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1 Introduction

Geometric flow equations are a central subject in modern differential geometry and topology. They

also arise naturally in quantum field theory as renormalization group (RG) equations in theories

whose coupling space is parametrized by a Riemannian manifold. A prototypical example is Ricci

flow [1, 2], which independently appeared in quantum field theory (in Friedan’s thesis [3]) just

before being introduced by Hamilton as a tool to attack the geometrization conjecture for three-

manifolds [4]. Ricci flow describes the one-loop RG evolution for the metric of the target manifold

M of a two-dimensional sigma-model. Under certain assumptions, and after appropriate rescaling,
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solutions of Ricci flow tend to a constant curvature metric onM. Physically, this canonical metric

is interpreted as an infrared (IR) stable fixed point; the metric moduli are irrelevant in the RG

sense, and they are washed out by the flow.

Here we introduce and study a new class of geometric flows which arise as holographic BPS flows

for certain supersymmetric large N field theories. We restrict to flows defined on a closed Riemann

surface C; the very interesting extension to three-manifolds will be presented elsewhere [5]. The

dual interpretation of the flows as field-theory RG flows suggests that they should uniformize

the surface, that is, for fixed complex structure on C there should exist a solution interpolating

between an arbitrary metric on C in the ultraviolet (UV) and the attractor metric of constant

curvature in the IR. We confirm this expectation by rigorous mathematical argument.

We emphasize from the outset that our flow equations, while certainly related to the physics

of renormalization, have a rather different flavor from flows, such as Ricci flow, that admit a more

direct field-theoretic RG interpretation. Indeed our flow equations are second-order (elliptic) in

RG time, rather than first-order (parabolic) and we study them as a boundary-value problem with

prescribed UV and IR behavior. This is a familiar predicament. Quite generally, if one regards

supergravity flow equations as defining an initial-value problem, one needs to constrain the UV

data such that the evolution does not lead to unphysical singularities. This is very difficult, and

in practice it is more convenient to study instead a boundary value problem with specified UV

and IR data. However, this is not in the spirit of the Wilsonian RG, where for all initial UV data

there is a well-defined physical flow.

Our initial motivation comes from physics. We want to test a crucial assumption of the

beautiful recent work on four-dimensional N = 2 supersymmetric quantum field theories “of

class S” [6–8]. These are the theories conjectured to arise by compactification on a Riemann

surface C of the famous six-dimensional (2, 0) superconformal field theory (SCFT). The appropriate

partial topological twist ensures that N = 2 supersymmetry is preserved in the four non-compact

dimensions for arbitrary metric on C. Then in the IR the theory must flow to a four-dimensional

N = 2 SCFT. The complex structure moduli space of C is identified with the space of exactly

marginal couplings of the four-dimensional SCFT, but the conformal factor of the metric is believed

to be RG-irrelevant and thus forgotten in the IR. This is the assumption that we set out to check.

As a Lagrangian description of the (2, 0) theory is presently lacking, we do not know how to

approach this question in general. Fortunately, a simplification occurs for large N , where N is

the rank of the Lie algebra AN−1 that characterizes the (2, 0) theory. In this limit we can appeal

to the AdS/CFT correspondence, which states that the (2, 0) AN−1 theory is dual to eleven-

dimensional supergravity in an AdS7 × S4 background. In fact for our purposes, it is sufficient to

consider the consistent truncation of eleven-dimensional supergravity to seven-dimensional gauged

supergravity.1 Then the hypothesis that we would like to check can be rephrased in the language

1This truncation necessitates the restriction that C be closed. While there is a rich generalization to punctured
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of the “holographic RG”. One singles out a radial coordinate to play the role of RG time and

writes the supergravity BPS equations as evolution equations with respect to this coordinate. The

solutions of interest interpolate between an asymptotically locally AdS7 background in the UV

and the background AdS5 × C (where C has fixed constant negative curvature) in the IR. The

expectation is that such a solution exists for arbitrary choice of UV metric on C.
At first sight, the supergravity BPS equations look like a complicated coupled system, but

remarkably they can be reduced to the very elegant equation (3.8):

∂2
ρe

Φ + (∂2
x + ∂2

y)Φ = m2eΦ .

This is a single elliptic flow equation for a scalar field Φ intrinsically defined on the surface! In

terms of the original variables, Φ is a linear combination of the conformal factor of the metric

on C and of one of the scalars fields of the gauged supergravity. We can also think of it more

covariantly as an equation for an auxiliary metric on C, of which Φ is the conformal factor, see

(B.3). The equation admits an exact solution, which equates to the previously known solution

where C is taken to have constant curvature throughout the flow [10]. Linearizing around this

constant-curvature flow, it is easy to demonstrate that for infinitesimal perturbations of the UV

metric there is always a solution flowing to the attractive fixed point in the IR. Much less trivially,

we are able to give a rigorous global existence proof. The proof is based on degree theoretic

techniques used in proving existence results for nonlinear elliptic equations. For a survey of this

area of nonlinear functional or global analysis, see [11]. Such methods can be used, for instance,

to give a relatively simple proof of the uniformization theorem for surfaces of higher genus [12].

The proof here is more difficult, since it involves flows with substantially different behaviors in the

UV and IR.

We perform a similar analysis for a few other cases of physical interest. The first variation

on our theme is to consider a different partial topological twist of the (2, 0) theory compactified

on C, such that only N = 1 supersymmetry is preserved in four dimensions. In fact there is a

whole family of possible twists that preserve N = 1 supersymmetry, and here we restrict to the

simplest case, already discussed in [10]; a more comprehensive discussion will appear elsewhere [13].

Another variation is to take as the starting point N = 4 super Yang-Mills, a four-dimensional

SCFT, rather than the six-dimensional (2, 0) theory. We consider compactifications of N = 4

SYM on C with partial topological twists that preserve either (4, 4) or (2, 2) supersymmetry in

the two non-compact dimensions. For all of these cases, the holographic RG equations reduce to

a single scalar equation on C.
The example of the (4,4) twist of N = 4 SYM is somewhat special, since one does not expect

surfaces [9], it is technically much simpler for us to study to the case with no punctures. We also generally assume

that C has genus g > 1. This is a less essential restriction: the equations we derive actually describe the low-genus

cases as well, though the corresponding flows are singular.
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the IR theory to have a well-defined vacuum state [10], and correspondingly one finds no AdS3×C
solution in the dual supergravity. On the other hand, both the (2, 0) theory with N = 1 twist and

N = 4 SYM with the (2, 2) twist flow in the IR to SCFTs in four and two dimensions, respectively.

As before, the field-theoretic expectation is that memory of the UV metric on C is lost in the IR.

This is confirmed by the analysis of the corresponding scalar flow equations (3.37) and (4.10)

which, despite looking less elegant than (3.8), have very similar behavior.

The organization of the paper is as follows. In Section 2, we review the construction of

the field theories of interest by partial twisting of maximally supersymmetric theories. We then

recall the realization of these field theories on the worldvolumes of D3 and M5 branes wrapping

supersymmetric cycles in Calabi-Yau manifolds. In Sections 3 and 4, we go about finding the

gravity duals to the partially twisted (2, 0) and N = 4 SYM field theories, respectively, and reduce

the problem in each case to a single elliptic geometric flow equation on the Riemann surface. We

also perform a linearized analysis of these flow equations, interpret the results using AdS/CFT and

show that the constant curvature metric on the Riemann surface is a local IR attractor of the flow

equations. In Section 5, we provide a global proof that the geometric flows in question uniformize

any metric on the Riemann surface for a correct choice of additional boundary data. We further

explore the flow of the area of C with respect to the auxiliary metric, and find that it decreases

monotonically. Many technical details of the computations are reported in the appendices.

2 Field Theory, Branes, Supergravity

We begin by reviewing the field theories of interest, their realization on the worldvolumes of M5

and D3 branes, and our approach to constructing their gravity duals. The bulk of the material

in this section has appeared previously, in particular in [10] (see also [14, 15]). However, as the

analysis in the present work is somewhat more involved than that of [10], we place special emphasis

on symmetries as the basic guiding principle: the symmetries of the partially-twisted field theory

can be used to systematically determine the geometry of the brane construction, which in turn

completely fixes the Ansatz for the supergravity analysis.

2.1 Partially twisted field theories

We study the (2, 0) theory of AN−1 type in d = 6 dimensions and N = 4 SYM with SU(N) gauge

group in d = 4 dimensions, defined on a spacetime of the form

R1,d−3 × C , (2.1)

with C a compact Riemann surface of genus g > 1. Supersymmetry would normally be broken

explicitly and completely by the curved background due to the absence of covariantly constant
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spinors. This situation can be remedied if the theory is (partially) twisted [16, 17]. Because

we consider geometries with product metrics where only a two-dimensional factor is curved, the

structure group of the spacetime manifold naturally reduces according to

SO(1, d− 1)→ SO(1, d− 3)× SO(2)C . (2.2)

A choice of twist is a choice of Abelian subgroup SO(2)′C ⊂ SO(2)C×GR, with GR the R-symmetry

group of the d-dimensional field theory, such that some of the supercharges are invariant under

SO(2)′C. For the theories at hand, the R-symmetry group GR is SO(5) or SO(6) and there exist a

number of inequivalent ways to choose the group SO(2)′C so that some supersymmetry is preserved.

We restrict our attention to two twists for each theory. We now review these twists and mention

some standard facts about the resulting (d− 2)-dimensional theories.

2.1.1 Twists of the (2, 0) SCFT in six dimensions

The Poincaré supercharges of the (2, 0) superconformal algebra transform in the 4 ⊗ 4 of the

maximal bosonic subgroup SO(1, 5) × SO(5)R and respect a symplectic-Majorana constraint.

Because only an Abelian factor of the structure group is being twisted, it is sufficient to consider the

maximal torus of the R-symmetry group, SO(5)R. In particular, if we think of SO(5)R as rotations

of R5
x1−5

, then we define U(1)R,12 × U(1)R,34 ⊂ SO(5)R as the subgroups which rotate the (x1, x2)

and (x3, x4) planes independently. Under the subgroup SO(1, 3)×SO(2)C×U(1)R,12×U(1)R,34 ⊂
SO(1, 5)× SO(5)R, the supercharges decompose as

4⊗ 4→
[
(2,1)1

2
⊕ (1,2)

−1
2

]
⊗
[
(1

2
, 1

2
)⊕ (−1

2
, 1

2
)⊕ (1

2
,−1

2
)⊕ (−1

2
,−1

2
)
]
, (2.3)

and satisfy a reality constraint coming from the symplectic-Majorana condition. Thus, under a

U(1) subgroup generated by a Lie algebra element t′ = tC + at12 + bt34 (the t’s on the right-hand

side being the generators of SO(2)C, U(1)12, and U(1)34, respectively), the supercharges transform

with charges ±1
2
± a

2
± b

2
. For any choice of a and b such that a ± b = ±1 there are at least

four real, invariant supercharges, so at low energies the theory enjoys four-dimensional N = 1

supersymmetry. In the special case when either a or b is zero, the supersymmetry is enhanced to

N = 2 in four dimensions.2

The first twist studied corresponds to the choice a = 1 and b = 0. We refer to this as the “1/2

BPS twist”. It has been argued in [6] that these twisted compactifications of the (2, 0) theory flow

to four-dimensional SCFTs of class S [7,8]. One key aspect of any theory of class S is that it has a

moduli space which is equivalent to the complex structure moduli space of an associated Riemann

surface – the “UV curve”. In [6], the UV curve was identified with the Riemann surface C on which

2The discussion of twisting here is purely local. In particular, when the twisted theory is defined on a curved

background with non-trivial topology there are global obstructions to the procedure outlined except at discrete

values of a and b. This becomes manifest in Section 2.2, where the obstructions are geometrized.
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the (2, 0) theory is compactified, and it was conjectured that under the subsequent RG flow to a

four-dimensional fixed point, all metric data for C except for the complex structure are irrelevant.

The arguments for this picture are compelling. For example, the space of marginal deformations in

the four-dimensional theory leaves no room for additional geometric degrees of freedom, and BPS

quantities in the twisted six-dimensional theory are determined by the complex structure alone.

Nevertheless, the hard-boiled skeptic cannot rule out the existence of disconnected components in

space of IR fixed points.

The second twist considered corresponds to the choice a = b = 1/2, which is the “1/4 BPS

twist”. These theories have been considered in [18], where they were identified as the end point

of an RG flow triggered by a mass deformation of the N = 2 theory of class S for the same UV

curve. It was further argued that the moduli space of these theories is the combined space of

complex structures and flat SU(2) bundles on the UV curve. Locally, this moduli space is just

the product of the complex structure moduli space with the space of SU(2) Wilson lines for the

UV curve.

2.1.2 Twists of N = 4 SYM in four dimensions

The Poincaré supercharges of N = 4 SYM transform in the [(2,1) ⊕ (1,2)] ⊗ 4 of SO(1, 3) ×
SU(4)R with a Majorana constraint. As in the case of the (2, 0) theory, it is sufficient to consider

a maximal torus of SU(4)R ∼= SO(6)R, which we regard as independent rotations of three planes

in R6
x1−6

. Under the subgroup SO(1, 1) × SO(2)C × U(1)12 × U(1)34 × U(1)56, the supercharges

decompose as

[(2,1) ⊕ (1,2)] ⊗ 4→
[
(±1

2
,±1

2
)
]
⊗
[
(1

2
, 1

2
, 1

2
)⊕ (−1

2
,−1

2
, 1

2
)⊕ (−1

2
, 1

2
,−1

2
)⊕ (1

2
,−1

2
,−1

2
)
]
. (2.4)

If we consider the U(1) subgroup generated by a Lie algebra element t′ = tC+a t12 + b t34 + c t56, it

is straightforward to check that at least two real supercharges are invariant for a±b±c = ±1. This

is enhanced to four invariant supercharges if a, b, or c vanish, and eight invariant supercharges

if only one of a, b, and c is non-zero. These classes of twists give rise to theories which flow

to two-dimensional theories preserving N = (1, 1), N = (2, 2), and N = (4, 4) supersymmetry,

respectively. We focus on the two latter cases as the additional supersymmetry leads to nice

simplifications.

First we consider the “1/2 BPS twist” with (a, b, c) = (0, 0, 1). Since N = 4 SYM has a

Lagrangian description, the resulting twisted field theory can be studied quite explicitly, and

in [19] it was argued that the IR fixed point is a sigma model with target space the hyper-Kähler

moduli space MH(C) of solutions to the Hitchin equations. This sigma model explicitly depends

only on the complex structure on C, and so is insensitive to the conformal factor of the metric.

Then we study the “1/4 BPS twist” with (a, b, c) = (1
2
, 1

2
, 0). This is related to the Donaldson-

Witten twist of N = 2 theories in four dimensions where N = 4 SYM is treated as an N = 2
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theory with an adjoint hypermultiplet.

2.2 Brane realization

The maximally supersymmetric theories of interest – i.e., the AN−1 (2, 0) theory and SU(N)

N = 4 SYM – arise in M-theory and string theory on the worldvolumes of stacks of N M5 and

D3 branes, respectively. Their partially twisted relatives are also realized by branes wrapping

supersymmetric cycles in special holonomy manifolds [17]. The explicit construction of the field

theories in terms of wrapped branes is useful because there is a direct translation from the brane-

geometric constructions of a field theory (which should be thought of as specifying its UV behavior)

to boundary conditions for the dual supergravity solution.

As we are interested in the field theory limit of the brane dynamics, we should imagine the

relevant supersymmetric cycles occurring in some compact, special holonomy manifold at large

volume. In the large volume limit, the branes only probe an infinitesimal neighborhood of the

supersymmetric cycle, so the geometry can be modeled as a non-compact manifold which is a

vector bundle over C, where the fiber is R5 in the case of M5 branes and R6 in the case of D3

branes.3 These fibers are precisely the vector spaces which appeared previously in Section 2.1

representing the field-theoretic R-symmetry groups.

Accordingly, in the case of the 1/2 BPS twist of both M5 and D3 theories, only a one-complex-

dimensional subspace of the transverse space is fibered non-trivially over C. This amounts to the

statement that C is a holomorphic curve in a local Calabi-Yau two-fold of the form

X1/2 = L → C , (2.5)

where L represents a holomorphic line bundle. The condition that the R-symmetry component of

the twisted rotation group acts on the preserved supercharges with equal and opposite charge to

the untwisted rotation group specifies that this line bundle is in fact the holomorphic cotangent

bundle T ?C(1,0).4 This is the unique line bundle L which admits a hyper-Kähler metric, and so

leads to a theory with N = 2 supersymmetry.

In the case of the 1/4 BPS twists, there is a non-trivial C2 bundle over C, and the twisted

rotation group acts distinctly on the two C-factors. This situation arises when C is a holomorphic

curve in a local Calabi-Yau three-fold of the form

X1/4 = L1 ⊕ L2 → C . (2.6)

As mentioned in Section 2.1, a variety of choices can be made for the line bundles L1 and L2

so that the resulting geometry is locally Calabi-Yau (which in turn ensures that supersymmetry

3It is not necessary for the total space of this vector bundle to have a Ricci-flat metric, but only that such a

metric exists in a neighborhood of the zero section of the vector bundle. This is because in the low energy limit,

the tension of the branes effectively becomes infinite.
4The choice of holomorphic, as opposed to anti-holomorphic, cotangent bundle is merely a convention.

7



on the branes is preserved).5 We focus on the case where the R-symmetry factor of the twisted

rotation group acts identically on the two line bundles, with half the weight of the action of the

ordinary rotation group. In short, we set L1 = L2 ≡ L1/4 with L⊗2
1/4 = T ?C(1,0).6

2.3 Supergravity Ansätze

We are studying theories whose microscopic behavior is controlled by maximally supersymmetric

theories with well-known supergravity duals. Consequently, it is straightforward to fix the asymp-

totic form of the dual supergravity backgrounds. Here we outline precisely the Ansätze which

provide the starting point for our calculations. We first describe the backgrounds dual to the

twisted M5 brane theories. For the twisted D3 brane theories the procedure is analogous and is

described succinctly.

2.3.1 M5 brane Ansätze

The AN−1 (2, 0) theory is dual at large N to eleven-dimensional supergravity in an AdS7 × S4

background, where the S4 factor can be thought of as the boundary of the transverse R5 to a stack

of N M5 branes. From the brane construction of the partially twisted (2, 0) theory, we see that the

large N dual should be an eleven-dimensional supergravity background which is asymptotically

locally AdS7 × S4, but for which the topology at fixed value of the radial coordinate is an S4

fibration over R1,3 × C. The S4 fibration at the boundary is determined by the R5 fibration in

the brane construction (i.e., the complex structure of the noncompact Calabi-Yau). Fortunately,

there is a consistent truncation of eleven-dimensional supergravity on S4 to the lowest Kaluza-

Klein modes on the S4 given by the maximal gauged supergravity in seven dimensions [20, 21].

Since the boundary conditions involve only the lowest Kaluza-Klein modes, the existence of the

consistent truncation guarantees that we can work entirely in the language of the lower-dimensional

gauged supergravity, and that all of the solutions we obtain can be uplifted to solutions of eleven-

dimensional supergravity using explicit formulae from [20,21] (see also [22]).

The maximal gauged supergravity in seven dimensions has an ordinary SO(5) gauge group

(dual to the R-symmetry) and an SO(5)c composite gauge group [23]. The field content includes

the metric, the SO(5) gauge field, fourteen scalars parametrizing the coset SL(5,R)/SO(5)c and

5The holomorphic structure on the C2 bundle does not have to factorize in general, so there are geometries

which are not sums of holomorphic line bundles. In the 1/4 BPS twisted theory studied here, the holomorphic

structure can be deformed to an unfactorized one by turning on SU(2) Wilson lines on C – see [18]. The story for

more general twists preserving four supercharges is currently under investigation [13].
6There are, of course, 2g different choices for L1/4 which satisfy this condition. However, since we work on the

covering space of C and performing a quotient without additional action on sections of these line bundles, we choose

the spin structure corresponding to periodic boundary conditions. We thank Eva Silverstein for pointing out this

ambiguity.
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five three-form potentials transforming in the 5 of the SO(5) gauge group. There are also four

spin-3/2 fields and sixteen spin-1/2 fields transforming in the 4 and 16 of SO(5)c, respectively.

The complete action and supersymmetry variations of this theory were derived in [23]. The bulk

fields which are needed to match the partial twists of the (2, 0) theory at the boundary lie in a

simple truncation of this theory to the metric, two Abelian gauge fields in the Cartan of the SO(5)

gauge group (encoding the fibration of the S4, which has a reduced U(1) × U(1) structure), and

two scalars which parameterize squashing deformations of the four-sphere.7 This is precisely the

truncation of [24], but note that it is not the bosonic part of a non-maximal supergravity. However

it has been shown that every solution of the equations of motion of the truncated theory solves

the equations of motion of the maximal theory [22,24].

It is now straightforward to write down the most general Ansatz appropriate to our construc-

tion. The seven-dimensional metric takes the form

ds2 = e2f (−dt2 + dz2
1 + dz2

2 + dz2
3) + e2hdr2 + y−2e2g(dx2 + dy2) . (2.7)

where f , g, and h are functions of r and of the coordinates (x, y), which take values on the upper

half-plane H = {(x, y) | y > 0}.8 In order to obtain a compact Riemann surface parameterized by

(x, y), we impose a quotient by a discrete (Fuchsian) subgroup Γ ⊂ PSL(2,R), the automorphism

group of the hyperbolic plane. The functions f , g, and h must be invariant under Γ. In addition

to the metric, there may be non-trivial (r, x, y)-dependent profiles for the two Abelian gauge fields

and two real scalars in the truncation,

A(i) = A(i)
x dx+ A(i)

y dy + A(i)
r dr , λi = λi(x, y, r) , i = 1, 2 . (2.8)

These bosonic fields must also to transform covariantly under Γ.

As mentioned above, the asymptotic form of this Ansatz is fixed by the brane construction of

the boundary theory. Specifically, the metric functions should have the following UV behavior as

r → 0,

f(x, y, r), h(x, y, r)→ − log r + · · · ,
g(x, y, r)→ − log r + g0(x, y) + · · · ,

(2.9)

where · · · represents terms which vanish as r → 0. The asymptotic behavior of the bosonic fields

is given by

λi → 0 + · · · ,
A(i)
r → 0 + · · · , (2.10)

A(i)
x,y → a(i)ωxyx,y + · · · ,

7There is also a three-form gauge potential in this truncation, but it vanishes identically for all solutions discussed

in the present work.
8For appropriate choices of the function g and the range of (x, y), this Ansatz is compatible with the Riemann

surface C having low genus (g = 0, 1). Indeed, the derivations found in Appendix A are sufficient to describe these

cases.
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where ωµ is the spin connection in seven dimensions. The constants a(i) are determined by the

choice of twist, and the condition (2.10) for the gauge fields A
(i)
x,y encodes the fact that at the

boundary the S4 fibration is completely specified by the structure of the tangent bundle to C. To

be precise, in the 1/2 BPS twist, the correct choice is a(1) = 1/2m, a(2) = 0, while for the 1/4 BPS

twist we take a(1) = a(2) = 1/4m, where m is the gauge coupling of the gauged supergravity.9

Moreover, the twists in question preserve additional symmetries which lead to simplifications

for the bosonic scalar fields. In the case of the 1/2 BPS twist, there is an SU(2) global symmetry

coming from the fact that the transverse R5 has an R3 factor which is fibered trivially. This leads

to the simplification

2λ1 + 3λ2 = 0 , A(2) = 0 , (2.11)

which can be consistently imposed as a truncation at the level of the equations of motion. In the

1/4 BPS twist, there is an extra Z2symmetry which exchanges L1 and L2 in the geometry (2.6).

This implies the additional relation

λ1 = λ2 , A(1) = A(2) , (2.12)

which again leads to a consistent truncation of the equations of motion.

2.3.2 D3 brane Ansätze

For the twisted D3 brane backgrounds, we have a very similar story. At large N and large ’t Hooft

coupling, N = 4 SYM with SU(N) gauge group is dual to type IIB supergravity in AdS5 × S5,

with the S5 thought of as the boundary of the transverse R6 to a stack of N D3 branes. We expect

the twisted theory to be dual to a background which is asymptotically locally AdS5×S5 with the

spacetime topology at fixed value of the radial coordinate given by an S5 fibration over R1,1 × C.
The asymptotic S5 fibration is determined by the R6 fibration in the brane construction.

It is again sufficient to work in a gauged supergravity description. The maximal gauged

supergravity in five dimensions was constructed in [25–27] where the full action and supersymmetry

variations were derived, and it is believed to be a consistent truncation to the lowest Kaluza-Klein

modes of type IIB supergravity on S5. This has not been proven explicitly, but in the present

work we do not need the full structure of the theory. Rather, we content ourselves to work with

the subsector studied in [22]. This is a truncation of the maximal theory to the metric, three

Abelian gauge fields in the Cartan of the SO(6) gauge group, and two real, neutral scalars. It

can be shown to be a consistent truncation of the maximally supersymmetric supergravity to the

bosonic part of an N = 2 gauged supergravity coupled to two vector multiplets (see [28] for a

9The appearance of the parameter m may look strange, since one might expect these values to match those of

the parameters a and b which appeared in the discussion of Section 2.1.1. This is a consequence of the standard

normalization for gauge fields in gauged supergravity which differs by a factor of 2m from the more geometric

normalization in which the gauge fields can be naturally interpreted as connections on principle bundles.

10



recent discussion of this truncation). For this truncation, it has been shown that all solutions

can be uplifted to solutions of type IIB supergravity, and there exist explicit uplift formulae [22].

Thus, all of the solutions discussed in the present work can be written as explicit solutions of type

IIB supergravity.

The Ansatz for the twisted D3 brane solutions takes a form analogous to that of the twisted

M5 solutions. The five-dimensional metric is

ds2 = e2f (−dt2 + dz2) + e2hdr2 + y−2e2g(dx2 + dy2) , (2.13)

and there are now three Abelian gauge fields and two real scalars,

AI = AIxdx+ AIydy + AIrdr , I = 1, 2, 3 ,

φ1(x, y, r) , φ2(x, y, r) .
(2.14)

All functions in this Ansatz depend on (x, y, r) and two-dimensional Poincaré invariance is mani-

fest.

The behavior at r → 0 is controlled by the corresponding twist of N = 4 SYM. The metric

functions have the following asymptotics,

f(x, y, r), h(x, y, r)→ − log r + · · · ,
g(x, y, r)→ − log r + g0(x, y) + · · · ,

(2.15)

while the bosonic fields obey

φ1,2 → 0 + · · · ,
AIr → 0 + · · · , (2.16)

AIx,y → a(I)ωxyx,y + · · · .

In this gauged supergravity, the effective gauge coupling is set to one, and the values of the

constants a(I) are those of the constants a, b, and c which appeared in Section 2.1.2. In particular,

for the 1/2 BPS twist we have a(1) = a(2) = 0 and a(3) = 1, while for the 1/4 BPS twist we take

a(1) = a(2) = 1/2 and a(3) = 0.

For these choices of twists the backgrounds enjoy additional global symmetries which imply

further constraints on the bosonic fields. Specifically, the presence of a Z2 symmetry of the

geometry which descends to the N = 2 gauged supergravity implies a global relation

φ2 = 0 , A1 = A2 . (2.17)

For the 1/2 BPS twist, this implies A1 = A2 = 0, while for the 1/4 BPS twist it yields A3 = 0.

These are both consistent truncations from the U(1)3 gauged supergravity to theories with only a

single gauge field and scalar. We are now prepared to derive the conditions for the backgrounds

just discussed to preserve the appropriate amount of supersymmetry.
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3 Holographic Flows for Twisted M5 Branes

Our goal is to derive flow equations which describe the supersymmetric evolution of the background

fields of Section 2.3.1 as a function of the radial coordinate and to understand their late-time, or

IR, behavior as a function of the boundary metric on C (the function g0(x, y) in (2.9)). The flow

equations are determined by the condition that the bosonic background be invariant under an

appropriate number of supersymmetry transformations, i.e, by the condition that the variations

of all fermionic fields vanish in the background. The relevant supersymmetry variations for the

fermionic fields in the truncated maximally supersymmetric gauged supergravity are given by

[23,24]

δψµ =
[
∇µ +m(A(1)

µ Γ12 + A(2)
µ Γ34) + m

4
e−4(λ1+λ2)γµ + 1

2
γµγ

ν∂ν(λ1 + λ2)
]
ε

+1
2
γν
(
e−2λ1F (1)

µν Γ12 + e−2λ2F (2)
µν Γ34

)
ε ,

δχ(1) =
[
m
4

(e2λ1 − e−4(λ1+λ2))− 1
4
γµ∂µ(3λ1 + 2λ2)− 1

8
γµνe−2λ1F (1)

µν Γ12
]
ε , (3.1)

δχ(2) =
[
m
4

(e2λ2 − e−4(λ1+λ2))− 1
4
γµ∂µ(2λ1 + 3λ2)− 1

8
γµνe−2λ2F (2)

µν Γ34
]
ε .

The parameter m is proportional to the gauge coupling constant of the supergravity and is inversely

proportional to the scale of AdS7. The analysis of these BPS conditions is described in detail in

Appendix A. The results are remarkably simple for both choices of twist. The full solutions to

the BPS constraints are encoded in the solution to a system of two coupled partial differential

equations (PDEs) for the metric function g and a linear combination of the scalar fields λi. We

first discuss the resulting flows for the 1/2 BPS twist.

3.1 1/2 BPS flows

For this choice of twist, the Ansatz from Section 2.3.1 imposes the relation

2λ1 + 3λ2 = 0 , A(2) = 0 , (3.2)

and we work in terms of a reduced set of bosonic fields defined as

λ ≡ λ2 , A ≡ A(1) . (3.3)

Applying the conditions for unbroken supersymmetry as described in Appendix A, we find that

the supersymmetric background is determined by the solution to the following system of PDEs,

∂ρλ = −2m
5

+ 2m
5
e−5λ + 1

5m
eλ−2g (1 + ∆(g + 2λ)) ,

∂ρg = 3m
10

+ m
5
e−5λ − 2

5m
eλ−2g (1 + ∆(g + 2λ)) ,

(3.4)
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with ∆ ≡ y2(∂2
x + ∂2

y). The radial variable ρ is defined in (A.14). These flow equations can be

further simplified by defining10

ϕ(ρ, x, y) ≡ 2g(ρ, x, y) + 4λ(ρ, x, y) , (3.5)

with respect to which equations (3.4) can be rewritten as

∂2
ρe
ϕ + ∆ϕ+ 2−m2eϕ = 0 , (3.6)

along with a condition for λ as a simple function of ϕ,

e−5λ = 1
2m

(m+ ∂ρϕ) . (3.7)

There are a couple of curiosities to be noted about equation (3.6). First off, in terms of Φ(ρ, x, y) =

ϕ(ρ, x, y)− 2 log y, the equation becomes

(∂2
x + ∂2

y)Φ + ∂2
ρe

Φ = m2eΦ . (3.8)

For m = 0 this is the continuum SU(∞) Toda equation (also known as the Heavenly Equation,

or Plebanski’s Heavenly Equation). It is integrable and has been extensively studied (see, e.g.,

[29–31]). Since the parameter m is inversely proportional to the scale of AdS7, we necessarily

have m 6= 0. We do not know whether the equation with m 6= 0 inherits any nice properties from

the m = 0 case. The SU(∞) Toda equation also appears in the analysis of [32] and [9], where

the role of the variable ρ is played by one of the coordinates on the topological four-sphere in the

eleven-dimensional solution. In addition, (3.8) is time-reversal (ρ-reversal) invariant. This will

not be the case for the other flows that we derive, and we do not know the repercussions of this

symmetry.

In the remainder of this section, we perform a concrete analysis of the local properties of

solutions to (3.6). We study the linearized behavior of solutions in the IR and UV, and also

perform a perturbative analysis of solutions which are globally very close to the exact solutions

of [10]. The analysis paints a picture where solutions behave as uniformizing flows for the metric

on C locally around the constant curvature metric. However, we find that the question of global

behavior is intractable using direct methods. Section 5 contains a more abstract analysis of the

global space of solutions, culminating in a proof that the flow equations we have derived are

globally uniformizing.

10In fact, we would like to think of ϕ as the conformal factor for an auxiliary metric on C. While it does not

describe an actual metric which appears in the supergravity setting, it is in some sense the “right” metric from the

point of view of the flow equations.

13



3.1.1 Infrared analysis

To begin, we determine the structure of four-dimensional conformal fixed points in the IR. Such

a conformal point should be described by a supergravity background of the form AdS5 × C, so in

particular ϕ(ρ, x, y) should be constant with respect to ρ, and we are looking for fixed points of

(3.6) and (3.7). A fixed point of (3.6) satisfies

e−ϕ(2 + ∆ϕ)−m2 = 0 . (3.9)

This is the Liouville equation for the function Φ/2, which makes it clear that the only solution is

eϕir =
2

m2
. (3.10)

Combining this with (3.7) (and (A.8)–(A.11)) yields the fixed point values for all the background

functions,

eg =
21/10

m
, eλ = 21/5 , ef = eh =

23/5

m

1

r
. (3.11)

We conclude that even when the metric on C is allowed to vary arbitrarily, the only N = 2 AdS5

vacua are those studied in [10], for which the metric has constant negative curvature.

We can study the perturbative behavior of these solutions around the IR fixed point.11 This

tells us about the late-time behavior of solutions which flow to the conformal fixed point (3.11). In

particular, we anticipate that there should be linearized solutions in the IR for which the conformal

factor is approaching its fixed point value from arbitrary directions in the space of metrics on C.
We work with (3.6) and study the expansion

ϕ = ϕir + εϕ̃(ρ, x, y) , (3.12)

to leading order in the infinitesimal parameter ε. We do not explicitly unpack our solutions in

terms of the function f , g, h, and λ, but instead limit our discussion to ϕ, which can be treated as

a proxy for the behavior of the metric function g and the scalar λ. To linear order in ε, ϕ̃(ρ, x, y)

solves

∂2
ρϕ̃+ m2

2
∆ϕ̃−m2ϕ̃ = 0 . (3.13)

This is a linear PDE which we can solve by expanding ϕ̃ in eigenfunctions of the Laplacian on the

Riemann surface

ϕ̃ =
∞∑
n=0

ϕ̃n(ρ)Y (n)(x, y) . (3.14)

Since the Riemann surface is compact and hyperbolic, we have

∆Y (n)(x, y) = −µnY (n)(x, y) , µ0 = 0 , µn > 0 , n > 1 . (3.15)

11By virtue of (A.12) and (A.14), the IR (r →∞) corresponds to ρ→ −∞, and the UV (r → 0) corresponds to

ρ→ +∞.
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Inserting the expansion (3.14) into equation (3.13), we find the most general solution,

ϕ̃n(ρ) = ane
α
(+)
n mρ + bne

α
(−)
n mρ , (3.16)

where

α(±)
n = ±

√
1 + 1

2
µn , (3.17)

and an and bn are free coefficients. For the solution to be regular in the IR, all of the bn must

vanish. This leaves infinitely many solutions which approach the AdS5 fixed point in the IR but for

which the metric on C is perturbed in the UV in an arbitrary way. This confirms our expectations

that there should exist flows approaching the AdS5 fixed point from all directions in the space of

metrics on C, and we interpret all of these modes as irrelevant operators in the IR SCFT which

may be turned on along the RG flow from six dimensions depending on the metric on C in the

UV. The modes with bn 6= 0, however, take the solution away from the AdS5 fixed point in the IR.

We expect these modes to generically be unphysical, with possible exceptions which we discuss

briefly in Section 3.1.2. We conclude that in the neighborhood of the fixed point, the BPS flow

equations exhibit an attractor type behavior in the space of metrics on C.

3.1.2 Ultraviolet analysis

To perform a perturbative analysis in the UV, it is convenient to define a new radial variable

ζ = e−
m
2
ρ. We can solve the system of coupled PDEs (3.4) perturbatively for ζ → 0 and find

g(ρ, x, y) = − log(ζ) + g0(x, y) + g2(x, y)ζ2 + g4`(x, y)ζ4 log ζ + g4(x, y)ζ4 +O(ζ5) ,

λ(ρ, x, y) = λ2(x, y)ζ2 + λ4`(x, y)ζ4 log ζ + λ4(x, y)ζ4 +O(ζ5) ,
(3.18)

where

λ2(x, y) = 1
5m2 e

−2g0(x,y)(1 + ∆g0(x, y)) , g2(x, y) = 3λ2(x, y) ,

λ4`(x, y) = − 2
5m2 e

−2g0(x,y)∆(g2(x, y) + 2λ2(x, y)) , g4`(x, y) = 1
2
λ4`(x, y) , (3.19)

g4(x, y) = 1
2
λ4(x, y)− 1

4m4 e
−4g0(x,y)(1 + ∆g0(x, y))2 + 1

4m2 e
−2g0(x,y)∆(g2(x, y) + 2λ2(x, y)) .

The functions g0(x, y) and λ4(x, y) are undetermined and represent the two functional degrees of

freedom in the choice of boundary conditions for the second-order PDEs. The function g0(x, y) is

the metric on the Riemann surface in the UV.

To build some intuition about the meaning of the function λ4(x, y) it is useful to consider

solutions of the form (3.18) which are independent of x and y – i.e., those which were studied

in [10]. A scalar φ in asymptotically locally AdS7 space which is dual to an operator of dimension

D and which depends only on the radial variable has the following UV behavior

φ(ζ) ∼ φsζ
6−D + . . .+ φvζ

D + . . . , (3.20)
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where φs is related to the source and φv to the vev of the dual operator (see, e.g., [33]). We

conclude that the scalar λ is dual to an operator Oλ of dimensions D = 4 in the (2, 0) CFT, and

for solutions with no dependence on the coordinates (x, y), there is a source for Oλ which is fixed

by the curved geometry, whereas the vev for the operator appears as a free parameter. It is a well-

known difference between holographic RG flows and Wilsonian RG that in the gravitational setting,

one must specify both sources and vets in the UV to formulate an initial value problem. This

introduces the complication that in general, an arbitrary choice of the vevs will be unphysical [34].

Nevertheless, it was argued in [10] that these flows are indeed physical for any (constant) choice of

λ4, with the flow reaching the AdS5 fixed point only if λ4 = 0, and otherwise leading to a singular

flow which was interpreted as being dual to either the Coulomb or Higgs phase of the field theory,

depending on the sign.

In backgrounds for which the fields have non-trivial profiles on the boundary of AdS7 the

holographic dictionary is not straightforward, and we cannot offer precise statements about the

field theory interpretation of the function λ4(x, y).12 However, it stands to reason that for fixed

g0(x, y), there exists a specific choice of λ4(x, y) which corresponds to the configuration where

the branes are unperturbed in the transverse directions and so there is a flow to the AdS5 fixed

point. We then expect a one-dimensional family of values for λ4(x, y), generalizing the constant

values in the (x, y)-independent case, which lead to flows representing non-zero, physical vevs for

the operator Oλ. We expect flows for generic values of g0(x, y) and λ4(x, y) to be unphysical, as

they would imply the existence of field theory vacua with arbitrary (x, y)-dependent expectation

values for Oλ. It would be interesting to understand whether one could determine the physically

admissible values of λ4(x, y) by imposing a criterion for allowable singularities such as that of [34]

or [10].

3.1.3 Exact solution and fluctuations

The discussions above demonstrate that supersymmetric flows exist for any boundary metric

g0(x, y) in the UV, and that additionally supersymmetric flows exist which approach the constant

curvature solution in the IR from all directions in the space of metrics on C. In this section we study

explicit flows which interpolate between the two sets of asymptotics. The key fact that facilitates

this analysis is that the flow equation (3.6) admits an exact solution under the assumption that

ϕ is a function of ρ alone. This is the solution found by Maldacena and Núñez in [10], which we

denote by the subscript “mn”:

eϕmn =
e2mρ + 2emρ + C

m2emρ
. (3.21)

12We thank Balt van Rees for numerous helpful discussions of the subtleties associated with the holographic

dictionary in such cases.
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Here, C is an integration constant which is proportional to the parameter λ4 in (3.18) and repre-

sents the expectation value of the operator Oλ.13 The flow ends at an AdS5 fixed point only for

C = 0. For C 6= 0, one finds Coulomb/Higgs branch flows which diverge in the IR.

Thus we can study small perturbations of the exact solution (3.21) for all values of ρ. Such a

perturbed solutions takes the form

ϕ(ρ, x, y) = ϕmn(ρ) + εϕ̃(ρ, x, y) . (3.22)

The fluctuation term ϕ̃(ρ, x, y) can be expanded as

ϕ̃(ρ, x, y) =
∑
n

ϕ̃n(ρ)Y (n)(x, y) , (3.23)

where Y (n)(x, y) are defined in (3.15). It is also convenient to define a new radial variable η = emρ,

where the IR now corresponds to η → 0 and the UV to η → ∞. With these definitions the

linearization of (3.6) for the functions ϕ̃n(ρ) is

(η3 + 2η2 + Cη)
d2ϕ̃n
dη2

+ (3η2 + 2η − C)
dϕ̃n
dη
− (2 + µn)ϕ̃n = 0 . (3.24)

This equation admits an exact solution when C = 0, i.e., when there is an AdS5 fixed point in

the IR.14 The solution can be written in terms of hypergeometric functions

ϕ̃n(η) = A
(n)
1

2σn

ησn
2F1[−σn, 2− σn; 1− 2σn;−η/2]

+ A
(n)
2

ησn

2σn
2F1[σn, 2 + σn; 1 + 2σn;−η/2] , (3.25)

where A
(n)
1 and A

(n)
2 are integration constants and we have defined

σn =
√

1 + 1
2
µn ≥ 1 . (3.26)

The solutions with A
(n)
1 6= 0 are singular near η = 0, so we set A

(n)
1 = 0.

To get a better understanding of the physics of the linearized solution, it is helpful to write

the functions g and λ as

λ = λmn(ρ) + ελ̃(ρ, x, y) , g = gmn(ρ) + εg̃(ρ, x, y) , (3.27)

and then expand λ̃(ρ, x, y) and g̃(ρ, x, y) in harmonics on the Riemann surface

λ̃ =
∑
n

`n(ρ)Y (n)(x, y) , g̃ =
∑
n

γn(ρ)Y (n)(x, y) . (3.28)

13There is another integration constant parameterizing the freedom to shift ρ by a constant amount. It is set to

zero without loss of generality.
14There are exact solutions for other special values of C but we do not study them since these flows are singular.
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The solutions for `n(η) and γn(η) can be obtained from the exact solution for ϕ̃n(η). The result,

after applying standard identities for hypergeometric functions, is

`n = B(n) ησn

η2 + 3η + 2
2F1[σn, σn − 1; 2σn + 1;−η/2] , (3.29)

γn = B(n) 5(σn − 1)

4(2σ2
n + σn)

η1+σn

2 + η
2F1[σn + 1, σn; 2σn + 2;−η/2]

−B(n) 4σn + 5(1 + η)

2σn(2 + η)(1 + η)
ησn 2F1[σn, σn − 1; 2σn + 1;−η/2] , (3.30)

where the new integration constants B(n) are proportional to A
(n)
2 . The solutions for `n and γn

with B(n) = 1 and a range of values for µn are plotted in Figure 1. The expansion of `n in the UV

(η →∞) and IR (η → 0) is

`n|η→∞ ≈ B(n)

(
2σn−1Γ(2σn + 1)

Γ(σn)Γ(σn + 2)

1

η
+O(log(η)η−2)

)
,

`n|η→0 ≈ B(n)

(
1

2
ησn −

(
3

4
+
σn(σn − 1)

4(2σn + 1)

)
ησn+1 +O(ησn+2)

)
.

(3.31)

Similarly, the UV/IR expansions of γn are

γn|η→∞ ≈ − 5B(n) 2σn−2

σ2
n

(
Γ(2σn + 1)

Γ(σn)Γ(σn + 2)
+O(η−1)

)
,

γn|η→0 ≈ B(n)

(
1 +

5

4σn

)
ησn +O(ησn+1) .

(3.32)

Thus, these are interpolating solutions which fit the asymptotic expansions (3.16) and (3.18) with

matching conditions

an = B(n)

(
4 +

5

2σn

)
,

g0(x, y) = −5
∞∑
n=0

B(n) 2σn−2Γ(2σn + 1)

σ2
nΓ(σn)Γ(σn + 2)

Y (n)(x, y) .

(3.33)

The coefficients B(n) parameterize a neighborhood of the constant conformal factor for the bound-

ary metric on C, and these interpolating flows demonstrate the conjectured uniformizing behavior

for the metric in this neighborhood.

3.2 1/4 BPS flows

Turning to the 1/4 BPS twist, the appropriate truncation of the seven-dimensional supergravity

fields from Section 2.3.1 is

A ≡ A(1) = A(2) , φ ≡ −2λ1 = −2λ2 . (3.34)
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Figure 1: The functions γn(η) (left) and `n(η) (right) for B(n) = 1 and µn = (1, 2, 3, 4, 5, 6)

(increasing as blue goes to red). The IR is at η → 0 and the UV is at η →∞.

The conditions for backgrounds respecting this truncation to preserve one quarter of the maxi-

mal supersymmetry are derived in Appendix A. When these conditions are reformulated as flow

equations intrinsic to the Riemann surface C, the resulting PDEs are

∂ρφ = −2m
5

+ 2m
5
e−5φ + 1

10m
e−3φ−2g (1 + ∆(g + 4φ)) ,

∂ρg = m
10

+ 2m
5
e−5φ − 2

5m
e−3φ−2g (1 + ∆(g + 4φ)) ,

(3.35)

with the new radial variable ρ defined in (A.31). As a second-order PDE for

ϕ(ρ, x, y) ≡ 2g(ρ, x, y) + 8φ(ρ, x, y) , (3.36)

these flow equations assume the form

∆ϕ+ ∂2
ρe
ϕ − eϕ

(
1
2
(∂ρϕ)2 −m∂ρϕ+ 3m2

2

)
+ 2 = 0 . (3.37)

The scalar field φ is determined by ϕ(ρ, x, y),

e−5φ = 1
4m

(3m+ ∂ρϕ) . (3.38)

It is notable that while the first-order equations (3.35) are schematically similar to (3.4), the

second-order equation (3.6) appears much simpler than its 1/4 BPS analogue (3.37). This fore-

shadows our inability to find any analytic solutions of (3.37). Nevertheless, we are still able to

perform a global analysis of solutions to (3.37) in Section 5.

3.2.1 Infrared analysis

The unique AdS5 vacuum in this truncation is determined by the constant solution of (3.37),

eϕir =
4

3m2
. (3.39)
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The background fields then take fixed point values

eg =

(
3

4

) 3
10 1

m
, eφ =

(
4

3

) 1
5

, ef = eh =
3

4
5

2
3
5m

1

r
. (3.40)

We consider the following infinitesimal perturbation around the IR fixed point,

ϕ = ϕir + εϕ̃(ρ, x, y) . (3.41)

To leading order in ε, the perturbation ϕ̃(ρ, x, y) then obeys

∂2
ρϕ̃+m∂2

ρϕ̃− 3m2

2
ϕ̃+ 3m2

4
∆(ϕ̃) = 0 . (3.42)

By expanding ϕ̃(ρ, x, y) in harmonics on the Riemann surface as in (3.14), we find the following

solutions for ϕ̃n(ρ),

ϕ̃n(ρ) = ane
α
(+)
n ρ + bne

α
(−)
n ρ , (3.43)

where

α(±)
n = −1

2
± 1

2

√
7 + 3µn . (3.44)

Regularity of the solution in the IR requires that bn = 0 for all n.

3.2.2 Ultraviolet analysis

Defining ζ = e−
m
2
ρ, the perturbative solution to equations (3.35) in the UV (ζ → 0) is given by

g(ρ, x, y) ≈ − log(ζ) + g0(x, y) + g2(x, y)ζ2 + g4`(x, y)ζ4 log ζ + g4(x, y)ζ4 +O(r5) ,

φ(ρ, x, y) ≈ φ2(x, y)ζ2 + φ4`(x, y)ζ4 log ζ + φ4(x, y)ζ4 +O(r5) ,
(3.45)

where

φ2(x, y) = 1
10m2 e

−2g0(x,y)(1 + ∆g0(x, y)) , g2(x, y) = 6φ2(x, y) , g4`(x, y) = φ4`(x, y) ,

φ4`(x, y) = 1
5m4 e

−4g0(x,y)(1 + ∆g0(x, y))2 − 1
5m2 e

−2g0(x,y)∆(g2(x, y) + 4φ2(x, y)) , (3.46)

g4(x, y) = φ4(x, y)− 3
8m4 e

−4g0(x,y)(1 + ∆g0(x, y))2 + 1
4m2 e

−2g0(x,y)∆(g2(x, y) + 4φ2(x, y)) .

The undetermined function g0(x, y) is the conformal factor of the metric on C and can be chosen

arbitrarily. The function φ4(x, y) is related to the vev of the dimension four operator Oφ dual to

the supergravity scalar φ. For fixed g0(x, y), we expect generic values of φ4(x, y) to be unphysical,

and for a unique value of φ4(x, y) to lead to an AdS5 vacuum in the IR.

The absence of an analytic, constant-curvature flow equivalent to (3.21) in this case inhibits

a direct study of the uniformizing behavior of these flows. However, when the background fields

depend only on ρ, equations (3.35) do admit numerical solutions for which g(ρ) and φ(ρ) have the

prescribed asymptotic behavior of (3.40) and (2.9)–(2.10). A numerical solution is presented in

Figure 2. The existence of such a solution is important for the discussion in Section 5.
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Figure 2: A numerical solution for ϕ(ρ) for 1/4 BPS M5 brane backgrounds. In the IR (ρ→ −∞),

the function approaches a constant, while in the UV (ρ→ +∞), it diverges linearly (logarithmically

in r).

4 Holographic Flows for Twisted D3 Branes

The analysis of partially twisted D3 branes on C closely parallels that of M5 branes. We look for

flow equations which control the behavior of the background functions in the Ansätze of Section

2.3.2. The problem is formulated in terms of the five-dimensional N = 2 supergravity discussed

in [22], and the supersymmetry variations for the fermions are given in [35],

δψµ =
[
∇µ + i

8
XI(γ

νρ
µ − 4δνµγ

ρ)F I
νρ + 1

2
XIVIγµ − 3i

2
VIA

I
µ

]
ε ,

δλ(j) =
[

3
8
(∂φjXI)F

I
µνγ

µν + 3i
2
VI∂φjX

I − i
4
δjk∂µφkγ

µ
]
ε , j = 1, 2 ,

(4.1)

where we define

X1 ≡ e
− 1√

6
φ1−

1√
2
φ2
, X2 ≡ e

− 1√
6
φ1+

1√
2
φ2
, X3 ≡ e

2√
6
φ1
,

VI = 1
3
, XI = 1

3
(XI)−1 .

(4.2)

Supersymmetric backgrounds of the N = 2 theory preserve at most eight supercharges, and we

study solutions which preserve only two, corresponding to (1, 1) supersymmetry in two dimensions.

This is because the N = 2 supergravity is a truncation of the maximally supersymmetric gauged

supergravity for which the only visible supersymmetries are those generated by the spinor trans-

forming with charges (1
2
, 1

2
, 1

2
) under the U(1)3 Cartan of SO(6)R (see (2.4)). Both twists we study

should preserve exactly two of these supercharges, but in the maximal gauged supergravity there

are additional preserved supersymmetries which act identically on the fields in our truncation.
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4.1 N = (4, 4) flows

To find a BPS flow that preserves half of the maximum supersymmetry (i.e., 8 real supercharges)

one should set

φ2 = 0 , α ≡ 1√
6
φ1 , A(1) = A(2) = 0 , A ≡ A(3) . (4.3)

The system of coupled PDEs intrinsic to C is derived in Appendix A and is given by

∂ρα = 2− 2e3α − e−α−2g(1 + ∆(g − α)) ,

∂ρg = 2 + e3α − e−α−2g(1 + ∆(g − α)) .
(4.4)

This system of equations can be rewritten as a single second-order PDE

∂2
ρe
ϕ − 6∂ρe

ϕ + 9∆ϕ+ 18 = 0 , (4.5)

where

ϕ(ρ, x, y) ≡ 2g(ρ, x, y)− 2α(ρ, x, y) , (4.6)

and the scalar α is determined according to

e3α = 1
6
∂ρϕ . (4.7)

As mentioned in Section 2.1.2, the 1/2 BPS twist of N = 4 SYM flows to an IR CFT which is a

sigma model onto the Hitchin moduli space MH(C). It was pointed out in [10] that because this

is a non-compact target space, one does not expect a normalizable, conformally invariant ground

state for the theory, i.e., there should be no AdS3 region in the gravity solution. This is also

manifest in (4.7) which does not admit a constant solution for ϕ with finite α.

4.2 N = (2, 2) flows

To find gravity backgrounds dual to the 1/4 BPS twist of N = 4 SYM, one should set

φ2 = 0 , α ≡ 1√
6
φ1 , A ≡ A(1) = A(2) , A(3) = 0 . (4.8)

The system of coupled PDEs intrinsic to C is

∂ρα = −2 + 2e−3α + 1
2
e−α−2g(1 + ∆(g + 2α)) ,

∂ρg = 1 + 2e−3α − e−α−2g(1 + ∆(g + 2α)) .
(4.9)

While the second-order PDE that governs the flow is

∂2
ρe
ϕ − 1

2
eϕ(∂ρϕ)2 + 9∆ϕ+ 18− 18eϕ = 0 , (4.10)

22



where we have defined

ϕ(ρ, x, y) ≡ 2g(ρ, x, y) + 4α(ρ, x, y) . (4.11)

The scalar α is related to ϕ via

e−3α = 1
12

(6 + ∂ρϕ) . (4.12)

The global properties of this equation are studied in more detail in Section 5. Using (4.9) one

can show that the metric on the Riemann surface in the UV can be arbitrary. For the (x, y)-

independent solution, the UV asymptotic analysis of the system of flow equations was performed

in Appendix A of [10] and we do not repeat it here. It is important to note that this linearized

UV analysis suggests that in the dual twisted theory there is an operator of dimension two that

triggers the RG flow.

4.2.1 Infrared analysis

The constant solution of (4.10) is given by

eϕir = 1 , (4.13)

which implies the existence of a unique AdS3 vacuum with the following scalar and metric func-

tions:

eα = 21/3 , eg = 2−2/3 , ef = eh = 2−2/3 1

r
. (4.14)

To study the BPS flow equations perturbatively around this fixed point, we write

ϕ = ϕir + εϕ̃(ρ, x, y) . (4.15)

After expanding (4.10) to linear order in ε one finds the following equation for ϕ̃,

∂2
ρϕ̃− 18 ϕ̃+ 9 ∆ϕ̃ = 0 . (4.16)

This equation can be solved by expanding in harmonics on the Riemann surface as defined by

(3.15),

ϕ̃ =
∞∑
n=0

ϕ̃n(ρ)Y (n)(x, y) . (4.17)

Solving for ϕ̃n(ρ) then yields

ϕ̃n(ρ) = ane
β
(+)
n ρ + bne

β
(−)
n ρ , (4.18)

where

β(±)
n = ±3

√
2 + µn . (4.19)

As is by now familiar, regularity of the solution requires that the coefficients bn vanish.

We finally note that there are numerical solutions to equations (4.10) that depend only on

ρ (see Figure 3). These solutions manifest the IR and UV behavior described by (4.14) and

(2.15)–(2.16), and their existence is important for the global analysis in the next section.
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Figure 3: A numerical solution for ϕ(ρ) for N = (2, 2) D3 brane solutions. In the IR (ρ→ −∞),

the function approaches a constant, while in the UV (ρ→ +∞), it diverges linearly (logarithmically

in r).

5 Global Analysis

In this section, we prove that there exist solutions to equations (3.6), (3.37), and (4.10) for arbi-

trarily prescribed initial data in the UV which are asymptotic to the standard (x, y)-independent

solution in the IR. We first describe in general terms a standard methodology for solving such

problems, and then discuss the details for each specific case.

To begin, let M be a manifold with boundary.15 Consider a real, scalar function ϕ ∈ C∞(M)

and a nonlinear (elliptic) PDE in ϕ,

Ψ : C∞(M)→ C∞(M) . (5.1)

The basic issue is the solvability of the Dirichlet problem for Ψ, i.e., given boundary data ϕ0 ∈
C∞(∂M), finding a scalar function ϕ such that

Ψ(ϕ) = 0 , ϕ|∂M = ϕ0 . (5.2)

In the case of a boundary at infinity, the boundary value(s) must be understood asymptotically.

Let M be the on-shell moduli space of solutions ϕ to Ψ(ϕ) = 0. The solvability of the Dirichlet

problem above is equivalent to the surjectivity of the boundary map

Π :M→ C∞(∂M) , Π(ϕ) = ϕ|∂M . (5.3)

Before turning to the general approach for the infinite-dimensional setting, let us consider a

toy model of finite-dimensional manifolds. Let π : Nd
1 → Nd

2 be a smooth map between compact

15The main example at hand is M = R× C, so the boundary may be an asymptotic boundary.
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d-manifolds (without boundary). A standard way to prove that π is surjective is to calculate the

(mod 2) degree deg(π) ∈ Z2, defined as follows [36]. Let q ∈ N2 be any regular value of π, i.e., the

derivative Dpπ : TpN1 → TqN2 is surjective for any p in the fiber Fq = π−1(q). The regular value

property and compactness of N1 imply that the cardinality #Fq is finite and deg(π) ≡ #Fq (mod

2). That the degree is independent of the choice of regular value q can be reasoned as follows.

For q1 6= q2 both regular values of π, consider a generic path γ ⊂ N2 which joins them. Then the

inverse image π−1(γ) ⊂ N1 is a collection of one-manifolds – paths or circles {σi} with endpoints

in the fibers Fq1 and Fq2 . Those σi which are open paths either join a point in Fq1 with a point in

Fq2 , or begin and end in a fixed fiber Fqi . Since all points in the fibers are accounted for in this

way, the cardinality mod 2 is independent of the choice of regular value q. If π is not surjective,

any point q /∈ im(π) is a regular value of π (by definition) and #π−1(q) = 0. Thus it follows that

if deg π 6= 0, then π is surjective. The concept of degree above can be extended to a Z-valued

degree given appropriate orientations, but we forgo such issues here.

Under appropriate conditions, a similar methodology can be applied for infinite-dimensional

(function) spaces. The Z2 degree is then known as the Smale degree [37], and is closely related

to the Leray-Schauder degree. For general background in related topics of nonlinear functional

analysis or global analysis, see [11,38,39]. The general procedure has the following three parts.

I - Local Theory

Prove that the on-shell moduli spaceM is a smooth, infinite-dimensional (Banach or Hilbert)

manifold, and that the boundary map Π in (5.3) is a smooth Fredholm map with Fredholm

index zero. The issue of whetherM is a manifold is equivalent to the issue of “linearization

stability”, i.e., at any solution ϕ of (5.2), any solution ϕ̃ to the linearized equation DΨϕ(ϕ̃) =

0 is tangent to a curve ϕt of solutions of the nonlinear equation (5.2). The usual method

to prove that M is a smooth manifold is to use the “regular value theorem”, (a version of

the implicit function theorem): M = Ψ−1(0) is a manifold if 0 is a regular value of Ψ, (the

derivative DΨ is surjective at any point in M).

The Fredholm property means that the linearization, or derivative map, DΠ ≡ DϕΠ at any

point ϕ ∈M has finite-dimensional kernel and cokernel, and the range of DΠ is closed. The

Fredholm index is defined as

ind(DΠ) = dim (ker (DΠ))− codim(im(DΠ)) . (5.4)

For example, self-adjoint operators have index zero. The requirement of Fredholm index

zero essentially means that DΠ is an isomorphism modulo finite-dimensional factors of equal

dimension. The manifold property ofM and the Fredholm property of Π are closely related,

and usually treated concurrently. These properties depend on choosing suitable function
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spaces (degrees of smoothness) in which to carry out the analysis; one typically chooses

spaces in which there are good elliptic regularity properties.

II - Compactness

The moduli space M and space of boundary data C∞(∂M) are non-compact and infinite-

dimensional. The key ingredient needed for the degree to continue to make sense is that

the boundary map (5.3) is a proper map: if K is any compact set in the target C∞(∂M),

then the inverse image Π−1(K) is a compact set in M. This means that for ϕ(i) ∈ M a

sequence of solutions with boundary data ϕ
(i)
0 , convergence of the boundary data implies

convergence of the solutions. In essence, this is the statement that the boundary data ϕ0

controls the bulk solution ϕ with Π(ϕ) = ϕ0, and in practice, this amounts to proving “a

priori estimates” for ϕ in terms of ϕ0. If Π is proper, then #Π−1(ϕ0) is finite.

III - Degree Calculation

If the first two steps can be carried out, then the Smale degree deg Π ∈ Z2 is well-defined.

The argument in the toy model above then works in the same way for infinite-dimensional

manifolds [37]. To prove surjectivity of Π in (5.3), one then needs to show that

deg Π = 1 . (5.5)

This is typically done by showing that there is a standard solution ϕss – e.g., the (x, y)-

independent solutions for the flows we consider here – and then showing that this solution

is the unique solution with its boundary data and that ϕss is a regular point of Π. This

establishes the surjectivity of Π.16

The local theory part of the proof is essentially linear analysis, dealing with linear elliptic

boundary value problems (possibly degenerate at the boundary). The compactness issue is usu-

ally more subtle and depends crucially on the nonlinear structure of the equations. The degree

calculation is also global. For a detailed study of related but more complicated (i.e., tensor-type)

boundary value problems for AdS Einstein metrics (with Euclidean signature) using the method

above, see [40].

A simpler version of this process, known as the “method of continuity” in elliptic PDE, is

sometimes employed to prove similar global existence (and uniqueness) results. For instance, the

solution of the Calabi conjecture uses the continuity method [41]. However, it is doubtful that

this method can be used to handle the equations treated here.

16Note that the process described here establishes global existence of solutions to (5.2), but does not prove global

uniqueness (injectivity of Π). The boundary map Π may or may not be a global diffeomorphism.

26



5.1 1/2 BPS M5 brane flows

Our first application of the process described above is to equation (3.6),

∆ϕ+ 2 + (eϕ)′′ = eϕ , (5.6)

with M = R×C, where (C, γ) is a compact Riemann surface of genus g > 1 with fixed metric γ of

constant scalar curvature R = −2. We denote by ∆ the Laplacian with respect to γ, and a prime

denotes differentiation with respect to the R-coordinate ρ. Compared to Section 3 we have fixed

the normalization m = 1.

The standard solution ϕss is given by (3.21) with the constant of integration set to zero,

eϕss = 2 + eρ . (5.7)

The Dirichlet problem in question is then the solvability of (5.6) for functions ϕ satisfying

eϕ−ρ → ϕ0 , ρ→ +∞ ,

eϕ → 2 , ρ→ −∞ ,
(5.8)

for any ϕ0 ∈ C∞(C). These boundary conditions define the asymptotic boundary map Π.

I - Local Theory

Consider the differential operator

Ψ(ϕ) = e−ϕss [∆ϕ+ 2 + (eϕ)′′ − eϕ] . (5.9)

The moduli spaceM of solutions of (5.6) satisfying boundary conditions (5.8) is given by Ψ−1(0).

We show that the linearization L ≡ DΨ is surjective at any solution ϕ ∈ M. The regular value

theorem then implies that M is a smooth manifold.

The regular value theorem requires working in Banach (or Hilbert) spaces, although with a

more technical setup one could work in Fréchet spaces such as C∞. As in Section 3.1.2, we define

ζ = e−ρ/2, and solutions ϕ of (5.6) with C∞ boundary value ϕ0 have an asymptotic expansion at

ρ→ +∞ of the following form (cf. [42, 43] for proofs of the existence of the expansion),

e−ϕsseϕ ∼ ϕ0 + ϕ1ζ + ϕ2ζ
2 + ϕ3ζ

3 + ϕ4`(log ζ)ζ4 + ϕ4ζ
4 + · · · . (5.10)

This is a polyhomogeneous expansion, in powers of ζ and log ζ, with a log term appearing at

fourth order. For the moment, we work below that order, and define ϕ ∈ C̃3,α(M) if eϕ−ϕss is a

C3,α smooth function of (ζ, x, y), for (x, y) coordinates on C and (say) ρ > −1. For ρ < 1, set

ζ = eρ/2 = e−|ρ|/2 and require that ϕ is a C3,α function of (ζ, x, y) with eϕ → 2 as ρ → −∞.

Here C3,α is the Hölder function space with modulus α ∈ (0, 1). These function spaces are used
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since they are well-behaved under the action of elliptic operators. We denote by TC̃3,α(M) the

corresponding tangent space.

If ϕ̃ is a variation of ϕ, then eϕ−ϕss+εϕ̃ = eϕ−ϕss(1 + εϕ̃+ · · · ), so that ϕ̃ has the expansion

ϕ̃ ∼ ϕ̃0 + ϕ̃1ζ + ϕ̃2ζ
2 + ϕ̃3ζ

3 + ϕ̃4`(log ζ)ζ4 + ϕ̃4ζ
4 + · · · . (5.11)

As in Section 3.1.1, there is also an asymptotic expansion at ρ→ −∞ with decay rates determined

by the eigenvalues of the Laplacian ∆. The leading order decay falls off as eρ, so in particular

ϕ̃0 = 0 at ρ→ −∞.

The linearization L ≡ DΨϕ at a solution ϕ is

L : TC̃3,α(M) → TC̃1,α(M) ,

L(ϕ̃) = e−ϕss [∆ϕ̃+ eϕϕ̃′′ + 2(eϕ)′ϕ̃′ − (∆ϕ+ 2)ϕ̃] .
(5.12)

Then M⊂ C̃3,α(M) is a manifold if L is surjective at any ϕ ∈M, i.e., the equation

L(ϕ̃) = ξ , (5.13)

can be solved for arbitrary ξ ∈ TC̃1,α with ϕ̃ ∈ TC̃3,α.

To prove this, we first show that the operator

L0 : TC̃3,α
0 (M)→ TC̃1,α(M) (5.14)

is a Fredholm linear map, where the subscript denotes boundary ϕ̃0 = 0 at ρ→ ±∞. In the UV,

(5.12) has the asymptotic form

L(ϕ̃) ∼ ζ2∆ϕ̃+ 1
4
ϕ0(ζ2 ¨̃ϕ− 3ζ ˙̃ϕ)− ζ2(∆ϕ+ 2)ϕ̃ , (5.15)

where a dot denotes differentiation with respect to ζ. This is a so-called “totally degenerate”

elliptic operator (cf. [44]). The associated “indicial operator” is the ODE obtained by dropping

(x, y)-dependent and lower order terms, and is given by 1
4
ϕ0(ζ2 ¨̃ϕ − 3ζ ˙̃ϕ). The indicial roots are

then zero and four; these are the exponents k such that ϕ̃ = ζk solves ζ2 ¨̃ϕ − 3ζ ˙̃ϕ = 0. Standard

theory for such elliptic operators (cf. [42–44]) gives the Fredholm property of L in (5.15).

Similarly, at the IR end ρ → −∞, setting ζ = e−|ρ|/2 and imposing the boundary condition

eϕ → 2, the operator L has the form

L(ϕ̃) ∼ 2∆ϕ̃+ (ζ2 ¨̃ϕ+ ζ ˙̃ϕ)− 4ϕ̃ . (5.16)

This operator is “totally characteristic”, with indicial roots ±2; equivalently, this is a Laplace-type

operator on a cylinder R × C. Again, standard Fredholm theory applies for this cylindrical end

(cf. [43,45]). This gives the Fredholm property for L0 in (5.14) on either end [ρ0,+∞) or (−∞, ρ0]
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with, say, standard fixed Dirichlet data ϕ|ρ=ρ0 = 0 on the surface Cρ0 = {ρ0}×C. Taking ρ0 → −∞
implies the Fredholm property for the full operator L0.

A simple computation shows that the linearization L0,ss at the standard solution ϕss is self-

adjoint, with respect to the weight e2ϕss . Thus the Fredholm index of L0,ss is zero. This holds then

for all linearizations L0 in (5.14), by invariance of the Fredholm index under deformation.

The arguments above prove that with zero boundary values for ϕ̃, (5.13) can be solved for ξ in

a space of finite codimension. Now let the boundary values ϕ̃0 in (5.11) range over all of C3,α(C).
We claim that (5.13) is then solvable for any ξ. To see this, consider the following integration by

parts, ∫
C(−ρ,ρ)

e2ϕss〈L(ϕ̃), $〉 =

∫
C(−ρ,ρ)

e2ϕss〈ϕ̃, L∗($)〉+

∫
Cρ
e2ϕssB(ϕ̃, $) , (5.17)

where C(−ρ,ρ) = (−ρ, ρ)×C, and L∗ is the adjoint operator (with respect to the weight e2ϕss) given

by17

L∗($) = e−ϕss∆$ + e−2ϕss(eϕ+ϕss$)′′ − 2e−2ϕss((eϕ)′eϕss$)′ − e−ϕss(∆ϕ+ 2)$ . (5.18)

The boundary term B(ϕ̃, $) is a first order differential operator on ϕ̃, $. Now if L in (5.13) is

not surjective, then there exists $ which is L2-orthogonal to imL, and hence the left-hand side of

(5.17) vanishes, for all choices of ϕ̃. Since ϕ̃ is arbitrary, this implies

L∗($) = 0 , (5.19)

and moreover, letting ρ→ +∞,

ζ4$ → 0 as ρ→ +∞ , (5.20)

for ζ as in (5.10). The operator L∗ is elliptic, and (5.20) implies that both Dirichlet and Neumann

boundary data, i.e., the full Cauchy data, for $ vanish at ρ → +∞. All terms in the formal

expansion (5.11) for $ vanish, cf. the discussion below. In such situations, a standard unique

continuation theorem for scalar elliptic PDE (cf. [46]) implies that $ = 0, and hence L is in fact

surjective.

This proves that the moduli space M⊂ C̃3,α(M) is a smooth Banach manifold. Clearly,

TM = ker (L) . (5.21)

Also DΠ(ϕ̃) = ϕ̃0, where L(ϕ̃) = 0 and with ϕ̃0 as in (5.11). The fact that the boundary map Π

is also Fredholm follows by standard linearity from the Fredholm property of L in (5.14). Briefly,

(5.14) implies that one can solve L(ϕ̃) = ξ, for arbitrary ξ in a space Ξ of finite codimension, with

boundary value ϕ̃0 = 0 at ρ → +∞. Choose now an arbitrary boundary value ϕ̃0 and extend

17It is easily checked that L = L∗ at ϕ = ϕss.
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ϕ̃0 to a smooth function ϕ̃m
0 on M . Then L(ϕ̃m

0 ) = g, for some function g, and up to a finite

indeterminacy, g ∈ Ξ. For such g ∈ Ξ, one may solve L(ϕ̃) = g with ϕ̃0 = 0. Then ξ = ϕ̃m
0 − ϕ̃

solves L(ξ) = 0, with boundary value ϕ̃0. This shows that DΠ has finite-dimensional cokernel.

The proof that the range of DΠ is closed follows from elliptic regularity results. It also follows

from the fact that ind(L0) = 0 that ind(DΠ) = 0.

Using the boundary regularity results of [42, 43] for the existence of the expansion (5.10), it

follows from the analysis above that the space M∞ of solutions which have smooth polyhomoge-

neous C∞ expansions is a smooth Fréchet manifold, with Π a Fredholm map to C∞(C). Thus,

solutions ϕ̃ to L(ϕ̃) = 0 with Dirichlet boundary value ϕ̃0 in C∞(C) have the expansion (5.11)

ϕ̃ ∼ ϕ̃0 + ϕ̃1ζ + ϕ̃2ζ
2 + ϕ̃3ζ

3 + ϕ̃4`(log ζ)ζ4 + ϕ̃4ζ
4 + · · · . (5.22)

The coefficients ϕ̃0, ϕ̃4 are the “formally undetermined coefficients” (Dirichlet and Neumann

boundary data), corresponding formally to “source” and “vev” perturbations. All other coefficients

are determined inductively from these two. The same holds at the nonlinear level (5.10).

Although the Dirichlet and Neumann terms ϕ̃0 and ϕ̃4 above are formally undetermined, one

is determined globally by the other via the Dirichlet-to-Neumann map (or its inverse). Thus,

specifying ϕ̃0 at ρ → +∞ together with the prescription ϕ̃ → 0 at ρ → −∞ gives (generally)

a unique solution to the linearized problem L(ϕ̃) = 0 with this boundary data. The resulting

solution ϕ̃ has an asymptotic expansion (5.11) (when ϕ̃0 is C∞) and so the ϕ̃4 term is (globally)

determined by ϕ̃0. Again, the same holds at the nonlinear level.

II - Compactness

The main point in proving compactness is to derive the existence of (a priori) bounds on the

maximum and minimum of a solution ϕ in terms of bounds on its boundary value ϕ0 at ρ→ +∞,

i.e., to show that ϕ is controlled by the boundary value ϕ0. To obtain a lower bound, for instance,

note that the evaluation of (5.6) at any interior minimum point of ϕ implies that eϕ > 2. Since

eϕ ≥ 2 at ρ→ ±∞, it follows that

eϕ > 2 (5.23)

holds everywhere on M . Hence ϕ is uniformly bounded below.

To obtain an a priori upper bound, multiply (5.6) by an arbitrary function b = b(ρ). Then

∆(b ϕ) + b(eϕ)′′ = b(eϕ − 2) . (5.24)

Now choose b so that

b+ b′′ − 2 (b′)2

b
= 0 . (5.25)

For such b, (5.24) can be rewritten as

∆(b ϕ) + (b(eϕ − 2))′′ − 2(log b)′(b(eϕ − 2))′ = 0 . (5.26)
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At an interior maximum of b(eϕ − 2), the last term vanishes while the middle term is negative.

Since b = b(ρ), a maximum of b(eϕ − 2) occurs only at a maximum of ϕ on Cρ for some ρ, so the

first term is negative as well. Thus, by the maximum principle, there are no interior maxima of

b(eϕ − 2). Exactly the same discussion holds for minima in place of maxima.

Now there are several solutions of (5.25). First, let

b = (cosh ρ)−1 . (5.27)

Then b ∼ e−ρ at ρ → +∞, so that b(eϕ − 2) → ϕ0 as ρ → +∞. Also b → 0 at ρ → −∞, so

b(eϕ − 2)→ 0 as ρ→ −∞. It then follows from the above that

0 < b(eϕ − 2) ≤ maxϕ0 , (5.28)

on all of M . This is the main a priori estimate. The boundary data ϕ0 controls the pointwise

size (L∞ norm) of any solution ϕ asymptotic to ϕ0. Using the asymptotic expansion (3.39) for

ρ → −∞ and the test function b = e−ρ in place of (5.27), a similar argument shows that (5.28)

may be improved to

minϕ0 < e−ρ(eϕ − 2) < maxϕ0 . (5.29)

Now suppose {ϕ(i)} is a sequence of solutions of (5.6) with a fixed boundary value ϕ0 at

ρ → +∞. By standard regularity theory for elliptic PDE, the sequence {ϕ(i)} is compact (has

convergent subsequences) if and only if it is bounded in L∞ [43,47,48]. This is given by (5.28) or

(5.29). The same remarks hold if ϕ0 is replaced by a compact family ϕ
(i)
0 → ϕ0. This establishes

that the boundary map Π is proper.

III - Degree Calculation

We now prove that the standard solution ϕss is the unique solution with boundary value ϕ0 = 1,

and moreover that this solution is a regular point of the boundary map Π, i.e., the linearization

DΠ is an isomorphism at ϕss. This implies that

deg Π = 1 , (5.30)

and hence Π is surjective.

To see uniqueness of ϕss, first note that a simple computation shows the functions

b(c) = (cosh(ρ− c))−1 (5.31)

to satisfy (5.25), for any constant c. Thus, the discussion after (5.26) implies that the same

maximum principle holds for b(c)(eϕ − 2). Since b(c)(eϕ − 2) → 0 at ρ → −∞, it follows that the

maximum of b(c)(eϕ − 2) occurs at +∞, so

0 ≤ eϕ − 2

cosh(ρ− c)
≤ 2ec , (5.32)
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on M , for all c. Taking c→ −∞ then implies that globally

eϕ ≤ 2 + eρ = eϕss . (5.33)

On the other hand, integrating (5.6) over the level sets Cρ of ρ, and defining

ν ≡
∫
Cρ
eϕ , (5.34)

one finds that 2 + ν ′′ = ν, which is solved by ν = 2 + c1e
ρ + c2e

−ρ. As in (3.25), the asymptotics

at ρ → −∞ imply that c2 = 0, while the asymptotics at ρ → +∞ fix c1 = ϕ0 = 1. Combining

this with (5.33), it follows that

ϕ = ϕss , (5.35)

that is, the standard solution ϕss is the unique solution with ϕ0 = 1.

To show that the standard solution is a regular point of the boundary map, consider the

linearization Lss of Ψ at ϕ = ϕss, given by

Lss(ϕ̃) = DΨϕss(ϕ̃) = e−ϕss [∆ϕ̃+ eϕssϕ̃′′ + 2(eϕss)′ϕ̃′ − 2ϕ̃] . (5.36)

Then ϕ̃ is in the kernel of DΠ at this point if and only if

Lss(ϕ̃) = ∆ϕ̃+ eϕssϕ̃′′ + 2(eϕss)′ϕ̃′ − 2ϕ̃ = 0 , (5.37)

with ϕ̃ → 0 at ρ → ±∞. It follows immediately from the maximum principle applied to (5.37)

that ϕ̃ = 0 on M . Thus kerDΠ = 0. Since the index of DΠ equals zero, DΠ is an isomorphism.

In particular ϕss is a regular point of Π and thus (5.30) follows.

Finally, note that it is not being claimed that kerDΠ = 0 at all solutions ϕ; it remains unknown

if DΠ is everywhere an isomorphism, i.e., whether Π is a diffeomorphism. This is due to the fact

that the factor (∆ϕ+2) of ϕ̃ in (5.12) does not have a definite sign in general; its sign may change

when the variation of ϕ over Cρ is large. This prohibits the use of a maximum principle typically

used to prove uniqueness of solutions.

5.2 1/4 BPS M5 brane flows

Consider now equation (3.37) with the normalization m = 1:

∆ϕ+ 2 + (eϕ)′′ = 3
2
eϕ + eϕ(1

2
(ϕ′)2 − ϕ′) . (5.38)

Here the standard solution ϕss is the one which depends only on ρ, with asymptotics

eϕss−ρ → 1 , ρ→ +∞ ,

ϕss → log 4
3
, ρ→ −∞ ,

(5.39)
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see Figure 2.18 The same strategy which was employed above can be applied to the Dirichlet

problem for equation (5.38).

I - Local Theory

The analysis of the local theory is exactly the same as before and so we will be very brief. The

analogous nonlinear operator Ψ in this setting has the linearization

L(ϕ̃) = e−ϕss [∆ϕ̃+ eϕϕ̃′′ + 2(eϕ)′ϕ̃′ − eϕ(ϕ′ − 1)ϕ̃′ − (2 + ∆ϕ)ϕ̃] . (5.40)

This has exactly the same structure as the linearized operator of Section 5.1; the indicial operator

at the UV end is the same, with indicial roots zero and four, and the analysis carries over to give

the same manifold structure and Fredholm results.

II - Compactness

The standard minimum principle for equation (5.38) implies that ϕ has no interior minima,

and

eϕ ≥ 4
3
. (5.41)

The main issue is then to obtain an upper bound on ϕ in terms of the Dirichlet boundary value

ϕ0 at ρ→ +∞.

Multiplying (5.38) by b = b(ρ) and carrying out the same manipulations as before, with b a

solution to (5.25), leads to

∆(b ϕ) + (b(eϕ − 2))′′ − 2(log b)′(b(eϕ − 2))′ = b
2
eϕ(ϕ′ − 1)2 ≥ 0 . (5.42)

At a maximum of b(eϕ−2), the left-hand side is non-positive, while the right-hand side is positive.

Choosing b = (cosh ρ)−1, it follows as before that

eϕ − 2 ≤ 2(maxϕ0) cosh ρ . (5.43)

This gives the main a priori upper bound on ϕ in terms of ϕ0. Via the same elliptic boundary

regularity results, this suffices to establish the properness of the boundary map.

III - Degree Calculation

From (5.40), the linearization L at the standard solution ϕss is given by

Lss(ϕ̃) = e−ϕss [∆ϕ̃+ eϕϕ̃′′ + 2(eϕ)′ϕ̃′ − eϕ(ϕ′ − 1)ϕ̃′ − 2ϕ̃] . (5.44)

18A proof of the existence of ϕss can be given using the techniques below, but we forgo this here.
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Then ϕ̃ ∈ kerDΠ if and only if Lss(ϕ̃) = 0 and ϕ̃→ 0 at ρ→ ±∞. Just as before, the maximum

principle implies that the only solution of Lss(ϕ̃) = 0 which vanishes at ±∞ is ϕ̃ = 0. Thus DΠ

is an isomorphism, so ϕss is a regular point of Π.

We claim that ϕss is the only solution of (5.38) asymptotic to ϕ0 = 1 at ρ → +∞ and to

log(4/3) at ρ→ −∞. To prove this claim, let ϕ be any solution of (5.38) with these asymptotics.

Then ϕ−ϕss → 0 at both asymptotic boundaries. Evaluating (5.38) on ϕ and ϕss and subtracting

gives

∆(ϕ− ϕss) + (eϕss)′′w + 2(eϕss)′w′ + eϕssw′′ =

3
2
eϕssw + eϕss(1

2
(ϕ′)2 − ϕ′)w + 1

2
eϕss(ϕ′ − ϕss

′)(ϕ′ + ϕss
′ − 2) ,

(5.45)

where w = eϕ−ϕss − 1, and w → 0 as ρ → ±∞. Consider the evaluation of (5.45) at an interior

maximum of w. On the first line, the first and fourth terms are non-positive and the third vanishes.

On the second line, the third term vanishes. This implies the inequality

(eϕss)′′w ≥ 3
2
eϕssw + eϕss(1

2
(ϕss

′)2 − ϕss
′)w , (5.46)

where we have utilized the equality of ϕ′ and ϕss
′ at a maximum point. Using equation (5.38) for

the standard solution, this can be rewritten as

0 ≥ 2w . (5.47)

At an internal maximum, w must take a value greater than its zero boundary value, so this is a

contradiction. Thus there is no interior maximum of ϕ − ϕss, so ϕ ≤ ϕss. The same argument,

evaluating at an interior minimum, gives ϕ ≥ ϕss. Thus, ϕ = ϕss, proving uniqueness. Hence

again deg Π = 1 and the boundary map Π is surjective.

5.3 1/4 BPS D3 brane flows

We now address equation (4.10),

9∆ϕ+ (eϕ)′′ = 18(eϕ − 1) + 1
2
eϕ(ϕ′)2 . (5.48)

The standard solution ϕss is the solution depending only on ρ, with asymptotics

ϕss → 0 , ρ→ −∞ ,

eϕss−6ρ → 1 , ρ→ +∞ ,
(5.49)

see Figure 3. (Again a proof of the existence of ϕss can be given using the techniques below).

We provide a brief discussion of the process described at the outset of this section as it applies to

equation (5.48).
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I - Local Theory

The local theory/manifold result is essentially the same as before. Calculating as in (5.40), the

linearization of Ψ in this setting is

L(ϕ̃) = e−ϕss (9∆ϕ̃+ eϕϕ̃′′ + (eϕ)′ϕ̃′ − (18ϕ̃+ 9∆ϕ)) . (5.50)

Setting ζ = e−3ρ, solutions of Ψ(ϕ) = 0 and of L(ϕ̃) = 0 have polyhomogenous expansions in

powers of ζ and log ζ at ρ→ +∞.

The indicial operator is 9ζ2 ¨̃ϕ − 9ζ ˙̃ϕ with indicial roots zero and two. Thus, the expansion of

eϕ−ϕss is polyhomogenous in ζ, with Dirichlet and Neumann data (source and vev) appearing at

ζ-exponent zero and two, respectively. Again, everything in Section 5.1 carries over to give the

same manifold structure and Fredholm results.

II - Compactness

The same minimum principle as in Section 5.2 gives

eϕ ≥ 1 . (5.51)

To obtain an upper bound depending only on the boundary value ϕ0, the same argument as

following (5.24) can be applied. Multiplying (5.48) by b = b(ρ) and setting w = eϕ − 1 gives

9∆(b ϕ) + (bw)′′ − 2(log b)′(bw)′ = w(b′′ + 18b− 2 (b′)2

b
) + 1

2
beϕ(ϕ′)2 . (5.52)

At a critical point of log bw one finds

9∆(b ϕ) + (bw)′′ − 2(log b)′(bw)′ = w(b′′ + 18b− 3
2

(b′)2

b
− 1

2
(b′)2

b
e−ϕ) , (5.53)

where at an interior maximum of bw, the left-hand side of (5.53) is negative.

We now choose b(ρ) to solve

b′′ + 18b− 3
2

(b′)2

b
− 1

2
(b′)2

b
e−ϕint = 0 , (5.54)

where eϕint(ρ) denotes the average value of eϕ on Cρ. Asymptotically, this equation assumes the

form

b′′ + 18b− 3
2

(b′)2

b
= 0 , (5.55)

which admits as a solution

b = (cosh 3ρ)−2 . (5.56)

A solution b of (5.54) exists which has the same asymptotics as cosh−2(3ρ).
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At a maximum of ϕ on Cρ, the value of ϕ is greater than the average value on the Riemann

surface, which by integrating (5.48) over C can be shown to be equal to the value of ϕss at ρ,19

eϕ ≥ 1

Area(C)

∫
Cρ
eϕ = eϕint . (5.57)

Hence, at such a maximum of ϕ on Cρ,

9∆(b ϕ) + (bw)′′ − 2(log b)′(bw)′ > 0 . (5.58)

It follows that b ϕ has no interior maxima, and hence

0 < b(eϕ − 1) ≤ maxϕ0 . (5.59)

This is the main a priori upper bound on eϕ. Again, by elliptic boundary regularity, this suffices

to prove properness of the boundary map Π.

III - Degree Calculation

The linearization Lss of Ψ at the standard solution is given by

Lss(ϕ̃) = e−ϕss (9∆ϕ̃+ eϕssϕ̃′′ + (eϕss)′ϕ̃′ − 18ϕ̃) . (5.60)

Again, the standard maximum principle argument shows that the only solution ϕ̃ to Lss(ϕ̃) = 0

with ϕ̃→ 0 at ρ→ ±∞ is ϕ̃ = 0. Thus the Lss is an isomorphism, so ϕss is a regular point of Π.

The proof of uniqueness is also the same as in the previous cases. Let ϕ be any solution of

(5.48) with the same asymptotics as the standard solution. Subtracting the two equations for ϕ

and ϕss, as in (5.45), yields

9∆(ϕ− ϕss) + (eϕss)′′w + 2(eϕss)′w′ + eϕssw′′ =

18eϕssw + 1
2
eϕss(ϕ′)2w + 1

2
eϕss(ϕ′ + ϕss

′)(ϕ′ − ϕss
′) .

(5.61)

Carrying out exactly the same arguments as appear following (5.45) leads to the bound 0 ≥ 18w

at any interior maximum point. Since w = eϕ−ϕss − 1 > 0 at such a point, this is a contradiction.

Hence,

ϕ ≤ ϕss (5.62)

holds everywhere. The same argument applied to any interior minimum point gives ϕ ≥ ϕss

everywhere. Hence, ϕ = ϕss, proving uniqueness. So again, deg Π = 1 and the boundary map is

surjective.

19Strictly, this may require a shift of the radial coordinate as it appears in the solution ϕss. This does not affect

the proof.
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5.4 Area monotonicity

As we saw in the degree computation of Section 5.1, the geometric flow equations simplify nicely

upon integration over C. In this section we take advantage of this simplification to prove that the

area of the Riemann surface with metric

ds2
C = y−2eϕ(dx2 + dy2) , (5.63)

decreases monotonically along the fixed point flows of Section 5. We solve the cases of 1/2 BPS

flows explicitly, while the 1/4 BPS flows require a slightly more formal treatment.

Integrating the N = 2 M5 brane flow (3.6) over C produces the ODE

A′′ −A− 4πχ(C) = 0 , (5.64)

where A =
∫
C exp(ϕ) is the area of the Riemann surface with respect to (5.63) and χ(C) is its

Euler character. The solution is given by

A(ρ) = c1e
ρ + c2e

−ρ + 4πχ(C) . (5.65)

The solution with the correct asymptotics to interpolate from the six-dimensional fixed point

in the UV to the four-dimensional fixed point in the IR has c2 = 0. Thus the area decreases

monotonically until it reaches the fixed value at ρ→ −∞.

The N = (4, 4) D3 flow (4.5) integrates to the following ODE:

A′′ − 4A′ − 36πχ(C) = 0 . (5.66)

This admits the exact solution

A(ρ) = c1 + c2e
4ρ − 9πχ(C)ρ . (5.67)

The area is again monotonically decreasing with ρ. As is expected, this solution does not approach

a fixed point in the IR, but rather becomes singular at finite ρ.20 Nevertheless, from the field

theoretic point of view this is a physical flow.

The flows preserving four supercharges do not simplify as nicely when integrated, and we can

treat them simultaneously. Both flows, (3.37), (4.10), are of the form

(eϕ)′′ + k0∆ϕ+ k1(eϕ)′ − k2(eϕ) + k3 = k4e
ϕ(ϕ′)2 , (5.68)

with k1 ≥ 0 and k2−4 > 0. Integrating over C again eliminates the Laplacian term, but now there

is a more complicated inhomogeneity in the differential equation for the area,

A′′ + k1A′ − k2A− 2πk3χ(C) = I[ϕ] , (5.69)

20When the function A is interpreted as the area of C, A → 0 is a singular limit. It should be noted that the

supergravity metric function g(ρ, x, y) itself becomes singular along this flow, cf., [10].
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where I[ϕ] is the integrated version of the right-hand side of equation (5.68) and is non-negative

(vanishing only when ϕ′ = 0 on C). The proof of Section 5 establishes the existence of uniformizing

flows which solve (5.68) and for which A diverges exponentially at ρ → +∞ and approaches a

fixed value at ρ→ −∞. Here we prove that A(ρ) decreases monotonically along these flows from

the UV to the IR.

Note that for such a flow to be non-monotonic, it would have to either experience a local

maximum at a finite value of ρ or contain an inflection point at which A′ < 0. To see that neither

of these scenarios can arise, define Â = A+ 2πk3
k2
χ(C), in terms of which equation (5.69) simplifies

to

Â′′ + k1Â′ − k2Â = I[ϕ] . (5.70)

Note that the lower bounds on eϕ derived in Sections 5.2 and 5.3 imply that Â > 0 for all ρ. The

same requirements for monotonicity apply to the new function Â. For Â′ = 0, the positivity of

I[ϕ] and k2 imply that Â′′ > 0, so this can only be a local minimum. Furthermore, at an inflection

point of Â, one finds that Â′ > 0, so this does not affect monotonicity. Thus A is a monotonic

function of ρ for the 1/4 BPS uniformizing flows as well.

This monotonicity has a similar flavor to the monotonic behavior of the c-function used to

prove the holographic c-theorem in [49, 50], and it is tempting to identify A(ρ) with a (d − 2)-

dimensional c-function. Indeed, such a measure of (d − 2)-dimensional degrees of freedom would

diverge in the UV where the theory is actually d-dimensional. It would be very interesting to

derive more general monotonicity results for a function that captures the evolution of the number

of degrees of freedom for flows between theories of different spacetime dimension.

6 Conclusions

We have initiated a program to use holographic BPS flows for supersymmetric wrapped branes

to derive and study novel geometric flows. By extending the analysis of [10] to accommodate the

presence of an arbitrary metric on the wrapped Riemann surface, we have derived a new class of

elliptic equations which control the BPS flow of the conformal factor of said metric. These flow

equations are particularly nice, and we have proved that they admit solutions which interpolate

from any asymptotic metric in the “UV” to the constant negative curvature representative in the

same conformal class in the “IR”. In particular, this verifies of a crucial conjecture from the work

of [6].

In analogy with Wilsonian RG flow, it would be desirable to have holographic geometric flow

equations formulated as initial value flows without the complicating factor of potentially unphys-

ical boundary conditions. It may be that by a careful application of the tools of holographic

renormalization, along with input from the field theory, one can find such a formulation for the

restriction of the flows studied here to physical initial values. Alternatively, by approaching the
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problem using equations of motion instead of BPS equations, a more direct version of a holographic

Wilsonian RG flow may be attainable [51, 52].

An obvious extension of our program is to the case of twisted compactification on supersym-

metric cycles of dimension greater than two. In particular, the solutions of [53, 54] should be

generalizable in the same way. It could be of great interest to derive a geometric flow on three-

manifolds from M-theory in this way. The Ricci flow famously encounters singularities at finite

time in many cases (cf., [55]). One expects that a geometric flow emerging from M-theory will

either avoid or provide a physical prescription for dealing with any finite-time singularities. This

is currently under investigation in [5].

Finally, there are a number of natural generalizations of the present work within the two-

dimensional setting. We have restricted our attention to backgrounds which preserve at least four

supercharges because of certain technical simplifications which take place. In particular, this meant

that we ignored the third natural class of wrapped branes – M2 branes – because for M2 branes,

flows with eight or four supersymmetries do not find an AdS2 fixed point in the IR [56]. There is

also a (1, 1)-supersymmetric twist of the D3 brane theory which we have neglected. Nevertheless,

it may be interesting to study these less-supersymmetric compactifications and to understand

whether the corresponding BPS flows display qualitatively different behavior. Furthermore, by

carrying out the BPS flow analysis in ten or eleven dimensions, it should be possible to incorporate

punctures.
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Appendix A Derivation of Flow Equations

In this appendix we provide a detailed account of the derivation of the flow equations for the

1/2 BPS twist of the M5 brane theory, (3.4). We also provide a less thorough summary of the

analogous derivation for the 1/4 BPS M5 brane background (3.35) and for the 1/2 and 1/4 BPS

D3 brane backgrounds (4.4), (4.9). Several equations from the main text are repeated here to keep

the derivation relatively self-contained.

A.1 M5 brane flows

The starting point is the Ansatz for the seven-dimensional gauged supergravity background (2.7),

(2.8),

ds2 = e2f (−dt2 + dz2
1 + dz2

2 + dz2
3) + e2hdr2 + y−2e2g(dx2 + dy2) ,

A(i) = A(i)
x dx+ A(i)

y dy + A(i)
r dr , λi = λi(x, y, r) , i = 1, 2 .

(A.1)

As written, (x, y) are coordinates on the upper half-plane, and to obtain a background with a

compact C factor we impose a quotient by a Fuchsian subgroup Γ ⊂ PSL(2,R) which acts on the

upper half-plane as

z = x+ iy → z̃ =
az + b

cz + d
, ad− bc 6= 0 . (A.2)

Accordingly, the functions f , g, and h in (A.1) must be invariant under the action of Γ.21 The

supersymmetry variations for the relevant fermionic fields are given by [23,24],

δψµ =
[
∇µ +m(A(1)

µ Γ12 + A(2)
µ Γ34) + m

4
e−4(λ1+λ2)γµ + 1

2
γµγ

ν∂ν(λ1 + λ2)
]
ε

+ 1
2
γν
(
e−2λ1F (1)

µν Γ12 + e−2λ2F (2)
µν Γ34

)
ε ,

δχ(1) =
[
m
4

(e2λ1 − e−4(λ1+λ2))− 1
4
γµ∂µ(3λ1 + 2λ2)− 1

8
γµνe−2λ1F (1)

µν Γ12
]
ε ,

δχ(2) =
[
m
4

(e2λ2 − e−4(λ1+λ2))− 1
4
γµ∂µ(2λ1 + 3λ2)− 1

8
γµνe−2λ2F (2)

µν Γ34
]
ε .

(A.3)

where the spin-1/2 fields χ(1) and χ(2) are certain linear combinations of the sixteen spin-1/2 fields

of the maximal theory – see [24] for more details.

We wish to find equations for the functions in (A.1) which guarantee the existence of spinors

for which the above supersymmetry variations vanish. For a given twist of the boundary theory,

we know that the generators of the preserved supersymmetries should have fixed transforma-

tion properties under the symmetries of the supergravity background. Specifically, consider the

decomposition of a spinor according to

γx̂ŷε = iαε , Γ12ε = iβ1ε , Γ34ε = iβ2ε , γr̂ε = ηε , (A.4)

21The constant negative curvature metric on the upper half-plane is given by y−2(dx2 + dy2) and is invariant

under all of PSL(2,R). The conformal factor eg should then be independently invariant under Γ.
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with α, β1, β2, η = ±1.22 Then the discrete parameters α, β1,2 are identified as the charges of the

corresponding supersymmetry generators under U(1)C, U(1)12, and U(1)34 as defined in Section

2.1.1. This implies that for the supercharges preserved by the 1/2 BPS twist, α = β1, while for

those preserved by the 1/4 BPS twist, α = β1 = β2. After fixing these relations, there are still

four (resp. two) choices of signs that can be assigned in (A.4). However, each choice gives rise to

the same equations for the background fields in the appropriate Ansatz.

In addition, the supersymmetries preserved by the flow should be those which restrict to

Poincaré supersymmetries on the boundary at r → 0+ (as opposed to superconformal symmetries).

This fixes η = 1 [57]. Lastly, four-dimensional Poincaré invariance of the backgrounds implies that

the spinors are constant in the R1,3 directions,

∂tε = ∂ziε = 0 . (A.5)

We note that in contrast to the solutions studied in [10], the present analysis allows for ∂xε 6= 0

and ∂yε 6= 0.

The conditions for the supersymmetry variations (A.3) to vanish are of two types. Vanishing

of the variation of the dilatinos and the (t, z1, z2, z3) components of the gravitino impose explicit

conditions on the background fields. Alternatively, vanishing variations of the (r, x, y) components

of the gravitino imply that the spinor ε solves a certain system of PDEs. Integrability of said system

of PDEs imposes additional constraints on the background fields.

A.1.1 N = 2 M5 branes

For the 1/2 BPS twisted M5 brane background, we impose the additional simplification

2λ1 + 3λ2 = 0 , A(2) = 0 , (A.6)

and define

λ ≡ λ2 , A ≡ A(1) . (A.7)

To derive the BPS equations it is sufficient to take α = β1 = 1 in (A.4). Then the dilatino

variations lead to the equations

∂rλ+ 2m
5
eh−3λ − 2m

5
eh+2λ + 2

5
eh−2g+3λFxy = 0 ,

(∂x + i∂y)λ+ 2
5
e−h+3λ(Fyr − iFxr) = 0 ,

(A.8)

22The symplectic Majorana spinor ε is in the 4 of SO(5)c, Γi are SO(5)c gamma matrices and γµ are seven-

dimensional spacetime gamma matrices. We use the standard notation γµ1...µp
= γ[µ1

. . . γµp] and suppress all

spinor indices. Hats indicate flat indices.
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while vanishing of the gravitino variations (the (t, z1, z2, z3) components all produce the same

condition) requires

∂r
(
f − 1

2
λ
)

+ m
2
eh+2λ = 0 ,

(∂x + i∂y)
(
f − 1

2
λ
)

= 0 .
(A.9)

The differential equations for the spinor ε implied by the vanishing variations of the (r, x, y)

components of the gravitino are given by

∂rε− 1
4

[
∂rλ+meh+2λ + i 4mAr

]
ε

− 1
2
yeh−g

[
(∂x + i∂y)

(
h− 1

2
λ
)
− e−h+3λ(Fyr − iFxr)

]
γ6ε = 0 ,

∂xε+ 1
2

[
i
(
∂yg − y−1

)
+ i 4mAx − 1

2
(∂x + i∂y)λ+ ie−h+3λFxr

]
ε

+ 1
2
y−1eg−h

[
∂r
(
g − 1

2
λ
)

+ m
2
eh+2λ − y2eh+3λ−2gFxy

]
γ6ε = 0 ,

∂yε+ i
2

[
−∂xg + 4mAy + 1

2
(∂x + i∂y)λ+ e−h+3λFyr

]
ε

+ i
2
y−1eg−h

[
∂r
(
g − 1

2
λ
)

+ m
2
eh+2λ − y2eh+3λ−2gFxy

]
γ6ε = 0 .

(A.10)

In order for these equations to admit solutions, they should be integrable and PSL(2,R) covari-

ant.23 Integrability imposes the following constraints on the background geometry and fields,

∂r(g + 2λ) +meh−3λ − m
2
eh+2λ = 0 ,

∂r∂y(g + 2λ) + 2mFrx = 0 ,

∂r∂x(g + 2λ)− 2mFry = 0 ,

(∂2
x + ∂2

y)(g + 2λ) + 1
y2
− 2mFxy = 0 .

(A.11)

These equations can be dramatically simplified and cast into a form which looks intrinsic to the

geometry of the Riemann surface C. In particular, equations (A.11) fix Frx, Fry, and Fxy in terms

of λ, f , h, and g. Then (A.9) imply that

f(r, x, y)− 1
2
λ(r, x, y) = F (r) , h(r, x, y) + 2λ(r, x, y) = H(r) , (A.12)

with F (r) and H(r) being real functions of the radial variable only which satisfy

F ′(r) = −m
2

expH(r) . (A.13)

This means that F (r) is a monotonic function of r and we can define a new radial variable ρ

according to

ρ ≡ 2
m
F (r) , ∂ρ = −e−H(r)∂r . (A.14)

23It is actually not quite necessary that the equations be covariant under PSL(2,R). In principle, the flow could

be covariant only with respect to the appropriate subgroup Γ ⊂ PSL(2,R), or worse, the complex structure moduli

of C could vary along the flow. Fortunately, things turn out in the nicest possible way and everything is covariant.
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In terms of the new radial variable, the full solution to the BPS equations is determined by a

solution to the following flow equations for the conformal factor g on C and the scalar λ,

∂ρλ = −2m
5

+ 2m
5
e−5λ + 1

5m
eλ−2g (1 + ∆(g + 2λ)) ,

∂ρg = 3m
10

+ m
5
e−5λ − 2

5m
eλ−2g (1 + ∆(g + 2λ)) ,

(A.15)

where we have introduced the Laplace operator on C with respect to the metric of constant scalar

curvature R = −2,

∆ ≡ y2(∂2
x + ∂2

y) . (A.16)

While this is a vast improvement over (A.15), these flow equations are still rather complicated

and can be simplified even further. After defining

ϕ(ρ, x, y) ≡ 2g(ρ, x, y) + 4λ(ρ, x, y) , (A.17)

we find that

e−5λ = 1
2m

(m+ ∂ρϕ) , (A.18)

where ϕ(ρ, x, y) is determined by the following second-order equation:

∂2
ρe
ϕ + ∆ϕ+ 2−m2eϕ = 0 (A.19)

A.1.2 N = 1 M5 branes

The 1/4 BPS twist of the M5 brane theory leads to a different truncation of the seven-dimensional

supergravity fields,

A ≡ A(1) = A(2) , φ ≡ −2λ1 = −2λ2 , (A.20)

and we consider a supersymmetry variation with α = β1 = β2 = 1 in (A.4). An analysis sim-

ilar to the one performed for M5 branes with N = 2 supersymmetry yields the equations for a

supersymmetric background,

∂rφ+ 2m
5
eh−φ − 2m

5
eh+4φ + 2

5
y2eh+φ−2gFxy = 0 , (A.21)

(∂x + i∂y)φ− 2
5
e−h+φ(Fry − iFrx) = 0 . (A.22)

∂r (f − φ) + m
2
eh+4φ = 0 , (A.23)

∂x (f − φ) = ∂y (f − φ) = 0 , (A.24)

∂r(g + 4φ) + 2meh−φ − 3m
2
eh+4φ = 0 , (A.25)

∂r∂y(g + 4φ) + 4mFrx = 0 , (A.26)

∂r∂x(g + 4φ)− 4mFry = 0 , (A.27)

(∂2
x + ∂2

y)(g + 4φ) + y−2 − 4mFxy = 0 . (A.28)
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Equations (A.21) and (A.22) come from the dilatino variation, (A.23) and (A.24) from the

(t, z1, z2, z3) components of the gravitino variation, and (A.25)–(A.28) are the integrability con-

ditions for the PDEs which ε must solve. These equations can again be reformulated as a flow

intrinsic to C. The result is the following system of equations in terms of a new radial variable,

∂ρφ = −2m
5

+ 2m
5
e−5φ + 1

10m
e−3φ−2g (1 + ∆(g + 4φ)) ,

∂ρg = m
10

+ 2m
5
e−5φ − 2

5m
e−3φ−2g (1 + ∆(g + 4φ)) .

(A.29)

The new radial variable can be defined by using (A.23) and (A.24) to show that

f(r, x, y)− φ(r, x, y) = F (r) , h(r, x, y) + 4φ(r, x, y) = H(r) , (A.30)

in terms of which ρ is defined by

ρ ≡ 2
m
F (r) , ∂ρ = −e−H(r)∂r . (A.31)

One can rewrite the system of two coupled PDEs (A.29) as a single nonlinear second-order PDE.

Defining

ϕ(ρ, x, y) ≡ 2g(ρ, x, y) + 8φ(ρ, x, y) , (A.32)

it follows that

e−5φ = 1
4m

(3m+ ∂ρϕ) , (A.33)

where ϕ(ρ, x, y) solves the following elliptic PDE:

∆ϕ+ ∂2
ρe
ϕ − eϕ

(
1
2
(∂ρϕ)2 −m∂ρϕ

)
+ 2− 3m2

2
eϕ = 0 (A.34)

A.2 D3 brane flows

The Ansatz for the twisted D3 brane solutions is analogous to the one for the twisted M5 solutions.

The five-dimensional metric, the three Abelian gauge fields and two real scalars take the form

ds2 = e2f (−dt2 + dz2) + e2hdr2 + y−2e2g(dx2 + dy2) ,

AI = AIxdx+ AIydy + AIrdr , I = 1, 2, 3 ,

φ1(x, y, r) , φ2(x, y, r) .

(A.35)

The coordinates (x, y) are again coordinates on the upper half-plane with a quotient by a discrete

subgroup of PSL(2,R) imposed. All background fields must be invariant under the action of this

discrete group. The supersymmetry transformation of the fermionic fields of the supergravity are

(see [35] and Appendix A of [10] for more details),

δψµ =
[
∇µ + i

8
XI(γ

νρ
µ − 4δνµγ

ρ)F I
νρ + 1

2
XIVIγµ − 3i

2
VIA

I
µ

]
ε ,

δχ(j) =
[

3
8
(∂φjXI)F

I
µνγ

µν + 3i
2
VI∂φjX

I − i
4
δjk∂µφkγ

µ
]
ε , j = 1, 2 ,

(A.36)
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where we have defined

X1 ≡ e
− φ1√

6
− φ2√

2 , X2 ≡ e
− φ1√

6
+
φ2√
2 , X3 ≡ e

2φ1√
6 ,

VI = 1
3
, XI = 1

3
(XI)−1 .

(A.37)

Since we are using an N = 2 truncation of the full gauged supergravity, only a fraction of the

maximal possible supersymmetry is visible. The spinors in (A.36) correspond to the (1
2
, 1

2
, 1

2
)

component of the decomposition (2.4). In the language of this truncation the desired solutions

preserve two real supercharges. In order for these to be the supersymmetries preserved by the

twisted field theory, the spinors should obey the following constraints24

γr̂ε = ε , γx̂ŷε = −iε , ∂tε = ∂ziε = 0 . (A.38)

Note that the radius of AdS5 is fixed to one and that we allow ∂xε 6= 0 and ∂yε 6= 0.

A.2.1 N = (4, 4) D3 branes

For BPS solutions that preserve half of the maximum supersymmetry one should set

φ2 = 0 , α ≡ 1√
6
φ1 , A(1) = A(2) = 0 , A ≡ A(3) . (A.39)

With this simplification the analysis of the supersymmetry constraint is very similar to the case

of N = 2 M5 branes. First we impose the vanishing of the dilatino variations in (A.36), which

leads to the following differential equations

∂rα + 2
3
eh−α − 2

3
eh+2α − 1

3
y2eh−2α−2gFxy = 0 ,

∂xα + 1
3
e−h−2αFry = 0 , ∂yα− 1

3
e−h−2αFrx = 0 .

(A.40)

The vanishing of the (t, z) components of the gravitino variation in (A.36), implies

∂r
(
f + 1

2
α
)

+ eh−α = 0 ,

∂x
(
f + 1

2
α
)

= ∂y
(
f + 1

2
α
)

= 0 .
(A.41)

As in the case of N = 2 M5 branes, the (r, x, y) components of the gravitino variation lead to

PDEs which should be satisfied by the spinor ε. Integrability of this system of equations requires

that the following constraints be satisfied by the background functions,

∂r(g − α) + eh+2α = 0 ,

∂r∂y(g − α) + Frx = 0 ,

∂r∂x(g − α)− Fry = 0 ,

(∂2
x + ∂2

y)(g − α) + y−2 − Fxy = 0 .

(A.42)

24γµ are the five-dimensional gamma matrices and we suppress spinor indices.
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One can simplify the system of BPS equations and reduce it to a system of two coupled PDEs

intrinsic to C

∂ρα = 2− 2e3α − e−α−2g(1 + ∆(g − α)) ,

∂ρg = 2 + e3α − e−α−2g(1 + ∆(g − α)) .
(A.43)

To derive this system we have utilized a new radial variable

ρ ≡ 1
3
F (r) , ∂ρ = −3 e−H(r)∂r , (A.44)

where we have used

f(r, x, y) + 1
2
α(r, x, y) = F (r) , h(r, x, y)− α(r, x, y) = H(r) . (A.45)

One can find a further simplification of equations (A.43) and after defining

ϕ(ρ, x, y) ≡ 2g(ρ, x, y)− 2α(ρ, x, y) , (A.46)

reduce them to a single PDE that governs the flow:

∂2
ρe
ϕ − 6∂ρe

ϕ + 9∆ϕ+ 18 = 0 (A.47)

A.2.2 N = (2, 2) D3 branes

To get a BPS flow that preserves a quarter of the maximal supersymmetry we set

φ2 = 0 , α ≡ 1√
6
φ1 , A ≡ A(1) = A(2) , A(3) = 0 . (A.48)

The dilatino variation yields

∂rα + 2
3
eh−α − 2

3
eh+2α + 1

3
y2eh+α−2gFxy = 0 ,

∂xα− 1
3
e−h+αFry = 0 , ∂yα + 1

3
e−h+αFrx = 0 .

(A.49)

The (t, z) components of the gravitino variation lead to

∂r (f − α) + eh+2α = 0 ,

∂x (f − α) = ∂y (f − α) = 0 .
(A.50)

The integrability conditions for the PDEs for the spinor ε coming from the (r, x, y) components

of the gravitino variation reduce to the following differential equations for the background fields

∂r(g + 2α) + 2eh−α − eh+2α = 0 ,

∂r∂y(g + 2α) + 2Frx = 0 ,

∂r∂x(g + 2α)− 2Fry = 0 ,

(∂2
x + ∂2

y)(g + 2α) + y−2 − 2Fxy = 0 .

(A.51)
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Using these BPS equations one can define a new radial variable in a similar way as for the other

flows above. First use

f(r, x, y)− α(r, x, y) = F (r) , h(r, x, y) + 2α(r, x, y) = H(r) . (A.52)

and then define the radial variable ρ implicitly

ρ ≡ 1
3
F (r) , ∂ρ = −3 e−H(r)∂r . (A.53)

With this new variable at hand one can readily derive a system of coupled PDEs intrinsic to C

∂ρα = −2 + 2e−3α + 1
2
e−α−2g(1 + ∆(g + 2α)) ,

∂ρg = 1 + 2e−3α − e−α−2g(1 + ∆(g + 2α)) .
(A.54)

The second-order elliptic PDE that governs the flow can be derived in terms of the new function

ϕ(ρ, x, y) ≡ 2g(ρ, x, y) + 4α(ρ, x, y) . (A.55)

It takes the following form:

∂2
ρe
ϕ − 1

2
eϕ(∂ρϕ)2 + 9∆ϕ+ 18− 18eϕ = 0 (A.56)

Appendix B Covariant Flow Equations

The flow equations derived in this paper can be rewritten as covariant geometric flows. For all of

the flows, the function ϕ can be interpreted as the conformal factor of an auxiliary metric on the

Riemann surface C,
d̃s

2

C = y−2eϕ(dx2 + dy2) = eΦ(dx2 + dy2) . (B.1)

This metric coincides with the restriction of the gauged supergravity metric in (2.7) and (2.13) to

C in the UV, and in the IR up to a scale factor. Denoting the metric components on this Riemann

surface by gij, the Ricci tensor is

Rij = −1
2
(∂2
x + ∂2

y)Φ δij . (B.2)

The four second-order PDEs (A.19), (A.34), (A.47), and (A.56) can be rewritten as follows:

• M5 branes with 1/2 BPS twist

∂2
ρgij − 2Rij −m2gij = 0 . (B.3)

• M5 branes with 1/4 BPS twist

∂2
ρgij − 2Rij − 3m2

2
gij − 1

4
∂ρg

k
i ∂ρgkj +m∂ρgij = 0 . (B.4)
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• D3 branes with 1/2 BPS twist

∂2
ρgij − 18Rij − 6∂ρgij = 0 . (B.5)

• D3 branes with 1/4 BPS twist

∂2
ρgij − 18Rij − 18gij − 1

4
∂ρg

k
i ∂ρgkj = 0 . (B.6)

These covariant flow equations could form the starting point for a new, “holographic” proof of

the uniformization theorem. Furthermore, it would be interesting to study these flow equations

on higher-dimensional manifolds, and to compare the näıve generalization to the flows for three-

manifolds which may be derived from an appropriate generalization of [53,54] (see [5]).
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