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Scalar Curvature and Geometrization

Conjectures for 3-Manifolds

MICHAEL T. ANDERSON

Abstract. We first summarize very briefly the topology of 3-manifolds
and the approach of Thurston towards their geometrization. After dis-
cussing some general properties of curvature functionals on the space of
metrics, we formulate and discuss three conjectures that imply Thurston’s
Geometrization Conjecture for closed oriented 3-manifolds. The final two
sections present evidence for the validity of these conjectures and outline
an approach toward their proof.

Introduction

In the late seventies and early eighties Thurston proved a number of very re-
markable results on the existence of geometric structures on 3-manifolds. These
results provide strong support for the profound conjecture, formulated by Thur-
ston, that every compact 3-manifold admits a canonical decomposition into do-
mains, each of which has a canonical geometric structure.

For simplicity, we state the conjecture only for closed, oriented 3-manifolds.

Geometrization Conjecture [Thurston 1982]. Let M be a closed , oriented ,
prime 3-manifold . Then there is a finite collection of disjoint , embedded tori T 2

i

in M , such that each component of the complement Mr
⋃

T2
i admits a geometric

structure, i .e., a complete, locally homogeneous Riemannian metric.

A more detailed description of the conjecture and the terminology will be
given in Section 1. A complete Riemannian manifold N is locally homogeneous
if the universal cover Ñ is a complete homogenous manifold, that is, if the
isometry group Isom Ñ acts transitively on Ñ . It follows that N is isometric to
Ñ/Γ, where Γ is a discrete subgroup of Isom Ñ , which acts freely and properly
discontinuously on Ñ .
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Thurston showed that, in dimension three, there are eight possible geometries,
all of which are realized. Namely, the universal covers are either the constant
curvature spaces H 3, E 3, S3, or products H 2 ×R, S2 ×R, or twisted products
S̃L(2,R), Nil, Sol (see Section 1B).

It is perhaps easiest to understand the context and depth of this conjecture by
recalling the classical uniformization (or geometrization) theorem for surfaces,
due to Poincaré and Koebe. If M is a closed, oriented surface, the uniformization
theorem asserts that M carries a smooth Riemannian metric of constant curva-
ture K equal to −1, 0 or +1. This means that it carries a geometric structure
modeled on H 2, E 2 or S2, respectively. Further, knowledge of the sign of the
curvature and the area of the surface gives a complete topological description of
the surface, via the Gauss–Bonnet formula

2πχ(M) =
∫
M

K dV.

The validity of the Geometrization Conjecture in dimension three would similarly
provide a deep topological understanding of 3-manifolds, as well as a vast array
of topological invariants, arising from the geometry of the canonical metrics.

There is a noteworthy difference between these pictures in dimensions two
and three, however. In two dimensions, there is typically a nontrivial space of
geometric structures, that is, of constant curvature metrics—the moduli space,
or the related Teichmüller space. Only the case K = +1 is rigid, that is, there is a
unique metric (up to isometry) of constant curvature +1 onS2. The moduli space
of flat metrics on a torus is a two-dimensional variety, and that of hyperbolic
metrics on surfaces of higher genus g is a variety of dimension 3g−3. As we will
indicate briefly below, these moduli spaces also play a crucial role in Thurston’s
approach to and results on the Geometrization Conjecture.

In dimension three, the geometric structures are usually rigid. The moduli
spaces of geometric structures, if not a point, tend to arise from the moduli
of geometric structures on surfaces. In any case, the question of uniqueness or
moduli of smooth geometric structures on a smooth 3-manifold is by and large
understood; what remains is the question of existence.

The Geometrization Conjecture may be viewed as a question about the ex-
istence of canonical or distinguished Riemannian metrics on 3-manifolds that
satisfy certain topological conditions. This type of question has long been of
fundamental interest to workers in Riemannian geometry and analysis on mani-
folds. For instance, it is common folkore that Yamabe viewed his work on what
is now known as the Yamabe problem [1960] as a step towards the resolution
of the Poincaré conjecture. Further, it has been a longstanding open problem
to understand the existence and moduli space of Einstein metrics (that is, met-
rics of constant Ricci curvature) on closed n-manifolds. Most optimistically, one
would like to find necessary and sufficient topological conditions that guaran-
tee the existence of such a metric. The Thurston conjecture, if true, provides



SCALAR CURVATURE AND GEOMETRIZATION OF 3-MANIFOLDS 51

the answer to this in dimension three. (Einstein metrics in dimension three are
metrics of constant curvature).

One of the most natural means of producing canonical metrics on smooth
manifolds is to look for metrics that are critical points of a natural functional
on the space of all metrics on the manifold. In fact, the definition of Einstein
metrics is best understood from this point of view.

Briefly, let M1 denote the space of all smooth Riemannian structures of total
volume 1 on a closed n-manifold M . Two Riemannian metrics g0 and g1 are
equivalent or isometric if there is a diffeomorphism f of M such that f∗g0 = g1;
we also say that they define the same structure on M . Given a metric g ∈ M1,
let sg : M → R be its scalar curvature (the average of all the curvatures in the
two-dimensional subspaces of TM ), and let dVg be the volume form determined
by the metric and orientation. The total scalar curvature functional S is defined
by

S : M1 → R, S(g) =
∫
M

sg dVg.

Hilbert showed that the critical points of this functional are exactly the Ein-
stein metrics, that is, metrics that satisfy the Euler–Lagrange equation

Zg := Ricg −sg
n
g = 0,

where Ricg is the Ricci curvature of g (Section 2) and n is the dimension of
M . It is an elementary exercise to show that in dimension three (and only in
dimension three) the solutions of this equation are exactly the metrics of constant
curvature, that is, metrics having geometric structure H 3, E 3 or S3.

In fact, S is the only functional on M1 known to the author whose critical
points are exactly the metrics of constant curvature in dimension three. The
fact that S is also the simplest functional that one can form from the curvature
invariants of the metric makes it especially appealing.

The three geometries H 3, E 3, S3 of constant curvature are by far the most
important of the eight geometries in understanding the geometry and topology
of 3-manifolds. H 3 and S3, in particular, play the central roles.

In this article, we will outline an approach toward the Geometrization Con-
jecture, based on the study of the total scalar curvature on the space of metrics
on M3. We formulate and discuss (Section 4) three conjectures on the geometry
and topology of the limiting behavior of metrics on a 3-manifold that attempt
to realize a critical point of S. This conjecture, if true, implies that the ge-
ometrization of a 3-manifold can be implemented or performed by studying the
convergence and degeneration of such a sequence of metrics.

R. Hamilton has developed another program toward resolution of the Ge-
ometrization Conjecture, by studying the singularity formation and long-time
existence and convergence behavior of the Ricci flow on M. This has of course
already been spectacularly successful in certain cases [Hamilton 1982].
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This article is intended partly as a brief survey of ideas related to the Thurston
conjecture and of the approach to this conjecture indicated above. A number of
new results are included in Sections 4–6, in order to substantiate this approach.
However, by and large, only statements of results are provided, with references
to proofs elsewhere, mainly in [Anderson a; b; c]. The paper is an expanded,
but basically unaltered, version of talks given at the September 1993 MSRI
Workshop.

1. Review of 3-manifolds: Topology, Geometry and Thurston’s
Results

1A. Topology. Throughout the paper, M will denote a closed, oriented 3-
manifold andN will denote a compact, oriented 3-manifoldwith (possibly empty)
compact boundary. There are two basic topological decompositions of M , ob-
tained by examining the structure of the simplest types of surfaces embedded in
M , namely spheres and tori.

Theorem 1.1 (Sphere Decomposition [Kneser 1929; Milnor 1962]). Let
M be a closed , oriented 3-manifold . Then M has a finite decomposition as a
connected sum

M = M1 #M2 # · · ·#Mk,

where each Mi is prime. The collection {Mi} is unique, up to permutation of the
factors. (A closed 3-manifold is prime if it is not the three-sphere and cannot
be written as a nontrivial connected sum of closed 3-manifolds.)

This sphere decomposition (or prime decomposition) is obtained by taking a
suitable maximal family of disjoint embedded two-spheres in M , none of which
bounds a three-ball, and cutting M along those spheres. The summands Mi are
formed by gluing in three-balls to the boundary spheres. (This implicitly uses
the Alexander–Schoenflies theorem, which says that any two-sphere embedded
in S3 bounds a 3-ball.)

The sphere decomposition is canonical in the sense that the summands are
unique up to homeomorphism. However, the collection of spheres is not neces-
sarily unique up to isotopy; it is unique up to diffeomorphism of M .

A 3-manifold M is irreducible if every smooth two-sphere embedded in M

bounds a three-ball in M . Clearly an irreducible 3-manifold is prime. The
converse is almost true: a prime orientable 3-manifold is either irreducible or is
S

2 ×S1 [Hempel 1983].
The topology of an irreducible 3-manifold M is coarsely determined by the

cardinality of the fundamental group. For then the sphere theorem [Hempel
1983] implies that π2(M) = 0. Let M̃ be the universal cover of M , so that
π1(M̃) = π2(M̃) = 0. If π1(M) is finite, M̃ is closed, and thus a homotopy three-
sphere (that is, a simply connected closed 3-manifold), by elementary algebraic
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topology. If π1(M) is infinite, M̃ is open, and thus contractible (by the Hurewicz
theorem); therefore M is a K(π, 1), that is, M is aspherical.

Thus, the prime decomposition of Theorem 1.1 can be rewritten as

M = (K1 #K2 # · · ·#Kp) # (L1 # L2 # · · ·#Lq) #
( r

#
1

(S2×S1)
)
,

where the factors Ki are closed, irreducible and aspherical, while the factors Lj
are closed, irreducible and finitely covered by homotopy three-spheres. Thus,
one needs to understand the topology of the factors Ki and Lj.

It is worth emphasizing that the sphere decomposition is perhaps the simplest
topological procedure that is performed in understanding the topology of 3-
manifolds. In contrast, in dealing with the geometry and analysis of metrics on
3-manifolds, we will see that this procedure is the most difficult to perform or
understand.

From now on, we make the further assumption that M and N are irreducible.
Before stating the torus decomposition theorem, we introduce several defini-

tions. Let S be a compact, oriented surface embedded in N (and thus having
trivial normal bundle), with ∂S ⊂ ∂N . The surface S is incompressible if,
for every closed disc D embedded in N with D ∩ S = ∂D, the curve ∂D is
contractible in S. This happens if and only if the inclusion map induces an
injection π1(S) → π1(N) of fundamental groups (see [Jaco 1980, Lemma III.8];
his definition of incompressibility disagrees with ours for S = S

2). If S is not
incompressible, it is compressible. A 3-manifold N is Haken if it contains an
incompressible surface of genus g ≥ 1.

Incompressible tori play the central role in the torus decomposition of a 3-
manifold, just as spheres do in the prime decomposition. Note, however, that
when one cuts a 3-manifold along an incompressible torus, there is no canonical
way to cap off the boundary components thus created, as is the case for spheres.
For any toral boundary component, there are many ways to glue in a solid torus,
corresponding to the automorphisms of T 2; typically, the topological type of the
resulting manifold depends on the choice. Thus, when a 3-manifold is split along
incompressible tori, one leaves the compact manifolds with toral boundary fixed.
This leads to another definition: a compact 3-manifold N is torus-irreducible if
every incompressible torus in N is isotopic to a boundary component of N .

Theorem 1.2 (Torus Decomposition [Jaco and Shalen 1979; Johannson
1979]). Let M be a closed , oriented , irreducible 3-manifold . Then there is a
finite collection of disjoint incompressible tori T 2

i ⊂ M that separate M into
a finite collection of compact 3-manifolds with toral boundary , each of which is
either torus-irreducible or Seifert fibered. A minimal such collection (with respect
to cardinality) is unique up to isotopy .

A 3-manifold N is Seifert fibered if it admits a foliation by circles with the
property that a foliated tubular neighborhood D2 ×S1 of each leaf is either the
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trivial foliation of a solid torus D2 ×S1 or its quotient by a standard action of
a cyclic group. The quotient or leaf space of the foliation is a two-dimensional
orbifold with a finite number of isolated cone singularities. The orbifold or
cone points correspond to the exceptional fibers, that is, fibers whose foliated
neighborhoods are nontrivial quotients of D2 ×S1.

The tori appearing in the Geometrization Conjecture give a torus decom-
position of M . Thus, the Geometrization Conjecture asserts that the torus-
irreducible and Seifert fibered components of a closed, oriented, irreducible 3-
manifold admit canonical geometric structures.

Of course, it is possible that the collection of incompressible tori is empty. In
this case, M is itself a closed irreducible 3-manifold that is either Seifert fibered
or torus-irreducible.

The Geometrization Conjecture thus includes the following important special
cases (recall M is closed, oriented and irreducible):

Hyperbolization Conjecture. If π1(M) is infinite and M is atoroidal , then
M is hyperbolic, that is, admits a hyperbolic metric. (M is atoroidal if π1(M)
has no subgroup isomorphic to Z⊕Z= π1(T 2).)

Elliptization Conjecture. If π1(M) is finite, then M is spherical , that is,
admits a metric of constant positive curvature.

In fact, these are the only remaining open cases of the Geometrization Conjec-
ture. If M has a nontrivial torus decomposition (equivalently, if M contains
an incompressible torus), then in particular M is Haken. Thurston [1982; 1986;
1988] has proved the conjecture for Haken manifolds; see Theorem 1.4 below, and
also [Morgan 1984]. If M has no incompressible tori, recent work on the Seifert
fibered space conjecture [Gabai 1992; Casson and Jungreis 1994] implies that M
is either Seifert fibered or atoroidal. It is known that Seifert fibered spaces have
geometric structures (Section 1B). In the remaining case, M is atoroidal, and so
satisfies the hypotheses of either the elliptization or the hyperbolization conjec-
tures. Note that the elliptization conjecture implies the Poincaré conjecture.

For later sections, we will require a generalization of Seifert fibered spaces.
Let N be a compact manifold, possibly with boundary. Then N is a graph
manifold if there is a finite collection of disjoint embedded tori Ti ⊂ N such
that each component Nj of N r

⋃
Ti is an S1 bundle over a surface. To such

a decomposition one assigns a graph G as follows: the vertices of G are the
components of N r

⋃
Ti, and two vertices are joined by an edge if the associated

components are separated by a torus T ∈ {Ti}. This description of the graph is
somewhat of a simplification; consult [Waldhausen 1967] for full details.

Of course, Seifert fibered spaces are graph manifolds, as one sees by letting
{Ti} be the boundaries of tubular neighborhoods of the exceptional fibers. A
graph manifold need not admit a globally defined free, or locally free, S1 action.
However, by definition, there are always free S1 actions defined on the compo-
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nents Nj. These S1 actions commute on the intersections of their domains of
definition (neighborhoods of {Ti}), and thus extend to give free T 2 actions in
this region. These locally defined S1 and T 2 actions give a well-defined partition
of N into orbits, called the orbit structure of the graph manifold. In most cases,
although not always, this orbit structure is unique up to isotopy [Waldhausen
1967].

We note that, as a consequence of their structure, irreducible graph manifolds
of infinite fundamental group necessarily have a Z⊕Zcontained in the funda-
mental group; in fact, with few exceptions, they have incompressible tori. For
further details, see [Waldhausen 1967; Cheeger and Gromov 1986; Rong 1990;
1993].

1B. Geometries of 3-Manifolds. We summarize here the basic features of the
eight 3-manifold geometries. For details, see [Scott 1983; Thurston 1996, Section
3.8]. A geometric structure on a simply connected spaceX is a homogenous space
structure on X, that is, a transitive action of a Lie group G on X. Thus, X
is given by G/H, for H a closed subgroup of G. In order to avoid redundancy,
it is assumed that the identity component H0 of the stabilizer H is a compact
subgroup of G, and that G is maximal. Further, G is assumed to be unimodular;
this is equivalent to the existence of compact quotients of X.

The possible geometric structures may be divided into three categories.

Constant curvature geometries. Here X is the simply connected space form
H

3 of constant curvature −1, or E 3 of curvature 0, or S3 of curvature +1. The
corresponding geometries are called hyperbolic, Euclidean, and spherical. The
groups G are PSL(2, C ), R3× SO(3), and SO(4). In all cases, H0 = SO(3).

Product geometries. Here X = H
2 ×R or S2 ×R. The groups G are given by

the orientation-preserving subgroups of IsomH 2× Isom E 1 and SO(3)× Isom E 1,
with stabilizer H0 = SO(2).

Twisted product geometries. Here there are three possibilities, called S̃L(2,R),
Nil and Sol. For S̃L(2,R), the space X is the universal cover of the unit sphere
bundle of H 2, andG = S̃L(2,R)×R, withH0 = SO(2). For the Nil geometry,X is
the three-dimensional nilpotent Heisenberg group (consisting of upper triangular
3×3 matrices with diagonal entries 1), andG is the semidirect product ofX with
S

1, acting by rotations on the quotient of X by its center. Again H0 = SO(2).
For the Sol geometry, X is the three-dimensional solvable Lie group, H0 = {e},
and G is an extension of X by an automorphism group of order eight.

A 3-manifold N is geometric if it admits one of these eight geometric struc-
tures. Geometric 3-manifolds modeled on six of these geometries, namely all
but the hyperbolic and Sol geometries, are Seifert fibered. Thus, topologically,
such manifolds are circle “bundles” over two-dimensional orbifolds, with isolated
cone singularities. In particular, all such manifolds have finite covers that areS1

bundles over closed surfaces of genus g ≥ 0.
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These six geometries divide naturally into a pair of threes, corresponding
to whether the S1 bundle is trivial or not. 3-manifolds with product geometries
H

2×R, E 3, andS2×Rare, up to finite covers, trivial circle bundles over oriented
surfaces of genus g, where g ≥ 2, g = 1, and g = 0, respectively. 3-manifolds
with the twisted product geometries S̃L(2,R), Nil, andS3 are, up to finite covers,
nontrivial circle bundles over surfaces, again of genus g ≥ 2, g = 1, and g = 0,
respectively.

Conversely, it is not difficult to prove [Scott 1983] that any Seifert fibered
space admits a geometric structure modeled on one of these six geometries.

Geometric 3-manifolds modeled on the Sol geometry all have finite covers that
are torus bundles over S1, with holonomy given by a hyperbolic automorphism
of T 2, that is, an element of SL(2,Z) with distinct real eigenvalues. Again,
conversely, all such T 2 bundles admit a Sol geometry. Note that Sol-manifolds
are graph manifolds, that is, they may be split by incompresssible tori into a
union of Seifert fibered spaces.

Thus, seven of the eight geometric 3-manifolds are topologically S1-fibered
over surfaces or T 2-fibered over S1. Since, in any reasonable sense, most 3-
manifolds do not admit such fibrations, the hyperbolic geometry is by far the
most prevalent of the eight geometries (see Section 1C).

It is well known [Scott 1983] that the same 3-manifold cannot have geometric
structures modeled on two distinct geometries.

Of course, it is not true that the geometric structure itself, that is, the homo-
geneous metric, is unique in general. In this respect, we recall:

Theorem 1.3 (Mostow Rigidity [Mostow 1968; Prasad 1973]). Let N be a
3-manifold carrying a complete hyperbolic metric of finite volume. Then the hy-
perbolic metric is unique, up to isometry . Further , if N and N ′ are 3-manifolds
with isomorphic fundamental groups, and if N and N ′ carry complete hyperbolic
metrics of finite volume, then N and N ′ are diffeomorphic.

In particular, invariants of the hyperbolic metric such as the volume and the
spectrum are topological invariants of the 3-manifold.

There is a similar rigidity for spherical 3-manifolds, in the sense that any
metric of curvature +1 on the manifold is unique, up to isometry [Wolf 1977].
The fundamental group in this case does not determine the topological type of
the manifold. There are further topological invariants, such as the Reidemeister
torsion. The other six geometries are typically not rigid, but have moduli closely
related to the moduli of constant curvature metrics on surfaces.
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1C. Thurston’s Results on the Geometrization Conjecture. As already
mentioned, many cases of the Geometrization Conjecture have been proved by
Thurston [1982; 1986; 1988] (see also [Morgan 1984] for a detailed survey). In
particular:

Theorem 1.4 (Geometrization of Haken manifolds). A closed , oriented ,
irreducible Haken manifold that is atoroidal admits a hyperbolic structure. A
compact , oriented , irreducible, and torus-irreducible 3-manifold whose boundary
consists of a finite number of tori admits a complete hyperbolic metric of finite
volume.

We indicate in a few lines the approach to the proof of this result. It was shown
by Haken [1961] and Waldhausen [1968] that, if the manifold M is Haken, one
may successively split it along incompressible surfaces into a hierarchy, that is,
a collection of (possibly disconnected) compact submanifolds with boundary:

M = Mk ⊃Mk−1 ⊃ · · · ⊃M1 ⊃M0 = union of balls,

where each Mi has an incompressible surface Si with ∂Si ⊂ ∂Mi, and Mi−1

is obtained from Mi by splitting along Si. If M is atoroidal, so is each Mi.
Thurston proves that, for an appropriate hierarchy, the manifolds Mi admit
complete, geometrically finite hyperbolic metrics, typically of infinite volume.
This is proved by induction on the length of the hierarchy. Thus, suppose that
Mi−1 admits a complete, geometrically finite hyperbolic metric. The manifold
Mi is obtained by gluing together certain of the ends of Mi−1. The most difficult
part of the proof is showing that the hyperbolic metric onMi−1 may be deformed
appropriately so that the ends to be glued are isometric, so that Mi acquires
a complete, geometrically finite hyperbolic metric. Thurston has developed a
wealth of new geometric ideas and methods to carry this out.

McMullen [1989; 1990] has given a different proof of this gluing process, in
the case where M does not fiber over S1.

Theorem 1.4 implies that the torus-irreducible pieces of a nonempty torus
decomposition carry hyperbolic structures. As we saw in Section 1B, all the
Seifert fibered pieces also carry geometric structures. Thus, the Geometriza-
tion Conjecture is proved in the case of manifolds that have a nonempty torus
decomposition.

Nevertheless, many, perhaps most, 3-manifolds are not Haken. Thurston has
established the Geometrization Conjecture for many further classes of non-Haken
3-manifolds. For instance, suppose M is a closed oriented 3-manifold, and N is
the complement of a knot K in M . One may obtain new closed 3-manifolds by
Dehn surgery on N , that is, by gluing in a solid torus to the boundary of N .
The possible Dehn surgeries are classified by classes in SL(2,Z). Thurston [1979]
showed that if N admits a complete hyperbolic metric g∞ of finite volume, all
but finitely many Dehn surgeries yield closed manifolds that admit hyperbolic
structures. All of these hyperbolic manifolds obtained by closing the cusp of



58 MICHAEL T. ANDERSON

(N, g∞) have volume strictly less than that of (N, g∞). If M itself is not Haken,
then Dehn surgeries on N will often yield closed non-Haken 3-manifolds.

2. Preliminaries on the Space of Metrics

Let M denote the space of all smooth Riemannian metrics on the closed
oriented 3-manifold M . Thus, M is an open convex cone in the space S2(M)
of symmetric bilinear forms on M . The diffeomorphism group DiffM of M
acts naturally on M by pullback, (ψ, g) 7→ ψ∗g. The two metrics g and ψ∗g
are isometric, and ψ is an isometry between them. Since all intrinsic notions
associated with the metric are invariant under isometries, it is natural to divide
M by the action of Diff(M). We let M = M/DiffM be the space of Riemannian
structures on M , that is, isometry classes of Riemannian metrics. The space M
is no longer an infinite-dimensional manifold, since the action of DiffM is not
free; fixed points of the action correspond to metrics with nontrivial isometry
group, that is, maps φ ∈ DiffM such that φ∗g = g. This rarely presents a
problem, however. We denote by M1 the subset of M consisting of metrics of
volume 1 on M .

The tangent space Tg DiffM to the orbit of DiffM in M is the image of
the map δ∗ that associates to a vector field X on M the element δ∗(X) =
LXg ∈ S2(M), where L denotes the Lie derivative. Since δ∗ is (underdetermined)
elliptic, there is a splitting

TgM = Tg DiffM ⊕Ng DiffM = Im δ∗ ⊕Ker δ,

where δ is the divergence operator, the formal adjoint of δ∗ on S2(M), given
by δ(α) = −(Deiα)(ei, ·), where D is the covariant derivative of the metric g
and {ei} is an orthonormal basis. We note that the action of DiffM on M has
a slice, that is, a locally defined submanifold of M, transverse to the orbits of
DiffM in a neighborhood of any g ∈ M [Ebin 1970].

The space M will be endowed with a normed Lk,p topology, given by

‖h‖pk,p =
∫ (|h|p + |Dh|p + · · ·+ |Dkh|p) dV, (2.1)

for h ∈ TgM = S2(M). Here all norms, derivatives, and the volume form, are
taken with respect to the metric g. This corresponds, locally, to the Sobolev
topology on functions defined on domains of Rn, namely the first k derivatives
are in Lp. The exact values of k and p may depend on the problems at hand,
but the minimal requirement is that

α = k − n

p
> 0, 1 < p <∞, (2.2)

corresponding to the Sobolev embedding Lk,p ⊂ Cα. The completion of M with
respect to this topology will also be denoted by M, and gives M the structure
of a Banach manifold, or Hilbert manifold when p = 2. Further, these norms are
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invariant under the action of DiffM , and thus descend to define a topology on
M.

Suppose F : M → R is a smooth function in the Lk,p topology on M and
suppose {gi} ∈ M is a sequence that approaches a critical value of F. By slightly
perturbing gi if necessary, we can assume that ‖dFgi‖(Lk,p)∗ → 0, that is,

sup
‖h‖k,p=1

|dFgi(h)| = sup
‖h‖k,p=1

∣∣∣∣ ddt (F(gi(t)))

∣∣∣∣ → 0, (2.3)

where gi(t) = gi + th and the norm is taken with respect to the metric gi. The
dual space (Lk,p)∗ is naturally identified, locally, with L−k,q, where p−1+q−1 = 1.
One sees that (2.3) contains less information, that is, is a weaker condition, the
larger k and p are. Thus, in general, one would like to choose values for k and p
as small as possible, in order that (2.3) give as much information as possible. Of
course, the pair (k, p) must satisfy (2.2), and also be chosen so that F is smooth
in the Lk,p topology.

Next, we fix some notation for later sections. Given a metric g, let R denote
the Riemann curvature tensor, given by R =

∑
Rijkl dx

i ⊗ dxj ⊗ dxk ⊗ dxl in
local coordinates. The sectional curvature KP = Kij = Rijji in the direction of
a two-plane P in TxM spanned by orthonormal vectors ei and ej may be defined
as the Gauss curvature at x of the geodesic surface in M tangent to P at x.
Knowledge of the sectional curvature KP for all two-planes P determines the
curvature tensor.

The Ricci curvature Ric is a symmetric bilinear form on TM , obtained by
contracting R; more precisely, Ric(v, w) =

∑
R(v, ei, ei, w), for an orthonor-

mal basis ei. The scalar curvature s is the contraction of the Ricci curvature,
s =

∑
Ric(ei, ei). In dimension two, these curvatures are all the same, up to

multiplicative constants. In dimension three, but not in higher dimensions, the
Ricci curvature determines the full curvature R. For instance, if λi are the
eigenvalues of Ric, with eigenvectors ei, then for distinct indices (i, j, k) we have

Kij = 1
2(λi + λj − λk).

The covariant derivative associated to g will be denoted by D. The Laplacian
or Laplace–Beltrami operator 4 associated with g will be taken to have negative
spectrum (so 4f = f ′′ on R).

3. Functionals on the Space of Metrics

We consider functionals F : M → R on the space of metrics on M . There
are functionals that measure the global size or extent of the Riemannian man-
ifold (M, g); for example, volume, diameter, radius, etc. We will only consider
functionals that are Lagrangian, in the sense that

F(g) =
∫
M

LF(g) dVg ,
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where LF(g) is the (scalar) Lagrangian density for F at g, and dVg is the volume
form of the metric g. The invariance of F under the action of DiffM requires
that the Lagrangian satisfy the invariance property

LF(ψ∗g) = ψ∗LF(g) = LF(g) ◦ ψ, (3.1)

for all ψ ∈ DiffM . We say that LF(g) is a k-th order Lagrangian if it is a smooth
function of the k-jet of g, that is, depends only on g and its first k derivatives.
Thus, one method to produce Lagrangians is to consider functions of g and its
derivatives in some coordinate system that are in fact invariant, in the sense of
(3.1), under changes of coordinates.

Recall that any Riemannian manifold admits (geodesic) normal coordinates
xi at any prescribed point p. In these coordinates, the metric satisfies gij = δij
and ∂gij/∂xk = 0 at p. In other words, at p the metric osculates, to first order,
a flat Euclidean metric. An important and well-known consequence of this is
that there are no nonconstant invariant Lagrangians of order ≤ 1 [Lovelock and
Rund 1972; Palais 1968]. Thus, one is required to seek Lagrangians of order at
least two. We note that most other problems in the calculus of variations can be
expressed in terms of first-order Lagrangians: for example, harmonic functions
or maps, geodesics, minimal surfaces, Yang–Mills fields, etc.

Consider the Taylor expansion of a metric g = gij in a normal coordinate
system about p. A fundamental fact, due to Cartan, is that the order-k Taylor
coefficients can be (universally) expressed in terms of polynomials in the compo-
nents of the curvature tensor R and its covariant derivatives ∇mR, form ≤ k−2.
For example, in normal coordinates, one has, by Riemann,

gij = δij + 2
3

∑
k,l

Rikljxk xl + O(|x|3).

Thus, we seek Lagrangians whose expressions in normal coordinates are of
the form LF(g) = φ(R, ∇R, . . . ,∇k−2R), that is, φ is a function of the compo-
nents of the curvature tensor and its covariant derivatives. The orthogonal group
O(n) acts freely and transitively on the possible normal coordinates (which are
determined uniquely by an orthonormal frame at p); the action of O(n) extends
naturally to an action on the curvature tensor R and its derivatives. Thus, we
seek functions φ that are O(n)-invariant. If one considers functions φ that are
polynomials P in the components of the arguments, then one seeks to classify
O(n)-invariant polynomials P (T1, T2, . . . , Tk−2) on a sum of tensor spaces over
Rn (the tensor spaces being the spaces of curvature tensors R, covariant deriva-
tives ∇R, and so on). Now the fundamental theorem of invariance theory for
O(n) states that any such polynomial is a linear combination of terms, each ob-
tained by fully contracting an even tensor product of the {Ti} to a scalar [Atiyah
et al. 1973; Palais 1968].

Thus, for k = 2, the simplest Lagrangian one can take is the full contraction
of the curvature tensor R, that is, the scalar curvature. Thus, in a precise sense,
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the simplest metric functional on M is the total scalar curvature functional

S : M→ R, S(g) =
∫
M

sg dVg.

Next, again for k = 2, one could take contractions on R ⊗ R. It turns out
there are three possibilities, namely |R|2, |Ric|2 and s2. This gives rise to the
functionals R2, Ric2, and S2, corresponding to the L2 norms of the tensors R,
Ric, and s.

One could also consider higher-order functionals of the curvature and its co-
variant derivatives. Since they become rapidly more complicated, especially
regarding the expressions of their Euler–Lagrange equations, we will not pursue
their discussion here.

Consider the equation for a critical point of F, that is, the Euler–Lagrange
equation associated to the Lagrangian LF. For a k-th order Lagrangian, this
will have the form

∇F(g) = Aij(g, ∂g, . . . , ∂mg) = 0,

where m ≤ 2k and, generically, m = 2k. The two-tensor A = Aij is symmetric
and, as a consequence of the invariance of LF, is divergence-free: δA = 0.
Thus, for the second-order Lagrangians mentioned above, the Euler–Lagrange
equations will typically be a fourth-order system of partial differential equations
in the metric g.

The scalar curvature functional has the remarkable property that its Euler–
Lagrange equation is of second order in g; in fact, when restricted to M1, the
gradient ∇|M1S (with respect to the L2 metric on M1, that is, the metric (2.1)
with k = 0 and p = 2) is given by

∇|M1S(g) =
s

n
g −Ric ≡ −Z.

The two-tensor Z is just the trace-free part of the Ricci curvature. Further,
in dimensions three and four, it is known [Lovelock and Rund 1972] that S is the
unique functional (expressed in terms of a second-order invariant Lagrangian)
whose Euler–Lagrange operator is of second order in g. The Euler–Lagrange
equations for R2, Ric2 and S2 are all of order four in g; see [Berger 1970; Besse
1987, p.133; Anderson 1993; a] for a discussion.

Finally, we briefly discuss the appropriate topologies on the space M1 for
these functionals. All of the functionals discussed above are smooth in the L2,2

topology on M1; compare (2.1). For the functionals R2, Ric2 and S2, this is the
smallest topology in which they are smooth. The functional S is also smooth in
the weaker topology L1,q, for q > 3.
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4. Conjectures on the Realization of the Sigma Constant

As indicated in the Introduction, researchers in Riemannian geometry and
analysis on manifolds (and of course in mathematical physics and general rela-
tivity) have long been interested in the existence and moduli of Einstein metrics.
In light of the discussion in Section 3, it is natural to seek such metrics varia-
tionally, as critical points of the total scalar curvature functional.

A number of immediate problems are encountered in the variational approach
to existence. The functional S is bounded neither below nor above. Further, it is
well-known that any critical point has infinite index and co-index, that is, there
are infinite-dimensional subspaces of TgM on which S can be infinitesimally, and
thus locally, decreased or increased. Thus S is far from satisfying any of the
usual compactness properties used in obtaining existence of critical points, such
as the Palais–Smale condition, mountain-pass lemmas, etc.

There is, however, a well-known minimax procedure to obtain critical values
of S. It goes as follows. Given a metric g ∈ M1, let [g] denote the conformal
class of g, that is, [g] = {g′ ∈M1 : g′ = ψ2 g}, for some smooth positive function
ψ. The functional S is bounded below on [g]; define

µ[g] = inf
g∈[g]

S(g).

The number µ[g] is called the Yamabe constant (or Sobolev quotient) of [g]. An
elementary comparison argument [Aubin 1976] shows that

µ[g] ≤ µ(Sn, gcan)

for any conformal class [g], where gcan is the canonical metric of constant positive
sectional curvature and volume 1 on the n-sphere Sn. Thus, define the Sigma
constant by

σ(M) = sup
[g]∈C

µ[g],

where C is the space of conformal structures on M . Thus, σ(M) is a smooth
invariant of the manifold M . (I don’t know who first considered this minimax
approach. One guesses that certainly Yamabe was aware of it, and it may well
have been considered earlier. I have found no definite references, besides the
relatively recent [Kobayashi 1987; Schoen 1989]).

It is reasonable to expect, and certainly conjectured (in [Besse 1987, p. 128],
for example), that σ(M) is a critical value of S, that is, any metric g0 ∈M1 such
that sg0 ≡ µ[g0] = σ(M) is an Einstein metric. In full generality, this remains
unknown, due partly to the possible lack of uniqueness of metrics realizing µ[g].

Remarks 4.1. (i) Clearly, σ(M) ≤ σ(Sn) = n(n − 1)(volSn)2/n, where the
volume is that of the unit sphere. Further, σ(Sn) is realized by the canonical
metric on Sn of volume 1.
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(ii) If σ(M) ≤ 0, it is easy to prove that a metric g ∈ M1 realizing σ(M) is
Einstein; see [Besse 1987, p. 128], and also Section 5.

(iii) If dimM = 2, the Gauss–Bonnet theorem gives

2πχ(M) =
∫
M

sg dVg = S(g),

for all g. Thus, S is a constant functional on M1, whose value is a topological
invariant of the surface M . In some sense, one can think of σ(M) as a general-
ization of the Euler characteristic to higher-dimensional manifolds, especially in
dimension three.

Comparatively little is known regarding the Sigma constant in dimension three,
and even less in higher dimensions. Two important and well-known open ques-
tions are:

Question 4.2. If M is a homotopy three-sphere, is σ(M) > 0?

Question 4.3. If M is a hyperbolic 3-manifold , does the hyperbolic metric
realize σ(M), modulo renormalization to volume 1?

In fact, not a single example is known of a 3-manifold with σ(M) < 0. There
are, however, two important positive results on σ(M), due to Gromov–Lawson
[1983] and Schoen–Yau [Schoen 1984]. Namely, if a 3-manifold M is a K(π, 1),
or contains a K(π, 1) factor in its prime decomposition (see Section 1), then
σ(M) ≤ 0. This is equivalent to saying that M admits no metric of positive
scalar curvature.

On the other hand, if M has a “small” fundamental group, then σ(M) > 0,
assuming the Poincaré conjecture is true. More precisely, ifM is a connected sum
of a finite number of manifolds, each of which is either S2×S1 or a quotient ofS3

by a group of isometries, then σ(M) > 0 [Gromov and Lawson 1980; Schoen and
Yau 1979a]. Here one explicitly constructs metrics of positive scalar curvature on
such manifolds, starting from the canonical metrics on the component manifolds,
which clearly have positive scalar curvature.

The minimax procedure to obtain σ(M) has two parts: first minimize in a
conformal class, then maximize over all conformal classes. Fortunately, the first
step has been solved [Yamabe 1960; Trudinger 1968; Aubin 1976; Schoen 1984]:

Theorem 4.4 (Solution to the Yamabe problem). For any conformal
class [g] ∈ C, the Yamabe constant µ[g] is realized by a smooth metric gµ ∈ [g]
whose scalar curvature sµ is identically equal to µ[g].

The metrics gµ realizing µ[g] are called Yamabe metrics. The solution to the
Yamabe Problem amounts to showing that the equation

4
n− 1
n− 2

4u− sg u = −µ[g] u(n+2)/(n−2), (4.1)
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where g ∈ [g] is a fixed background metric, has a smooth, positive solution on
M . Equation (4.1) is the Euler–Lagrange equation of the variational problem
S|[g]. In fact, the metric gµ := u4/(n−2) g gives then the desired solution to the
Yamabe problem. Equation (4.1) is a nonlinear elliptic (scalar) equation. In
particular, this is a determined problem in the sense that there is one equation
imposed on an unknown function u. The subtlety of the problem arises from
the fact that the exponent 2n/(n − 2) is borderline for the Sobolev embedding
L1,2 → L2n/(n−2).

The second part of the minimax procedure, maximizing over the conformal
classes, is considerably more difficult. In fact, at least in dimensions three and
four, it is known that there are topological obstructions to the existence of Ein-
stein metrics. In dimension three, since Einstein metrics have constant curvature,
no reducible 3-manifold admits an Einstein metric, that is, neither S2 × S1 nor
any 3-manifold that is a nontrivial connected sum admits an Einstein metric.
More generally, among the 3-manifolds admitting Seifert geometries discussed in
Section 1B, only those admitting S3 or E 3 geometries admit Einstein metrics.
Similarly, torus bundles over S1, corresponding to Sol geometry, do not admit
Einstein metrics.

Thus, if one tries to realize the value σ(M) on M1 by taking an appropri-
ate maximizing sequence {gi} ∈ M1 for S, the sequence {gi} has in general no
subsequence converging to a limit metric in M1. Whether such a sequence {gi}
should have convergent subsequences or not depends on the topology of the un-
derlying 3-manifoldM . It is thus an interesting (and difficult) challenge to relate
the possible degenerations of a sequence {gi} to the topology of the underlying
manifold M .

The following three conjectures describe the geometry and topology of metrics
that attempt to realize the Sigma constant on a 3-manifold M . For all three
conjectures, the following assumption is made.

Assumption. M is a closed, irreducible, oriented 3-manifold.

Conjecture I (The Negative Case). Suppose σ(M) < 0. Then there is a
finite collection of disjoint , embedded incompressible tori T 2

i in M such that the
complement Mr

⋃
T 2
i is a finite union of complete hyperbolic manifolds Mj of

finite volume, together with a (possibly empty) finite union of graph manifolds
Sk with toral boundaries.

Further ,

|σ(M)| = 6
(∑

vol−1Mj

)2/3

, (4.2)

where vol−1 denotes volume in the hyperbolic metric. In particular , if M is
atoroidal , it admits a hyperbolic metric that realizes the Sigma constant (modulo
renormalization): |σ(M)| = 6(vol−1M)2/3.
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Figure 1. Conjecture I.

Conjecture II (The Zero Case). Suppose σ(M) = 0. Then M is a graph
manifold , with infinite π1. The Sigma constant σ(M) is realized if and only if M
is a flat 3-manifold ; in particular , M must be finitely covered by a three-torus.

Figure 2. Conjecture II.

Conjecture III (The Positive Case). Suppose σ(M) > 0. Then M is
diffeomorphic to S3/Γ, for Γ ⊂ SO(4). The Sigma constant is realized by the
standard metric of constant curvature on S3/Γ, that is, σ(M) = 6(vol+1M)2/3,
where vol+1 denotes volume in the metric of sectional curvature +1.

It is worth discussing these conjectures in some further detail. Let {gi} be a
maximizing sequence of Yamabe metrics for M , as described above, so that
µ[gi] → σ(M). Figures 1 and 2 are schematic representations of the (near)
limiting behavior of {gi} according to Conjectures I and II.

Conjecture I corresponds to the conjecture that, after possibly passing to a
subsequence and altering gi if necessary by a diffeomorphism ψi of M , the se-
quence {gi}, when restricted to the domains Mj ⊂M , can be chosen to converge
(smoothly) to a complete hyperbolic metric (more precisely, a metric of constant
negative curvature) of finite volume on

⋃
Mj . On the complementary part of M ,

namely the graph manifolds Sk, the sequence {gi} degenerates, so that there is
no well-defined limiting Riemannian metric on

⋃
Sk. Briefly, the sequence {gi}

collapses to a point each orbit Ox of the graph manifold structure (see Section 1),
that is, diamgi Ox → 0 as i → ∞. In particular, the total volume of the graph
manifold pieces

⋃
Sk converges to 0, while the total volume of the complement
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⋃
Mj converges to 1. This phenomenon of collapse will be discussed in further

detail in Section 5.
The incompressible tori Ti in Conjecture I lie in the region of transition be-

tween these two types of behavior, that is, between the regions of convergence
and the regions of collapse. This transition region represents also the transition
between the “thick” parts and the (arbitrarily) “thin” parts of the manifolds
(M, gi), as i→∞.

These tori give a partial torus decomposition of M ; one obtains a full torus
decomposition by adding further (disjoint) tori in the graph manifold pieces,
corresponding (generally) to the edges of the graph manifold structure, that is,
to the decomposition of the graph manifolds into Seifert fibered pieces.

Conjecture I implies that the Sigma constant is realized by the union of the
hyperbolic pieces; the graph manifold pieces play no role in the value of σ(M).
In particular, the set of hyperbolic pieces Mj is nonempty.

In the atoroidal case, there is no degeneration of {gi}, that is, the sequence
can be chosen to converge (smoothly) to a smooth metric of constant negative
curvature on the closed manifold M .

The power 2
3

in (4.2) is necessary, since the invariants σ(M) and volM of (4.2)
behave differently under rescaling of the metric. Thus, (4.2) is a scale-invariant
equality.

Conjecture II can now be understood by means of the discussion above—
namely, there are no hyperbolic pieces. With the possible exception of the special
case where M is a flat 3-manifold, the sequence {gi} fully collapses the graph
manifold M along the orbits of the graph structure. The manifold M becomes
arbitrarily long and thin in the metrics gi, as i → ∞, that is, diamgi M → ∞
and injx(gi) → 0 for all x ∈ M , where injx denotes the injectivity radius at x
(see Section 5).

It is necessary to explain how the condition that π1 is infinite arises, since
there are graph manifolds, such as S3/Γ, for which σ(M) > 0.

We claim that irreducible graph manifolds M of infinite π1 satisfy σ(M) = 0.
Indeed, it can be deduced from the results of Cheeger and Gromov (see Section 5)
that an arbitrary graph manifold necessarily has σ(M) ≥ 0. Further, as seen
in Section 1, an irreducible graph manifold with infinite π1 necessarily has a
Z⊕Zcontained in π1. By a well-known result of Schoen and Yau [1979b], such
manifolds do not admit metrics of positive scalar curvature; thus π1(M) infinite
implies σ(M) = 0, as claimed.

On the other hand, irreducible graph manifolds of finite π1 are known to be
the spaces S3/Γ and thus have σ(M) > 0.

Conjecture II thus amounts to the converse, that the only irreducible man-
ifolds with σ(M) = 0 are graph manifolds; the discussion above then implies
these manifolds have infinite π1.

Conjecture III now needs no further explanation. Conjecturally, there should
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exist a sequence of Yamabe metrics gi that converges smoothly to a metric of
constant positive curvature on S3/Γ and that realizes the Sigma constant.

We note that the decomposition of M via the collection ({Mj}, {Ti}, {Sk})
is unique, up to isotopy. This follows from the uniqueness of the torus decom-
position (Theorem 1.2) and Mostow rigidity (Theorem 1.3). See also [Jaco and
Shalen 1979].

These conjectures imply results about the geometry of 3-manifolds, namely
about the structure of metrics realizing the Sigma constant, as described above,
as well as the topology of 3-manifolds. We turn to a discussion of the topological
consequences.

In fact Conjectures I–III imply the Geometrization Conjecture (page 49). For
example, let us indicate how they imply the Poincaré conjecture, or more gen-
erally the Elliptization Conjecture (page 54). Thus, suppose M is a 3-manifold
with finite fundamental group. Using the prime decomposition (Section 1), we
may assume that M is irreducible. Then Conjecture I implies that σ(M) ≥ 0,
since Conjecture I implies that π1 must be infinite if σ(M) < 0. For the same
reason, Conjecture II implies σ(M) > 0. Thus, Conjecture III implies that M
is S3/Γ. Note that all three conjectures are needed to reach this conclusion;
Conjecture III alone does not suffice, as Question 4.2 above indicates.

To see how Conjectures I–III imply the hyperbolization conjecture, suppose
that M is irreducible, atoroidal, and has infinite fundamental group. Conjec-
ture III implies that σ(M) ≤ 0. By the discussion in Section 1B on graph man-
ifolds, a graph manifold with infinite π1 cannot be atoroidal; thus Conjecture II
implies that σ(M) < 0. Finally, Conjecture I implies that M is hyperbolic.

In fact, it is not necessary to use Conjecture III in a proof of the hyperboliza-
tion conjecture. Namely, the assumptions of the hyperbolization conjecture im-
ply that M is a K(π, 1) (see Section 1A), so that by the above-mentioned results
from [Gromov and Lawson 1983; Schoen 1984] one can conclude that σ(M) ≤ 0.
Thus, Conjectures I and II, together with known results, alternately imply the
hyperbolization conjecture.

As pointed out in Section 1A, the remaining cases of the Geometrization
Conjecture for closed, oriented, irreducible 3-manifolds have been proved by
Thurston, Gabai, Casson, and Jungreis. We indicate briefly how these remain-
ing cases also follow from Conjectures I–III. Conjecture III fully describes the
topology of irreducible 3-manifolds with σ(M) > 0. If M is a 3-manifold as above
with σ(M) = 0, Conjecture II implies thatM is a graph manifold with infinite π1.
Such manifolds admit torus decompositions, all of whose components are Seifert
fibered (including Sol manifolds). In fact the theory of collapse of 3-manifolds
exhibits this splitting into Seifert fibered components, with the exception of Sol
manifolds, which might not split by tori in the process of collapse. In other
words, the torus decomposition of the graph manifoldsM can be detected from
the geometry of a collapsing sequence of metrics on M . We refer to [Cheeger
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and Gromov 1986; Rong 1990] for further details. As indicated in Section 1,
Seifert fibered spaces are geometric. If σ(M) < 0, the tori of Conjecture I of the
conjecture decompose M into hyperbolic and graph manifold pieces, and by the
remarks above all graph manifold pieces are unions of geometric manifolds along
tori.

Conjectures I–III thus amount to the conjecture that an appropriate sequence
gi ∈ M1 such that µ[gi] → σ(M) implements the Geometrization Conjecture,
provided M is irreducible. This will be discussed in some further detail in the
next sections.

Taken together, these conjectures imply that the Sigma constant σ(M) of
an irreducible, oriented 3-manifold behaves in a remarkably similar way to the
Euler characteristic χ(M) of an oriented two-manifold (which is also just the total
scalar curvature). One sees immediately that Conjectures I, II, III, corresponding
to σ(M) negative, zero, or positive, bear a strong resemblence to the classification
of surfaces with negative, zero, or positive Euler characteristic. Of course, the
Sigma constant alone cannot determine the topology of M , since for instance
all graph manifolds, in particular Seifert fibered spaces, with infinite π1, have
σ = 0. With this “degeneracy” removed, one has quite a sharp correspondence
between the value of σ(M) and the topology of M . For instance, the conjectures
imply there are only finitely many irreducible atoroidal 3-manifolds with a given
(necessarily nonzero) value of σ(M).

For atoroidal manifolds with σ(M) < 0, the Sigma constant is related to the
hyperbolic volume by (4.2). Thurston [1979] has developed a beautiful theory
describing the basic structure of the values of the hyperbolic volume; see also
[Gromov 1981b].

5. Convergence and Degeneration of Riemannian Metrics

Let {gi} be a sequence of Yamabe metrics in M1 such that

µ[gi] → σ(M), (5.1)

so that {gi} attempts to realize the Sigma constant on M . If {gi} converges to
a metric g ∈ M1, then g is an Einstein metric on M , at least when σ(M) ≤ 0,
and conjecturally in general.

Since an arbitrary 3-manifold does not admit an Einstein metric, {gi} cannot
converge in general to a metric g ∈ M1. Of course, when M admits an Einstein
metric g0, since it is generally unique, {gi} should converge to g0. In general,
however, there must exist subsets on M on which {gi} degenerates. How can
one relate the degeneration to the topology of M?

An examination of Conjectures I–III shows that they imply that the essential
two-spheres and tori in M are obstructions, and the only obstructions, to the
existence of Einstein metrics. For instance, the conjectures imply that if M is
irreducible and atoroidal, then {gi} should converge to an Einstein metric on
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M ; this would necessarily be of constant positive or negative curvature, since
the atoroidal condition rules out flat metrics. Further, the conjectures implicitly
describe the behavior of the degeneration of {gi} in a neighborhood of the es-
sential tori in M : the metrics become very long and thin in this region. This
will be described in more detail below. In the next section, we will describe the
conjectural degeneration of {gi} in neighborhoods of essential two-spheres.

To summarize, the sequence {gi} should conjecturally degenerate along the
two-spheres and tori corresponding to the sphere and torus decompositions of
the 3-manifold, and should converge on the complement; this complement is also
called the characteristic variety [Jaco and Shalen 1979].

To understand if a sequence of metrics converges, or understand how it de-
generates, one needs to understand how to control the behavior of a sequence of
metrics. First, we note that there is little or no reason to expect that one can
control the convergence or degeneration of an arbitrary sequence {gi} satisfying
(5.1). From (5.1), one controls the scalar curvature of the metric, as well as
the gradient ∇S of {gi}, restricted to the space of Yamabe metrics, in a weak
topology (say L−2,2, the dual of L2,2). Controlling the scalar curvature of a
metric gives good control of the metric in its conformal class, as indicated in
Theorem 4.4; one seeks to control only the behavior of a function (the confor-
mal factor), given that it satisfies an elliptic differential equation of the type
(4.1). On the other hand, since the equivalence class of a metric (modulo the
action of diffeomorphisms) depends locally on three unknown functions, one can-
not expect to control the metric, or understand general degenerations, with the
scalar curvature function alone. The condition |∇S| → 0 in a topology such as
the L−2,2 topology is also too weak to lead to definite conclusions about the
behavior of {gi}.

An analogous visual picture can be obtained by considering minimizing se-
quences for the Plateau problem, that is, the problem of finding the disc of least
area spanning a given smooth curve in R3. It is well-known that the Plateau
problem has a smooth solution. However, the behavior of minimizing sequences,
that is, the geometry or configuration of discs inR3 with given boundary whose
area converges to the least area, can be quite bizarre; one may have very long,
thin filaments whose contribution to the area is arbitrarily small. Thus, although
the limit is well behaved (that is, smooth), the minimizing sequence may have
very dense regions of bad behavior that are irrelevant to the geometry of the limit.

Under what circumstances can one control the convergence or degeneration
of a sequence in M1? Arguing heuristically for the moment, the full curvature R
of g involves all second derivatives of g (in local coordinates), so that one may
expect that a bound on |R| gives a bound on |g|L2,∞ . Assuming that one has
a Sobolev inequality for g, it follows that g is bounded in C1,α norm, for any
α < 1, again in local coordinates. If gi ∈ M1 and there is a fixed coordinate
system (atlas) in which (gi)kl is bounded in C1,α, it follows from the Arzela–
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Ascoli theorem that a subsequence converges, in the C1,α′ topology, for α′ < α,
to a limit metric g of class C1,α.

This heuristic reasoning can be made rigorous, and leads to the fundamental
theory of Cheeger–Gromov on the behavior of metrics with uniform curvature
bound. Although the result is valid in all dimensions, we will summarize it in
dimension three only.

Theorem 5.1 [Cheeger 1970; Gromov 1981a; Cheeger and Gromov 1986; 1990].
Let {gi} be a sequence of metrics in M1. Suppose there is a uniform bound

|Rgi | ≤ Λ. (5.2)

Then there is a subsequence, also called {gi}, and diffeomorphisms ψi of M such
that exactly one of the following cases occurs:

I. (Convergence) The metrics ψ∗i gi converge in the C1,α′ topology , α′ < α, to a
C1,α metric g0 on M , for any α < 1.

II. (Collapse) The metrics ψ∗i gi collapse M along a graph manifold structure.
Thus, M is necessarily a graph manifold . The metrics ψ∗i gi collapse the orbits
Ox (namely circles or tori) of a (sequence of ) orbit structures to a point , as
i→∞, that is, diamψ∗i (gi)Ox → 0 for all x ∈M .

III. (Cusps) There is a maximal domain Ω ⊂M such that ψ∗i gi|Ω converges, in
the C1,α′ topology , α′ < α, to a complete C1,α metric g0 of volume at most 1
on Ω. The complement MrΩ is collapsed along a sequence of orbit structures,
as in case II. In particular , a neighborhood of M r Ω has the structure of a
graph manifold .

A sequence of metrics hi defined on a domain V converges in the C1,α topology
to a limit metric h if there is a smooth coordinate atlas on V for which the
component functions of hi converge to the component functions of h; here the
convergence is with respect to the usual C1,α topology for functions defined on
domains in R3. The convergence in cases I and III above is also in the weak L2,p

topology, for any p < ∞. In the regions of collapse, the metrics gi become long
and thin: the injectivity radius converges to 0 in these regions, while the diameter
of these regions diverges to infinity. The region Ω may not be connected; in fact,
in general, it might have infinitely many components. We refer to [Cheeger and
Gromov 1986; 1990] or to [Anderson 1993; a] for a more detailed discussion.

These results can be understood as a generalization of the coarse features
of Teichmüller theory to higher dimensions and variable curvature. The three
possibilities in Theorem 5.1 correspond to the three basic behaviors of sequences
in the moduli of metrics of constant curvature on surfaces of genus 0, 1, and
g ≥ 2, respectively.

Teichmüller spaces play an important part in Thurston’s results and work on
the Geometrization Conjecture. Speaking very loosely, one is given hyperbolic
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structures on pieces of a 3-manifold, and studies the deformations and degen-
erations of hyperbolic structures on these pieces and their boundaries, in order
to obtain hyperbolic structures on larger manifolds by a smooth gluing. Thus,
the convergence and degeneration of hyperbolic metrics, on 3-manifolds and on
surfaces, plays a central role.

In attempting to approach the Geometrization Conjecture by studying the
space of all metrics on a 3-manifold, Theorem 5.1 plays an analogous central
role.

Suppose, for instance, that there is a sequence {gi} of Yamabe metrics satis-
fying both (5.1) and (5.2), that is,

µ[gi] → σ(M) and |Rgi| ≤ Λ, (5.3)

for some Λ. As usual we are assuming thatM is closed, oriented, and irreducible.
We will outline how, in this case, one may approach and in fact come quite close
to a proof of Conjectures I–III.

Let C be the space of conformal classes, represented by a choice of Yamabe
metric (it is not known whether Yamabe metrics are unique in their conformal
classes when µ > 0). Although C is not an infinite-dimensional submanifold of
M1, it does have a formal tangent space at every g ∈ C, and we may write

TgM1 = TgC ⊕NgC, (5.4)

where NgC is the normal space to TgC in TgM1, with respect to the L2 metric on
M1. (Note that NgC is not tangent to the conformal class of metrics [g] ⊂M1).
Now TgC = {h ∈ S2(M) : s(h) = const} = {h ∈ S2(M) : 4(s′(h)) = 0}. One
has the classical formula [Besse 1987, p. 63]

s′(h) = −4 tr(h) + δδh − 〈Ric, h〉. (5.5)

Thus, NgC = Im(4 ◦ s′)∗, which implies

NgC=
{
α ∈ S2(M) : α=D2u− (4u) g−uRic for u with

∫
u dVg = 0

}
. (5.6)

Applying this to the metrics gi, we may then write

∇|M1Sgi = Zgi = D2
i ui − (4iui) gi − ui Rici +ZTi , (5.7)

where ZTi ∈ TgiC is the tangential projection of Z. Since {µ[gi]} approaches a
critical (maximal) value of S|C, we may assume, as in (2.3),

ZTi → 0 in L−2,2(TC). (5.8)

We apply Theorem 5.1 to {gi}, and consider the three cases individually. It
is implicitly assumed that appropriate subsequences and diffeomorphisms of M
are taken where necessary.
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Case I. Suppose the metrics gi converge. Then the limit g is a C1,α ∩ L2,p

metric on M , which satisfies the equation

Z = D2u− (4u) g − uRic, (5.9)

weakly. Taking the trace of (5.9) gives

4u = −1
2su = −1

2σ(M)u, (5.10)

so that u is an eigenfunction of the Laplacian, with eigenvalue −1
2
σ(M). Elliptic

regularity allows one to conclude that any weak L2,p solution g of (5.9) and
(5.10) is smooth. Since the Laplacian has negative spectrum, we conclude that,
if σ(M) ≤ 0, then u is a constant. Further, since the integral of u is 0, by (5.6),
it follows in this case that u ≡ 0. Thus, by (5.9), Z = 0, that is, g is an Einstein
metric realizing σ(M). It is conjectured that also in the positive case, σ(M) > 0
the only solution of (5.9) is again given by Z = 0.

Case II. If the metrics {gi} collapse, M is necessarily an (irreducible) graph
manifold. As indicated in Section 4, M necessarily satisfies σ(M) ≥ 0, and
σ(M) = 0 if and only if π1(M) is infinite.

Case III. Suppose the metrics {gi} converge to a collection of complete, non-
compact Riemannian manifolds (Mj , gj) of finite volume, and collapse the com-
plement. Then, arguing as in Case I, on each Mj the metric gj satisfies

Z = D2u− (4u) g − uRic . (5.11)

Taking the trace as in Case I implies that u is an eigenfunction of 4. Now we
point out that in this case, we must have σ(M) ≤ 0. Namely, if σ(M) > 0,
so µ[gi] > 0 for i sufficiently large, it follows from (4.1) that gi has a uniform
bound on its Sobolev constant. This implies that the volume of unit balls in
(M, gi) is bounded below, that is, (M, gi) does not become thin at any point.
This is of course not the case due to the presence of cusps, that is, neighbor-
hoods of infinity of Mj do not satisfy a (uniform) Sobolev inequality. Thus,
σ(M) ≤ 0 and the arguments above again imply that u = 0. It follows that
gj is a metric of constant negative curvature. With some further arguments,
which are not difficult, it is possible to prove that the collection {Mi} is fi-
nite and the metric g = {gi} on

⋃
Mj realizes σ(M). Since the complement

of
⋃
Mj is collapsed, it has the structure of a finite union of connected graph

manifolds.

Thus, as indicated in outline form above, a significant portion of Conjectures
I–III is resolved if there is a sequence of Yamabe metrics {gi} with µ[gi] → σ(M)
having uniformly bounded curvature. More precisely, Conjecture III can be
resolved modulo the conjecture that solutions of (5.9) are Einstein. Further,
Conjecture II can be resolved.

Conjecture I requires however further consideration, for it remains to be
proved that the tori in the hyperbolic cusps are incompressible in M . This
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is, of course, an important issue. For instance, Thurston has shown that every
3-manifold M has many hyperbolic knot or link complements, that is, there are
knots or links L in M whose complements Ω = MrL admit complete hyperbolic
metrics gL of finite volume. In this case, the tori in the hyperbolic cusps are
compressible in M ; they just form the boundary components of a tubular neigh-
borhood of L in M .

All of these metrics gL can also be considered as critical points of {gi}, in the
sense discussed above. Namely, it is not hard to see that there are sequences
gi ∈ M1 such that gi|Ω → gL smoothly (and uniformly on compact sets), while
‖∇Sgi‖L−2,2 → 0 as i→ ∞. These metrics gL are not tied tightly to, and so do
not reflect easily, the global topology of M ; consider for instance that the three-
sphere has many hyperbolic knot complements. The Thurston theory indicates
that the hyperbolic knot or link complements tend to have large volume (when
the curvature is −1); see Section 1C. This corresponds to large values of |S|, that
is of |µ|, when the volume is normalized to 1. Since we are dealing with the case
σ(M) < 0, the absolute value |σ(M)| represents the smallest possible value of
|µ[g]|. Thus, it is not unreasonable to expect the critical metric corresponding
to the value σ(M) to have a special behavior.

In fact, we have the following result:

Theorem 5.2. Let (Mj , gj) be a finite collection of hyperbolic manifolds realizing
σ(M), as discussed in Case III (page 72). Then each torus Tk in the cusp region
of any hyperbolic component Mj is incompressible in M .

The idea of the proof is that if one of the tori T in the hyperbolic cusps is
compressible, T must bound a solid torus U in M . By explicitly constructing
metrics on U that smoothly match the hyperbolic metric at T , one can prove
that there is a smooth metric g′ ∈ M1 with µ[g′] > σ(M). This contradicts the
definition of σ(M). Full details appear in [Anderson b]. This argument is similar
in spirit, although quite different in proof, to Thurston’s cusp closing theorem
[Thurston 1979; Gromov 1981b].

In spite of the possible optimism implicit in the discussion above, Conjectures
I–III remain very difficult to prove. The assumption that one can find sequences
of Yamabe metrics {gi} satisfying (5.1) for which the curvature remains uni-
formly bounded is very strong, and it is not at all clear how to realize it. In fact,
in general it is not true that a 3-manifold admits a sequence {gi} satisfying (5.1)
with uniformly bounded curvature. Indeed, in all the arguments of this section,
the (crucial) hypothesis of irreducibility has not been used. Thus, on manifolds
of the form M = N # N , where N 6= S

3, or M = S
2 ×S1, it is impossible to

find metrics satisfying (5.1) with uniformly bounded curvature. Of course, when
studying sequences in the space M1, it is not easy to distinguish the topology of
the underlying manifold M .

Thus, there remains the fundamental problem of being able to understand
if the sets in M where the curvature of {gi} diverges to infinity can be related
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with the essential two-spheres in M , that is, with the prime decomposition of
M . This will be discussed further in the next section.

To summarize: assuming the conjecture that the only solutions of (5.9) are
Einstein, we have outlined a proof that Conjectures I–III follow from the follow-
ing conjecture:

Conjecture IV. Let M be a closed , oriented , irreducible 3-manifold . Then
there is a maximizing sequence of unit volume Yamabe metrics {gi} having uni-
formly bounded curvature.

Remark 5.3. Since the full curvature is needed to control the convergence or
degeneration of metrics, the scalar curvature alone being too weak, it is perhaps
natural to consider other functionals on M1, besides S, that incorporate the full
curvature. Thus, in dimension three, one may consider

R
2 =

∫
M

|R|2 dV,

the L2 norm of the curvature tensor (see Section 3). This functional is clearly
bounded below, so one can study the existence, regularity, and geometry of met-
rics that realize the infimum of R2. Such a program has been carried out in
[Anderson 1993; a], where we obtain essentially the same results as in Theo-
rem 5.1 (the L∞ case). In addition, we show there that minimizing metrics are
smooth, in contrast to the L∞ case. However, the geometry of the minimizing
metrics appears to be complicated: the Euler–Lagrange equations are of fourth
order in g. Einstein metrics are solutions of the equations, but it would appear
likely that there are other solutions as well on compact manifolds. In trying
to implement the Geometrization Conjecture, as discussed above, by studying
minimizing sequences of R2, one runs into the same difficulties as above, namely
the behavior of the sequence, or the limit, near what one would conjecture to be
essential two-spheres.

6. Essential Two-Spheres and “Black Holes”:
A Relation with General Relativity

We now discuss briefly some arguments supporting the validity of Conjec-
ture IV. The scope of this paper will require this section to contain a number of
oversimplificatons and to be even more terse than Section 5. Many important
points will be neglected in order to keep the overall spirit of the argument simple.

Suppose, as above, that gi ∈M1 is a sequence of Yamabe metrics such that

µ[gi] → σ(M). (6.1)

Suppose further that sup |Rgi| = Ri → ∞ as i → ∞. Choose points xi ∈ M

such that |Rgi |(xi) = Ri. In order to understand the degeneration of {gi} in a
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neighborhood of xi, we rescale or “blow up” the metrics gi by the factor Ri, that
is, we consider the metrics

g̃i = Rigi. (6.2)

Then consider the behavior of the pointed Riemannian manifolds (M, g̃i, xi)
centered at xi. Distances in g̃i are

√
Ri times larger than distances in gi, so

that in effect, we are studying the degeneration behavior of {gi} in smaller and
smaller neighborhoods of xi, magnified to unit size. In particular, diamg̃i M =√
Ri diamgi M → ∞. The scaling properties of curvature imply that |Rg̃i | ≤ 1

and |Rg̃i |(xi) = 1.
Using an appropriate version of Theorem 5.1, one can conclude that, modulo

diffeomorphisms, a subsequence of {g̃i} either converges uniformly on domains
of bounded diameter to a limit metric g̃, or degenerates, that is, collapses (again
uniformly on domains of bounded diameter), as described in Case II of Theo-
rem 5.1. For simplicity, we will not deal with the latter case here. Thus, we
assume that {g̃i} converges to a complete C1,α metric g̃, defined on a 3-manifold
X, with base point x. The triple (X, g̃, x) is sometimes also called a geometric
limit of (M, g̃i, xi).

The gradient ∇Sgi is given by (5.7), so that for the rescaled metrics g̃i, one
has

Z̃i = D̃2
i ui − (4̃iui) g̃i − uiR̃ici + Z̃Ti . (6.3)

Note that ui is scale-invariant. Now recall from (5.8) that ‖ZTi ‖L−2,2(TC) → 0
as i → ∞. However, neither the L−2,2 norm nor the functional S are scale-
invariant. Taking the scaling behavior into account, one easily computes that

‖Z̃Ti ‖L−2,2(TC) = R
3/4
i ‖ZTi ‖L−2,2(TC). (6.4)

Thus, it is no longer true, as in Section 5, that (6.1) implies automatically that
‖Z̃Ti ‖L−2,2(TC) → 0. The question of whether there exist sequences {gi} satisfying
(6.1) and for which the tangential gradient Z̃Ti converges to 0 in L−2,2(g̃i) norm
is important. Because it involves deeper technicalities, it will not be discussed
further here. We therefore suppose there exists a maximizing sequence {gi} of
Yamabe metrics for which

Z̃Ti → 0 in L−2,2(g̃i). (6.5)

It follows that the limit metric g̃ satisfies the equation

Z = D2u− (4u) g − uRic (6.6)

weakly, that is, in L2,p. Here we have dropped the tildes. Note that, since the
scalar curvature of {gi} is uniformly bounded, by scaling, the scalar curvature s̃
of the limit metric g̃ is identically 0 (in Lp) on X. In particular, for g̃, we have
Z = Ric. Thus, setting h = 1 + u in (6.6) gives

hRic = D2h, 4h = 0. (6.7)
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It can be shown, using elliptic regularity, that weak L2,p solutions of the
system (6.7) are in fact smooth. (Again, we have to assume that the function h
thus obtained is not identically 0).

The equations (6.7) are classical equations arising in general relativity, called
the static vacuum Einstein equations. Let X± = {x ∈ X : ±h(x) ≥ 0}, and
consider the product four-manifoldM4± = X±×S1, with warped product metric

g′ = gX + h2dθ2. (6.8)

Then (M4±, g′) is a Ricci-flat four-manifold (its Ricci curvature vanishes identi-
cally), and is thus a vacuum solution of the Einstein equations. The length of
the circle S1

x at x ∈M is given by |h(x)|; we note that the space M+ or M− may
be singular on the locus where h = 0.

The equations (6.7) are defined on a space-like hypersurface of a Lorentzian
four-manifold. In (6.8), we have changed the Lorentz signature (−h2 dθ2) to a
Riemannian signature; this has no effect on computations of curvature and the
like.

Summarizing, blow-ups of a sequence of metrics {gi} satisfying (6.5) and de-
generating in a neighborhood of a point sequence xi ∈M (of maximal curvature)
have geometric limits that are solutions of the static vacuum Einstein equations.

The canonical solution of the static vacuum Einstein equations is the Schwarz-
schild metric gs, given by

gs =
(

1− 2m
r

)−1

dr2 + r2 ds2
S2

+
(
1− 2m

r

)
dθ2, (6.9)

with h = (1 − 2m/r)1/2; here m > 0 is a free parameter, called the mass of the
metric gs. The metric on the space-like hypersurface

gs =
(
1− 2m

r

)−1

dr2 + r2 ds2
S2

(6.10)

is defined on [2m,∞)×S2, and is clearly spherically symmetric. Although the
metric (6.9) or (6.10) may appear to be singular at r = 2m, this is only an
apparent singularity, and can be removed by a change of coordinates. From
(6.10), one sees that the set B = h−1(0) where r = 2m is a totally geodesic
two-sphere of constant curvature, while the metric (6.10) is asymptotically flat,
that is, asymptotic to the flat metric on R3 for large r. The “horizon” h−1(0)
is interpreted as the surface of an (isolated) black hole in general relativity.
Asymptotically flat solutions to the equations (6.10) are often considered in the
physics literature, since they serve as models of isolated black holes. The four-
manifold Riemannian metric (6.9) is a smooth Ricci flat metric on S

2 × R2,
asymptotic to the flat metric on R3×S1 at ∞.

This picture serves as a model for the general behavior of (appropriate)
Yamabe sequences satisfying (6.1), in the neighborhoods of sets where the curva-
ture goes to infinity. Namely, the two-sphere B = h−1(0) in the blow-up metric
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g̃, when rescaled to the original sequence {gi}, is being collapsed to a point. The
fact that g̃ is asymptotically flat indicates, when blown down to {gi}, that the
curvature remains uniformly bounded in regions away from the central S2. Thus,
{gi} is collapsing an S2 ⊂ M to a point, giving rise to a limit metric g defined
on the union of two manifolds (3-balls) M1 and M2 identified at one point. In
other words, {gi} performs a surgery on the two-sphere B ⊂M .

We illustrate how this behavior actually arises in a concrete example. It is
known [Kobayashi 1987; Schoen 1989] that

σ(S2 ×S1) = σ(S3). (6.11)

In fact, S2 × S1 admits a sequence of conformally flat Yamabe metrics gi ∈
M1 with µ[gi] → σ(S3). These metrics behave in the following way. View S

1

as I = [−1, 1] with endpoints identified. The metrics gi have spherical (S2)
symmetry, and on domains of the form S

2 × Iεi , for Iεi = [−1 + εi, 1− εi], they
converge smoothly to the canonical metric of volume 1 on S3

r {p ∪ p′}, where
p and p′ are antipodal points on S3; here εi → 0 as i → ∞. In particular,
{S2 × S1, gi} converges to S3/{p ∪ p′}, that is, S3 with two points identified,
in the Gromov–Hausdorff topology [Gromov 1981a]. Note that the curvature is
remaining uniformly bounded in the region S2 × Iε, for any fixed ε > 0. Let
Jεi = S1 r Iεi . On the complement S2 × Jεi , whose diameter converges to 0,
the curvature is blowing up, that is, diverging to +∞. If one rescales, or blows
up, the metrics {gi}, as in the procedure described above, the blown-up metrics
g̃i converge to the Schwarzschild metric. (Note that the Schwarzschild metric
(6.10) is conformally flat.)

We see here, in this concrete example, and conjecturally in general, how {gi}
is implementing the prime decomposition of the 3-manifold M . Of course, there
remains the basic issue of proving that two-spheres that arise in this fashion are
essential in M . We will not discuss this further here, beyond saying that it is
natural to attempt to prove an analogue of Theorem 5.2 with spheres in place
of tori.

There are however many other solutions to the equations (6.7) besides the
Schwarzschild metric. Of course, there are the flat solutions on R3, where h is
constant or linear. It is a classical result of Lichnerowicz [1955] that there are no
complete, nonflat, asymptotically flat solutions of (6.7) with h > 0 everywhere.
In fact, the assumption of asymptotic flatness can be dropped: There are no
complete, nonflat solutions to (6.7) with h > 0 everywhere [Anderson c]. Thus,
the cases of interest are where h vanishes somewhere.

In this regard there is a beautiful uniqueness theorem in the physics literature
[Israel 1967; Robinson 1977; Bunting and Masood-ul-Alam 1987]:

Theorem 6.1 (Black-hole uniqueness theorem). Let (X, g) be a smooth
solution to the vacuum Einstein equations

hRic = D2h, 4h = 0, (6.12)
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with ∂X = h−1(0) compact . If g is asymptotically flat , then (X, g) is the
Schwarzschild solution.

This implies in particular that ∂X is connected: there are no smooth static
solutions with multiple black holes. It is interesting to note that there are
asymptotically flat solutions to (6.12) with multiple black holes, having only
cone singularities along a line segment (geodesic) joining the black holes. In
particular, these singularities are not curvature singularities: the curvature is
uniformly bounded everywhere. The line singularity is interpreted as a “strut”
keeping the black holes in equilibrium from their mutual gravitational attraction
[Kramers et al. 1980].

Theorem 6.1 can be proved more generally under the single assumption that
h−1(0) is compact, that is, it is not necessary to assume the metric asymptotically
flat; the metric must be still be assumed to be smooth up to ∂X, see [Anderson c].

We note that there are examples of solutions to (6.12) with smooth non-
connected, and in fact noncompact, boundary. The so-called B1 solution [Ehlers
and Kundt 1962; Kramers et al. 1980] has 3-manifold metric given by

gb =
(

1− b

r

)−1

dr2 +
(

1− b

r

)
dφ2 + r2 dθ2. (6.13)

Here the function h of (6.12) is given by h = r sin θ, for r ∈ [b,∞) and for
φ ∈ [0, π], θ ∈ [0, 2π] the standard spherical coordinates on S2. This metric has
the property that h−1(0) is two copies of R2, each asymptotic to a flat cylinder.
This metric is not asymptotically flat in the usual sense, that is, not asymptotic
to the flat metric on R3. However, it is asymptotic to the flat metric on R2×S1.
Note that h is unbounded. Note further that when forming the four-manifold
metric as in (6.8) with h as above, one obtains exactly the Schwarzschild metric
on S2×R2. In fact, the metrics (6.10) and (6.13) are just different (orthogonal)
three-dimensional slices to the four-dimensional Schwarzschild metric (6.9).

It seems that one should be able to classify completely the smooth solutions
to the static vacuum Einstein equations with smooth boundary B = h−1(0), and
that are complete away from B. We venture the following.

Conjecture 6.2. Let (X, g) be a smooth complete solution to the static Einstein
vacuum equations (6.12), with B = h−1(0) smooth, that is, g smooth up to B.
Then (X, g) is either flat , or the Schwarzschild solution, or the B1 solution.

There is a wealth of examples in the physics literature on singular solutions to
the static vacuum equations (6.12); see [Ehlers and Kundt 1962; Kramers et al.
1980], for instance. These solutions are typically not complete, or have curvature
singularities on B, that is, the curvature blows up on approach to some region
in B. Since, in the context of our discussion, the spaces (X, g̃) arise as limits of
spaces of bounded curvature, one might hope that these singular solutions could
be ruled out.
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In sum, the partly heuristic arguments presented above provide some evidence
to support Conjecture IV, establishing a relation between the sets where the
curvature of a maximizing sequence of Yamabe metrics diverges to infinity, and
the sets of essential two-spheres in M .
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