

Jour. Math. Phys., 54, (2013), 113511.

Department of Mathematics, University of Connecticut, Storrs, CT 06269
E-mail address: zhongshan.an@uconn.edu

Department of Mathematics, Stony Brook University, Stony Brook, NY 11794
E-mail address: michael.anderson@stonybrook.edu

42


