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§l. Introduction.

In a series of papers [14] • [15] • [6] • Osserman and Chern-Osserman

proved a number of fundamental results on the structure of complete minimal

surfaces M2 . d' E3 d ENimmerse 1n an These results center about properties

of the Gauss map G and its relation to the geometry of M. Recall that G

associates to p E M the tangent plane TM
p translated to the origin. considered

as an element of the Grassmannian G2 ~ • For instance. in (15] Osserman shows
•

that the Gauss map of a complete. non-planarminimal surface M2 c:E3 either

- attains every value 2a E G2•3 = S infinitely many times. with the

Z c: S2 of logarithmic capacity zero. orpossible exception of a set

- attains every value a E G2•3 finitely many times, omitting at most

three values.

The single intrinsic invariant f (-K)dA of the' geometry of M. namely
M

the total Gaussian curvature. distinguishes between the two modes of behavior.

In the former case. the total curvature is infinite while in the latter it is

finite. In fact. a basic consequence of the theory is the quantization condition

(1.1) f (-K)dA •• 4NTT
M

+
N E 7L on the total curvature. There are similar results that hold for minimal

surfaces in EN ; c.f. [6). Xavier has recently sharpened these results on the

va Iue distribution of the Gauss map considerably : the image omits at most 5 ix

points [191. It is a beautiful open question whether in fact the Gauss map omits

at most four points in general.

These structure theorems, reminiscent of the Picard theorem in one complex

variable. are based on the connection between minimal surfaces in EN and holo-

morphic curves in the Grassmanian G2,N inherent in the Weierstrass representatic



More precisely, the Grassmaninan is realized as the quadric 222z +z +•• ·+z = 01 2 N

in complex projective space t pN-l • The Gauss map of M2 gives rise to a

holomorphic curve ~n G2 Net FN-l and one studies the value distribution of,
this curve in the sense of Weyland Ahlfors. The two modes of behavior above

correspond exa~tly to the two coarsest characteristics of holomorphic curves ~n

G2 N ' namely transcendental or algebraic. The Gauss map is algebraic if there,
is a compact Riemann surface and a finite number of points

such that M2
G : r.1-...•G

Z
N,

is conformally equivalent to r.1-, {Pi}~ and the Gauss map
- 2"extends to a holomorphic curve G: M ...•GZ N ; thus the Gauss,

map compactifies the Riemann surface 2
M • The Gauss map is transcendental if

the curve G(~) is not an open subvariety of a closed projective curve in G2 N,

This paper is concerned with establishing the beginning of such a theory

for higher dimensional minimal submanifolds Mk in EN • There are a number of

difficulties in carrying out such a program. First, one no longer has the tools

of complex function theory. More importantly, the topological structure of M,

particularly regarding the asymptotic behavior, is more complicated. For example,

let vn be an n-dimensional smooth algebraic variety ~n N~ • Under an affine

inclusion

Vn c ~ pN

is an open subvariety of a compact algebraic variety

and the complement may be an arbitrary algebraic variety

in ~pN-l. Similar behavior is exhibited by the Gaussian image

and the complement G(Vn) , G(Vn) . Moreover, the immediate generalization of

Osserman's theorem on the density of the Gaussian image to higher dimensions

is false. This is a consequence of the failure of the Bernstein conjecture in

dimensions greater than eight (Z].

Finally, there are a number of notions of total curvature for submanifolds

~n EN • Perhaps the most natural are the total Gauss-Bonnet-Chern curvature

In n ,where n is the Gauss-Bennet-Chern integrand, and the total absolute
M
curvature In K dV , in the sense of Chern-Lashof [51. However, both may vanish

M
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on non-planar minimal submanifolds; further, in odd dimensions, ~ - 0 . The

notion we concentrate on in this paper is the integral

where A 1S the second fundamental form of M 1n EN. It is easy to see that

for any submanifold

j n.5. cl J IKldV < c2 f IAlndV
Mn Mn Mn

for universal constants depending only on n. Moreover, A = 0 if and

only if Mn is an affine n-plane. It is important to note that all three inte-

grals are scale invariant quantities. The Gauss-Bonnet-Chern integral is clearly

an intrinsic isometric invariant. For minimal submanifolds of EN, A is also;

in fact, A - f (_T)n/2, where T is the scalar curvature of M, suitably
Mn

normalized. For this reason, we call A the total scalar curvature of M.

The ma1n theorem of this paper is the following generalization of the

Chern-Osserman theorem on minimal surfaces in EN of finite total curvature.

Theorem A. Let ~ be a complete, connected minimally immersed submanifold

of EN of finite total scalar curvature. Then Mn is CD
C diffeomorphic to a

compact CCD manifold ~ punctured at a finite number of points {Pi}~ E Mn .

The Gauss map G:Mn-+G n,N extends to a
n-2

C
- nmap G: M ~ G Nn, of the

compactification. Further, the metric

complete Riemannian metric on Mn •

on
1\-2

extends conformally to a C

r
Conversely, if Mn is diffeomorphic to Mn, U p. and the Gauss map

1 1

has a Cl extension to Mn, then Mn has finite total scalar curvature.

Thus, one obtains an intrinsic characterization of minimal immersions
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Mn +EN whose Gauss map achieves a limiting val~ on each end of M namely,

the total scalar curvature A ~s finite.

We note that the proof gives a new proof of the Chern-Osserman theorem,

without the use of Huber's theorem [9] on Riemann surfaces of finite total curva-

ture.

An interesting consequence of the theorem is an integrality condition on

the total Gauss-Bonnet-Chern curvature of M, similar to (1.1).

Theorem B. Let Mn be a complete. oriented minimally immersed submanifold of

EN , of finite total scalar curvature. Then

(1.2) nn = X(M ) -
r
E

i=l
m.~

where m. E 71:+
~ is the multiplicity of the end {p.} • If~ n > 3 , then m.~ 1 •

for all i.

We refer to §5 for the definition of X (Mn) , in case n is odd, and of
(1.2) implies that - n that a generalization of them. . Eqn. J 11 < X eM ) , so~ Mn

Cohn-Vossen inequality holds for this class of minimal submanifo1ds of EN •

Clearly, equality is never achieved as is the case for compact manifolds.
We also refer to §5 for further applications of the above theorems.
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We now outline the contents of the paper. In §2, using P.D.E. and scaling

arguments, we obtain an estimate on the curvature decay of minimal submanifolds in

JEN with .A < 00:

0.3) sup IAI2 s; ~.Lt(r)
MnS(r) r

where t.t(d - 0 as r - 00. Thus, M locally becomes Euclidean near infinity. This

result easily implies that M is of finite topological type (Corollary 2.5).Section 3

contains the proof of Theorem A. The curvature estimate (1.3) is shown to imply

that each end of Mn is diffeomorphic to Sn-1 x [0,00). Using the condition .A < 00,

we show that the Gauss map extends continuously over each point at infinity. The

smooth extension of the Gauss map then follows from P .D.E. arguments.

In §4, we prove Theorem B by applying the Gauss-Bonnet formula to the

domains MnB(d; the control over the boundary terms again comes from (1.3).

Finally, in §5, we present several applications of the results above. The Bernstein-

type result, Theorem 5.2 is of particular interest.

I would like to thank R.Schoen and M. Micallef for useful discussions during

the early stages of this work. Special thanks to Myong-hi for her help and patience.

§2. Estimate of curvature decay

Throughout this paper, Mn will denote a complete, connected, minimally

immersed submanifold of Euclidean space EN. We let i: Mn - EN denote the

immersion. The metric, or first fundamental form, of M is that induced from EN.

The second fundamental form A: TM 0 TM - NM is given by

A(X,Y) - (~X y)N.

Occasionally, we will view A as a map TM - Homf TM, NM), or NM - Hom( TM,

TM).The notation ~ (respectively 9), is used for covariant differentiation on EN

(M). One has ~T - 'V where T denotes tangential projection. Finally, let Btr)

denote the open ball of radius r about the origin 0 in EN, S(r) - aBed and A(r.s) -

Bts) - Btr).

The following theorem will be of importance in the work to follow.
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Theorem 2.1. (Smooth Compactness Theorem) Let {Mr} be ~ sequence of

connected, minimally immersed submanifolds in BN(1), such that aMf n BN(1) _. (/) .

Suppose there is ~ constant Q such that supIAil(x) ~ C, for all i, Then there is

~ subsequence of (Mi},denoted ~ (Mi), that converges in the cex> topology on

compact sets in BN(!) to !! smooth minimally immersed submanifold Mex> in BN(l)

with sup 1Aex>1~ C.

By c= convergence to Moo we mean the following: for any p E. Moo: there is a

neighborhood U C C BN(1) of p such that each component of Minu, for

sufficiently large, may be graphed over UnTpMex>by a function F i: UnT pMex>--+

NpMex>.One requires the functions Fi to converge, in the usual cex> topology, to Fex>.

the graphing function for Mex>.

Proof: This theorem is rather well-known and we will only sketch the proof, c.f .[7]

for further details. The curvature bound supIAil(x) ~ C implies there is an E.o > 0,

depending only on C. n, N such that the components of Mi nBpi(E.), with PiE.Mi'

Bp.(E.)C CBN(!) and E.<E.o may be graphed over T p.Mi nBp.(E.) by functions fl'. Each
1 1 1

fi satisfies the elliptic system Afi ,..O. where A denotes the operator of the

minimal surface system. Further, the curvature estimate immediately implies a

uniform Cl,o. bound on {fi}.-for a. <1. The regularity theory of the operator .At.
implies that a subsequence of {fi} converges in the c= topology to a solution fex>.

Now using an elementary covering argument ,[7] • it is not difficult to show that a

subsequence of {Mi} converges to an Mex>in the cex> topology and that Mex>has the

required properties.

o

We now return to the minimal immersion i : Mn --+ EN. We assume, without

such that i(O) - O. Let Dtr) be the

(xE.M : r <distM(x,O) < sl, LCd-

radius r about O. Finally, Op(d

loss of generality, that Od(M) and choose OE.M

geodesic ball of radius l' about 0 in M, Df r.s)

(xE.M : distM(x.O) - d. the geodesic sphere of

denotes the geodesic r-ball about pE.M.
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Propostion 2.2: Let Mn ~:EN be ~ complete minimal immersion (not necessarily
proper) in lEN, n ~ 2, of finite total scalar curvature. Then there ~ ~ constant

(2.1) Sup IAI2(X) < R~ ~
X E L(R)

for all R.? RO' where ~(E) ~ a as E~ O.

Proof: First it is useful to recale the metric. Let dS~ = ~ ds2 be the
metric induced on M by the immersion iR = oR 0 t , where oR is the dilation
of EN about a by the factor ~. Metric quantities on M measured with
respect to dS~ will be denoted,by a subscripted R. Thus for example,
IAI~ = R2 IAI2; DR(s), the geodesic ball of radius s about a w.r.t. dS~'
satisfies 9R(s) = D(sR).

Now it is easily seen that (2.1) is equivalent to the estimate

(2.2) Sup IAI~(X) s.u (JIAI~ dVR)

X E LR(l) DR(~' 2)

for the minimal immersion iR. Note that since r., has finite total scalar
curvature, for all E > a there is an RO such that

= II A I n dV < e: ,

D(~ , (0)

for all R ~ RO' Thus, to prove (2.2), it suffices to prove the following
statement.

(S) There is an EO > 0 such that if h: Xn ~ IN is any minimal immersion
with Dx(1) ()0 X = <p for some x E X and
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J IA In dV = £.5.. £0'

Ox (1)

then sup IAI2(p) < O.
1

P £ Ox ("2)

where 0 ~ 0 as £ -+ O.

We will first prove the statement (S·) below. from which (S) will follow
easily.
(S·) There is an £0 > 0 such that if h: X -+ EN is any minimal immersion
with ° (1) n a X = <p for some x c X andx

fl A In dV = e: s, £0'

Ox (1)

then
(2.3) sup [t2 Sup1A12] ~ 4.

t e [0.1] 0x(1-t)

To prove (2.3) we argue by contradiction. If (2.3) were false. there must
exist a sequence of minimal immersions hi = Xi -+£n with hi(xi) = 0 and
Ox; (1) n a X; = <p such that

flAI~ dVi -0
Ox; (1)

but Sup [t2sup IAI~] > 4
t OXi (l-t)

for all ;. Choose t; £ [Otl] such that

t;2 SUPIAI~ = sup [t2 supIAI~]
Ox; (1-t;) t £ [0.1] Ox; (t-t )
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and choose Yi E DXj(l-ti) such that

IAI~(Yi). = sup!Alf
Dx. (l-t.)

1 1

One easily sees that

(2.4) 2 2suplAli ~ 4IAli(Yi)
Dyi(ti)

2
and by assumption

(2.5)

Now again it is useful to rescale the metric. Let dS~ = IAI~(Yi) . dS~
be the metric on Xi induced by the minimal immersiorl 0; . hi' where 0i is

. the dilation of ~N about hi(Yi) by the factor IAI~(Yi). (by translation, we
may assume hi(Yi) = 0). Metric quanties on Xi measured with respect to
~? ~ ~dSi will be superscripted with a -. Thus, for p E Xi' IAli (p) =
[IAli(yi)]-1 IAli(p), Dp(s) = Dp([IAli(y;)]-l . s), and so on. In particular,
(2.5) implies that Dyi(1) 0 a Xi = cp, while (2.4) implies that

SUPIAI~ s, 4
Dy; (1)

and IAli(Yi) = 1. Thus the sequence hi = DYi -.EN is a sequence of minimal
immersions of open geodesic balk of radius 1, of uniformly bounded curvature,
translated so that h;(Y;) = O. By the smooth compactness theorem, Theorem 2.1,
a subsequence converges in the C2 topology on compact subsets, to a smooth

- - Nminimal immersion h = Dy (1) -+E .
00 00

We have
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so that Dy (I) is isometric to a domain in a flat n-plane. However, the
00

fact that IAli{Yi) = 1, for all i , implies that IA/oo{Yoo)= 1, which gives
a contradiction. This proves (5').

We now prove statement (5) from (5') and thus complete the proof of
Proposition 2.2. Once more, we argue by contradict?on. If (5) were false,
there must exist a sequence of minimal immersions gi:Zi -+ EN with
and DZi (I) no Zi = <p such that

J/A/~ dVi - 0

DZi (1)

g.{Z.) = 0
1 1

but

for some constant C. For i sufficiently large, we may apply (2.3) with
1t = 2" to obtain

sup /A /~ s, 16 •
1

Dz i (2")

As above, a subsequence of gi: DZi(~) -+EN converges smoothly on compact
subsets to a minimal immersion 900: DZoo(~) - EN and we have

JIA/~ dVCX) = 0
1DZoo(2") •

5ince sup/A/2 ~ C2 > 0, this contradiciton establishes (5).
1D

zCQ
(2)

•
Remark: Part of the proof of statement (5'), namely the estimates (2.3) - (2.5),
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are due to Choi-5choen, and used in their proof of Proposition 2 of [71 ; c.f.
also the related results ['7:14~1j. We note that the rest of the proof of
Prop. 2.2 gives an elementary proof or Prop. 2 of [711.

We mention expl icitly the following "gap phenomemon"; this is related to
recent work of Kasue [11].

Corollary 2.3: Let Mn ---l- EN be ~ complete minimal tnmers ion. Then there
such that if

then Mn ~ an affine n-plane.

Proof: This follows easily from statement (5) of Prop. 2.2. Let EO be the
quantity given by statement (5). Applying (5) to the immersions 0Roi where
OR is the dilation of EN by !, we have, since

JIAI~ dVR s, EO

DR(l)

that SUPIAI~(P) ~ °
PEDR(l)

2

2 °or suplAI < RZ-
P E D(R!2)

If we let R ---l- 00, we obtain the

resul t. •
Remark: Another proof of Proposition 2.2. for n >2 can be given using Simons'

equation for IAI and a Moser type iteration argument, c.f J l l.

We use Proposition 2.2 to study the behavior of M at infinity. This is done in

a sequence of elementary lemmas.
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Lemma 2.4. Let M be as in Proposition 2.1. Then M is properly immersed Ln

EN and there exists Ro
such that

(2.\6) 1 > Ivrl > 1
on M B(R) •

o

Proof. Let y(,) be any length-minimizing geodesic ray in M, starting at

o and let T = y'(,) , X = t ~r2 the position vector field. We have

T <X,T> - I+AX(T,T) > I-IAI ·Ixi

Evaluating this at r ,using (2.1) and the fact that Ixh) I <, ,we have

(2. 7 )

Choose R such that ~h) ~ i v, > R . Integration of (2.7 ) from R to

r gives

Since r = Ixi > <X,T> , this implies that M is properly immersed. Also,

IVrl(,) > <X,T>(,) > 1_l!
r - 4 4,

which implies (2 • .p) c

Using elementary Morse theory, (2.6) gives the following Corollary.

Corollary 2.5. Let M be as in Proposition 2.1. Then for Ro sufficiently

large, there is a diffeomorphism

-~) [MnS(R )] x [0,00) •
o

In particular, M has only finitely many ends, each of finite topological type.



Proof. Let 'IIr
U ="'In:T be the unit vect or field defined on M' B(R )l'ilrl 0

and let

~s denote its local I-parameter group. Note that for s > 0

M,B(R) • Define
o

where t is the unique number such that ~-t(p) E S(Ro) . It is clear that ~

is a diffeomorphism.

Finally, the following Lemma will be of importance in the next section.

Lemma 2.6. Let M be as in Proposition 2.1. Let Br denote the second funda-

mental form of M n S(r) eM, with respect to the inward unit normal. Then

given E > 0 , there is an R
o

such that

(2. , ) E<-
r

for all r > R , where I denotes the identity matrix.- 0

Proof. One easily computes that, for Y E Tp (M n S(r» ,

2 2 -2 2 - 2 N(D r )(Y,Y) 2 (D r )(y,y) + <A(Y,Y),('ilr) >

Now n2r2 = 21 , so by Proposition 2.1, one has IIi D2/-II1 ~ u Cr) , or

< )J(r)
r

r 1 2 ,Since B = TVIT Dr, the result now follows by (2. ) •

c



- 15 -

§3. Behavior at Infinity.

In this section, we complete the proof of Theorem A. Recall by §2 that

if L: Mn ~EN is a complete minimal immersion of finite total scalar curvature,

then M has a finite number of ends, each of finite topological type

In particular, for Ro
sufficiently large,

r
U Vk

k= l

where Vk are disjoint, smooth domains in M. We will identify Vk with its

image i(Vk) c:EN when there is no danger of confusion. In the discussion to

follow, we work on each end separately, and so let V denote one element in

Consider the submanifolds

(3.~1) Lr = ~(V n S(r» c: S(l) •

For each r > Ro Lr is a compact immersed (n-l)-manifold in S(l) and there

is a natural isotopy between Lr and L s ' vr,s > R • The behavior of L
a r

as r ...•.co reflects the asymptotic properties of the end V in lEN • Let A
r

denote the second fundamental form of V r
1

a r(V n B(r» . Ni.n E ; then

(3:.2)

where ~(r) is defined by (2.ll'. In particular, IA 12 ...•.0 uniformly as
r

r ...•.co on any fixed annulus A(o,l-o) c: B(l) • Also, let Cr denote the second

fundamental form of Lr c: S(l) . Using the fact that IVrl(x) ...•.1 as Ixl ...•.co ,

one easily deduces that

t3.3)

for r > R ,whereo
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We claim there is a uniform bound on the number of components nr of VI' (\

BxUl, for any x E SO), r :2: O. To see this, first note that by the monotonicity

formula for volume of minimal varieties in EN, we have

vol (Vr n Bx U):2: c . nr UJ"·

Thus, it suffices to show the volume of Vr n A [~. ~) has a uniform upperbound.

Using the fact that IVrl -- 1 and for instance the coarea formula, one sees it is

sufficient to bound vol(Lr) from above. (Since V is properly immersed, we need

only estimate nr' for r large.)

First, suppose n :2: 3. Then Lr C S(1) has dimension· ? 2 and by (3.3), IeI'I

-- ° as r -- 00. It follows that for r sufficiently large, the Ricci curvature RiC
Lr

of

Lr satisfies RiC
Lr

:2: c > 0, for some constant c. The well-known comparison

theorems of Rauch and Myer's theorem then imply vol(Lr) is bounded from above.

For n = 2, we use the Gauss-Bonnet theorem on the end V. We have

J"t =- 2'7f)«VnB(rJ - Ik
VnS(roJ VnB(r)

where K. and K are the geodesic and Gaussian curvatures respectively. By the

results above, we know that the right-hand side is uniformly bounded. Further,

setting vir) = vol(VnS(rll" one easily computes, using the fact that IVrl > ° on V,

that

v'(r) =- J'1t .
V-S(r)

Thus, v'(r) < c, for some c, so that vtr) ~ c' . r and so vol(Lr) =- v~r) ~ c'.
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We may now apply the smooth compactness theorem (Theorem 2.1) together

with the estimate (3.2) on each component of Vr n BxUJ. It follows that, for any

i~"nt x E 5(1), there are sequences {rt} ......•00 such that Vri n Bx UJ converges,

in the COO topology on compact subsets, to a finite collection of planes, each

possibly with multiplicity, in BxU). We may allow x to vary on 5(1) and, by (3.2),

find there are+sequences {ri} ....•00 such that Vri converges to a finite collection of

planes with multiplicity, smoothly on compact subsets of BO) - (O). Finally, since

Lr C SO) are connected, immersed submanif'olds, by (3.2) or (3.3) again, we see that

in fact Yr. converges to a single plane T with multipliCity.
1

The collection of linear planes {Ta.} spanned by the equatorial spheres Sa-1 c
SN-l(l) which are limits of sequences U:R) are called the tangent planes at infinity

1
of V. The discussion above implies that the manifolds i-[V n B(Ra..)] converge to

k a.. 1
m-T a. in the C - topology on compact subsets of B(1) - (O\.We need to prove there

is a unique tangent plane at infinity.

Theorem 3.1. Let Mn be !. complete minimally immersed submanifold of EN with

finite total scalar curvature. Then each end V of M has !. unique tangent plane at

infinity.

Proof: Consider the normal Gauss map G : V -+ GN-n,N ' G(x) - NxM. If T is a

tangent plane at infinity of V, determined by the sequence {ri} say, then it is

easily seen that X1·-ImGlv A( -1 ) is contained in a small neighborhood of T.l.
n cr·, cr.

in GN-n,N for any c > 0 fixed,a~d i
1
sufficiently large. Further the sets Xi shrink

to T as i..... 00. Thus, for R large , G maps V-B(R) into a small tubular

neighborhood of a curve u in GN_n,N •

We claim that a is either a point or a geodesic in GN-n,N' If a is a point, then

clearly T is the unique tangent plane at infinity to V. Suppose then that a is

neither a point nor a geodesic. We may choose an arc a.cu such that the geodesic

curvature of a. in GN N is bounded away from zero. Let U be a small tubular-n, •
neighborhood of a. and n - G-1(UnA(ri' ri+t)), for i large.

Now it is well known that G : n -+ GN-n,N is a harmonic map. We claim the

image of a harmonic map cannot be contained in a small tubular neighborhood of a..

To see this, we may write U = Dxa., where D is a small normal disc to a.. Consider

the vector field Z - f .7", where f is a smooth funtion, 0 ~ f ~ 1, of compact



support in U and T is the geodesic curvature field of the curves cx.p- p x cx.in U.

Clearly T is smooth and we assume { x ~ U : f'(x) < I} is a small neighborhood of

au. Let f/Jt be the flow of Z. It is not difficult to verify that, for vectors T

tangent to the cx.pcurves in U, ttl(f/Jt).(T) l=0 < 0, while for vectors Y tangent to

the D factor in U, ddn(f/Jt)(Y)I = O. In other words, to first order in t, ¢t
tY • t =0

decreases the lengths of the cx.pcurves, keeping lengths in the D factor constant.

It follows that ttE(f/Jt oo), =0 < 0, where E is the energy. This contradicts

the fact that -G is harmonic. Thus, G maps V -B(R) into a small neighborhood of a

geodesic 0' in GN-n,N ' for R large.
Since ImG is recurrent, either 0' is a finite geodesic arc or 0' is a closed

geodesic. First suppose 0' is a geodesic arc. Let Po be one of the endpoints of 0'

and choose a point Pion 0' close to Po. Consider the function r1oG: V ~ R, where

rl(x) - dist(X,PI) in GN-n,N" If PI is sufficiently close to Po, rl is a convex function

in a neighborhood W of Po so that rloG is subharmonic on G-I(W). However, rloG

achieves a local maximum in G-I(W), which gives a contradiction.

Thus, 0' is a closed geodesic in GN-n,N. The preceeding argument shows that G

maps V roughly monotonicaily onto 0', i.e , all integral curves p(t) of the vector

field 'Vr are mapped almost monotonically onto 0'. In particular, if U is a small

tubular neighborhood of 0' and ?f: U --+ o is the nearest point retraction, then the

map ?f oG taking pet) to 0' is homotopic ( rei endpoints) to the universal covering p:

R --+ s'. Thus, there is a sequence ri ~ 00 such that G maps S(ri) n V into a

small neighborhood T6 of T.LE GN-n,N and x oG restricted to A(ri,ri+l) - G-1(T6) is

of degree 1 as a map of pet) into 0' - T 6.

We now complete the proof using an approach inspired by a technique of Brian

White [18]. Let C be the Chern-Lashof -Gauss map (5),

C: SN(V) ~ SN-l,

where SN(V) is the unit normal sphere bundle of M in EN : C(v) is the parallel .

translate of v to the origin. By the argument above, C maps into a small tubular

neighborhood of a closed curve T(t) of totally geodesic (N-n-l) spheres STet) in SN-l

corresponding to the geodesic 0' in the Grassmannian GN-n,n. The sequence ri above

determines maps Ci - ClA(r. r. )' which for i large, map a(A(ri ' ri+l)] into a small
l' 1+1 N 1 J...

tubular neighborhhod T(6) of ST - s' - n T . Further, for any v ~ Im Ci - T(6),

( 3.4 ) degC. v
1

- L: sgn( det C. (x)] - 1.

xECi1(v)

However,
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where I< is the Lipschitz-Killing curvature [5]. One easily sees that 11<1~ c N lAin",
for a universal constant c N depending onl y on dimensions. Thus, given e > 0, theren,
is an i large, such that

< E:.

Since deiC. 1/ is constant on connected components of SN-l - CJ3(A(ri'ri+1»)) and

CJa(A(ri,ri+l))) is contained in T(6), it follows that degC. 1/ - 0, for v ~ SN-l

T(6). This contradicts ( 3.4 ), showing that C cannot map 1into SN-l - T(a), which

completes the proof.

o

The discussion above leads to the main result.

Theorem 3.2. Let Mn
-+ JEN be !. complet~ minimally immersed submanifold of finite

total scalar curvature. Then Mn is COOdiffeomorphic to !. compact manifold M"

punctured at !. finite number of points (Pi}f=l' The Gauss map

G : Mn
-+ Gn,N

extends to Cn-2 map G : Mn
-+ Gn,N of the compactification. Further the

metric on Mn conformallY extends to !. complete Cn-2 Riemannian metric on Mn

Proof By the results above, Mn has a finite number of ends, each diffeomorphic to

a punctured n-ball, Let I : RN - {O} ~ RN - {O} be the inversion through the

origin, Kx) - ~. For an end V of M, let W - I(V) C BN(1) - {Ole By Theorem
Ixl - N

3.1, one sees that W - W U {O} is a C1 submanifold of B (1) diffeomorphic to the

n-ball Bn, with ToW - T, the tangent plane at infinity of V.

In this way, we obtain a C1 compactification tin of Mn. Since on each end V,

lim GoI(x) - T , the Gauss map has a CO extension to tin • Further, since I is a
IxI-*> N - -

conformal map of R , the metric ds2 induced on W is a CO metric which is

conformal to the metric on V.
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Suppose first n - 2. Then G 01 : (W,ds2
) ~ G2,N is a harmonic map with

continuous extension to W. It is then well known (e.g.[7] ) that G 01 extends

analytically to VI.
Now assume n > 2. We need to estimate the rate of decay of V to its tangent

plane T at infinity. Let {xi}~ be standard coordinates on EN and assume T - span

< Xu ... ,xn>' We may extend V to a complete manifold V in EN by gluing on a

ball Sn to av - V n SeRa)' Similarly, we may extend the metric ds2v to a

complete metric on V which is smoothly quasi-isometric to the flat metric on En.
NNow let u be one of the coordinate functions {xi}i-n+1 on V. By Theorem 3.1,

we see Idul ....•0 as Ixl ....•00. Recall that u is a harmonic function on V. Thus we

may extend u to a smooth function on V so that

( 3.5 ) ~u - f

on V, where f has support in V-V. Let G denote the (negative) Green's function for

the Laplace-Beltrami operator 4 on V. It is well-known [12] that G satisfies an

estimate of the form

IG(x,y)1 ~ c
fdist(x,y»)n-2

for n >2. Recall that the metric on V approximates the flat metric at a rate o(r-z).

Using the Schauder estimates for ~ on V, see [8], it is easily seen that

( 3.6 ) ID~GI(x,y) ~ c(k) ,
fdist(x,y»)n-2+k

first for k - 1,2, and by iteration for any k , We may define

w(x) - f G(x,y)f(y)dy

V
.

on V. Note that w is well defined since f has compact support, and IOiw(x)t

O{r-n-i+2) as Ixl ....•00. Let z - u - w so that z is harmonic on V. By the Bochner-

Lichnerowicz formula [3), we have



(3.7 )

We estimate (3.7) on V. Combining the above estimate for IDiwl with Young's

inequality, one finds

~ ~ 'VNufor any e in (0,1) and some constant cl >0. On V. one calculates that 1'V"ul" -IA 12

and Ric('Vz, 'Vz) - -IA('Vz)12
~ _IAI21'VzI2

• Expanding l'Vzl2 and using Young's

inequality again gives

(3.8)

Recall that I'VT ul -+ 0 and I'VNul -+ 1 as Ixl -+ 00. Summing over u - xi' - n+1,

... ,N, it follows that there are constants C2' C3 such that

on V, where zi - ui - wi. On the other hand. one computes on V that

L\(_l_) __ (p-2)[n-pl'VrI2]
P-2 pr r

so that

provided C3 is chosen sufficiently large and p - (n-L) + Ct., for 0 < Ct. < 1. Thus

LI'Vz/ - c3+ is subharmonic on V, negative on av and converges to zero atrn-3 Ct.

infinity. By the maximum principle,

for z - zi' any i,



If n>3, it follows by integration that Izl grows slower than any positive power

of r , By the DeGiorgi-Nash-Moser theory [13], z must be a constant .If n - 3, we

note that for p - 1+~,

(3.10)

Substituting (3.8) in (3.10) and summing over i as before leads to the estimate

so that the argument above shows z is constant. By translating V in EN, we may

assume the constant functions are zero.

Thus, for k ~O, r - lxi, we have

(3.11)

Noting that A, or equivalently DG, can be expressed in terms of D2u, as u ranges

over {xk}~+l' we obtain

(3.12)

We use these estimates to study W near O. We may write V - {(x,F(x»: xe'T»

B(Rn, as the graph of a function F: T --+ T..l... Then W - I(V) is described by

~ex,Fex», where R2_ Ixl2 + IFex)12. Let r2_lxl2 and y-Iex), so y-;. ThenR r

~(x,F(x» - (y,IYI2F(I(y»)).r: •R R
2

By (3.11) , Ffx) - OOxln-2), so that r 2 - 1 + OOyl") and lyI2F(I(y» - O(Jyl") as

Iyl-O. Similarly. Dk(lyI2F(I(y») ~ OOYI"Pk).

Thus W behaves near 0 as the graph of the function Iyl". It follows that ViI -
WU{O} is a Cn-1 submanifold of Bn(1). Further, the Gauss map G and the metric ds2

have Cn-2 extensions to Vi.

o
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?>
The converse of Theorem ~.2 is considerably easier to prove.

?>
Theorem l.3. Let Mn ~EN be a complete minimal immersion such that Mn is

Cl diffeomorphic to a compact manifold Mn, punctured at a finite number of

points {p.} . Suppose the Gauss map of Mn extends to a Cl map of Mn
1

Then IIAIndvO~ < co

Mn

Proof. The hypotheses imply that the metric g on M extends conformally to

a continuous Riemannian metric g on the compactification Mn , as in Theorem 4.2.

Note also that there is a natural identification of A with the derivative DG.

Thus

I IAlndvo~ a I IDGlndvolH
r:fl Mn

These integrals are conformally invariant, so that

The fact that the Gauss map has a Cl extension to Mn implies the latter

integral is finite.
o

.~ The Gauss Bonnet Theorem on Mn,

In this section, we prove a preliminary version of Theorem B of the

Introduction; the final proof is given in §5 (Theorem 5.1). Once again, the results of

this section follow basically from the estimate (1.3).
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Theorem 4.1. Let Mn ~EN be a complete minimal immersion of a connected,

oriented manifold Mn of finite total scalar curvature. Then

(14.2) 1+-- .
O'n-l

Hm
r-+-oo

Vol(MnS(r))
n+L

r

where n ~s the Gauss-Bonnet-Chern form on M and n-lO'n-l ~ vol S (1).

Remark. In case n is odd, we define 2X(M) ~ LInd (Vr) , where
i Pi

Vr2 on M • By Lemma 2.4 the sum isr Ix) = Ixl and p.
1.

are the zeros of

finite.

Proof. We apply the Gauss-Bonnet-Chern theorem to the domains

-1 ..0 nU(r) =- i (M. n B(r» eM,

and consider the limiting behavior as r ~ ~ • First, the structure equations

on are given by

(If. 3)

dai n j=- L w •• 9
j=-l 1J

dwij n- L wik" wkj + n ..
k••l 1.J

where W ••
~J

tively of

and n ..1.J are the connection I-forms and curvature 2-forms respec-

express n· .1.J in terms of the second fundamental form

{ei}~ • One may

A - {A~} , ~ ~ 1,...N-n
M t with respect to the orthonormal coframing

by

(1f.4) n .. a
~J

~~ JJ~ k i
L [E A·kA. -A·kA. 0]9 ,,9J 1i ~ J ••k,i ~

The Gauss-Bonnet-Chern form 1.S the n-form on M defined by
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(9.5)

n = 2m

n = 2m+l

where the sum is over all permutations 0 = (il ••••in) of (l,.•.n) and

e:. . = sgn(o) . For a < k ~ -21
[rr-L] , define (n-1) forms Qk on the

11... 1n

tangent sphere bundle $M of M by

('.6)

for V E $M and constants given by

~,n

" (-1) k

., 'lTm2m+~!

I (_Uk+l

'lTm2nm!

1 n ,. 2m
1. 3 ••• (n-2k-1)

n ~ 2m+l

Now note that by Corollary 2.5 the domains u(r) , for r sufficiently

large, have Cat> boundary in M and are diffeomorphic to M. Further, the

smooth vector field vr2 on M has only finitely many zeros define

VrNote also that V = ~ 1S the unit outward normal to aU(r) , so that, in

case n 1S even. X(U(r» is a topological invariant. The Gauss-Bonnet-Chern

formula [4J then reads

(~.8) x (U (r) = f n
U Cr)

1[-(n-1) ]2
E f V*Qkk=o au (r)

We now examine the boundary integrals more closely. For p E ?C(r) framE

the tangent spaces T (U (r»p by eigenvectors of the second fundamental furm
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B
r

of enTer) 1.0 M • Thus T (aU(r»
p

satisfy

B (e.) = -A.e.r 1. 1. 1.

We have W.
1., V

where are the I-forms dual to {e.}
1.

This gi.ves for Qo '

Lemma 2.6 implies that A.
1.

1is asymptotic to - as r + ~r Le.
1A. ::I - +

1. r o(l) . Thus we obtain the est imate
r

(fl. 9)
-(n-U!lc Iv*Q _ o,n

o n-l
r

dV + 0(1) dV
r n+I rr

where dV denotes the volume form on aU(r) •
r

On the other hand, if k > 0 , each summand of *V Qk is of the form

*and is thus small compared to V Qo • In fact, using (~.4), (2.1 I and Lemma 2.6,

we see that on aU(r) , there is a fixed constant c such that

(~.1O)

for all I = (il, •••,in_l), k > 0 . Substituting this into (~.8)gives

(~.ll) x(U(r» ::I f Q
U(r)

+ [(n-l}!lc 1+0(1)] Vol(au(r»o,n n-l
r

We have already remarked that X(U(r» is independent of r, for r

sufficiently large. In particular, lim x(U(r» = x(M) • Also, the pointwise
r--

inequality
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together with the assumption of finite total scalar curvature implies by the

dominated- convergence theorem that

lim I n
r-.r>U(r)

= I n
M

and also IInl < +=
M

The theorem follows by

A Li.m vol(aU(r»s a consequence,... n-l
r-.r> r

taking the limit of (1.11) as r ~ =
exists and is finite.

and evaluation of
the constants. c

§5. Applications.

In this section, we prove Theorem 5.1 referred to in the introduction.

This formula is known in the case n" 2 (e.g. [10]) ; however certain novel

features appear in higher dimensions. Several consequences of this are deduced;
in particular, we prove a Bernstein-type theorem for submanifolds Mn of finite

total scalar curvature with n > 3 .

Recall from §3 that if Mn is a complete minimal submanifold of finite

total scalar curvature. then x(r{) •• E Ind (VOr2) is well defined. If {V.}: 1
i Pi 1. 1=

Mn , the multiplicity m. of V. is given by1. 1.are the collection of ends of

m .•• lim
1. r-.o

vol(V.nS(r»1.

where 0n-l 1.S the volume of the unit (n-l) sphere.
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Theorem 5.1. Let Mn +EN be a complete minimal immersion of an oriented rnanifolc

of finite total scalar curvature. Then

(5.1)
r

I rl = X(Mn) + Em.
Mn i=l ~

+where· m. E Zl
i.

is the multiplicity of the end p.EMn.If
1

n > 3 , then

m. = 1 , Vi , so that
1

(5.2) nn •• X(M ) +r •

Proof. Eqn. (5.1) is an immediate consequence of Theorem 3.1 together with the

result from lJ that the manifolds 1
-(V. n S(r»
r 1

converge smoothly to an equa-

torial (n-l)-sphere with multiplicity +m. E Zl • Further for
1

r sufficient ly

large, 1-(V. n sc-»
r 1

represents an m.-fold covering of an equator
1

If n > 2 , it follows that m. = 1 , for all
1

i • This proves (5.2).
a

Remarks. 1) One should consult the paper of Jorge-Meeks [10] for a discussion

of related topics.
2) The smooth convergence of the manifolds I

-(M n S(e)
r of course implies

that all ends of M are embedded if n > 2 .

We now present ~ Bernstein-type theorem, valid however only in dimensions

greater than two.

Theorem 5.2. Let Mn +EN be a complete minimal immersion of finite total

scalar curvature. If n > 2 and Mn has one end, then M? is an affine n-plane.

Proof. Let v(r) = I ( ) vo l(M n B( r»vo ~1 •• •r n
r

by Theorem 5.1, one has

Then, since M has only one end,

of multiplicity one

lim v( r) •• lim
r+<" r+<"

vol(M n B(r»
nr

•• w
n



where w
n

N~s the volume of the unit ball in E . On the other hand, it is well

known that vCr) is monotonically non-decreasing ~n r , with v(O) = w • Thus,
n

vCr) = w . It follows from standard methods
n that Mn must be

an affine n-plane.

Remarks. 1) The theorem is clearly false for n ~ 2 , as ~s demonstrated for

instance by Enneper's surface.

2) R. Schoen [1£] has recently proved a certain analogue of Theorem 5.2

for embedded minimal hypersurfaces in EN having either one or two ends. He

proves that the only such submanifolds which are regular at infinity are the

"plane and the higher dimensional catenoid. Theorem 5.2 generalizes these results

in the case of one end.

3) Theorem 5.2 may be used to derive a local pointwise curvature estimate

for minimally immersed n-discs in B(l) • n > 3 ; c.f. [1]._
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