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Abstract. Given a Riemannian 3-ball (B, g) of non-negative scalar curvature, Bartnik conjectured
that (B, g) admits an asymptotically flat (AF) extension (without horizons) of the least possible
ADM mass, and that such a mass-minimizer is an AF solution to the static vacuum Einstein
equations, uniquely determined by natural geometric conditions on the boundary data of (B, g).

We prove the validity of the second statement, i.e. such mass-minimizers, if they exist, are indeed
AF solutions of the static vacuum equations. On the other hand, we prove that the first statement is
not true in general; there is a rather large class of bodies (B, g) for which a minimal mass extension
does not exist.

1. Introduction

A fundamental problem in general relativity is the formulation of a “suitable” definition of quasi-
local mass (cf. Problem 1 of [44]). To motivate this concept, consider for instance a time-symmetric,
asymptotically flat (AF) initial data set (M, g) for the Einstein equations, i.e. a Riemannian 3-
manifold viewed as a totally geodesic spacelike hypersurface in a Lorentzian (3+1)-dimensional
spacetime. Assuming the spacetime obeys the dominant energy condition, the submanifold (M, g)
has non-negative scalar curvature. The quasi-local mass of a compact region Ω ⊂ (M, g) should be
a real number that represents the mass contained within Ω.

Many definitions of quasi-local mass have been put forth in the last several decades, though
we make no attempt here to give a comprehensive history, cf. [51] for an excellent review. Some
of the “classical” examples include the Hawking mass [24], the Brown–York mass [14], and the
Bartnik mass [6]. More recently, Wang–Yau proposed a very interesting definition that generalizes
the approach of Brown–York [53].

In this paper we are interested in the Bartnik mass, whose setup we now recall. Let Ω be a
smooth 3-manifold, with boundary, diffeomorphic to the closed 3-ball B̄ in R3, and let gΩ be a
Riemannian metric on Ω with non-negative scalar curvature. The Bartnik mass was originally
defined as

(1.1) mB(Ω, gΩ) = inf
g
{mADM (g)},

where the infimum is taken over the set of smooth AF metrics g on R3 such that (Ω, gΩ) embeds
isometrically into (R3, g), and (R3, g) has non-negative scalar curvature and contains no horizons [6].
Bartnik defined a horizon to be a stable minimal 2-sphere, but a number of variants have since
been considered in the literature. Among these, we will take a horizon to be an immersed compact
minimal surface that surrounds Ω; this choice is discussed further in Section 2.

The Bartnik mass satisfies many of the generally desired properties of a quasi-local mass (cf. [6]).
For instance, mB(Ω, gΩ) is non-negative, by the positive mass theorem [47], [54]. Furthermore, if
(Ω, gΩ) is isometric to a smooth region in Euclidean space (R3, gEucl), then mB(Ω, gΩ) vanishes.
Bartnik conjectured that the converse holds (“strict positivity of mB”), i.e., if mB(Ω, gΩ) = 0 then
(Ω, gΩ) is a Euclidean region. A key result of Huisken and Ilmanen [25] shows that if mB(Ω, gΩ) = 0,
then (Ω, gΩ) is locally flat, i.e. locally isometric to Euclidean space. The Bartnik mass also enjoys
monotonicity (i.e. a region contained in (Ω, gΩ) cannot have a greater value of mB; this follows
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from the definition), and the Bartnik mass limits to the ADM mass for an exhausting sequence of
large balls in an AF manifold of nonnegative scalar curvature [25]. The most fundamental open
questions regarding the Bartnik mass are to determine under which general conditions the infimum
in (1.1) is achieved, to understand the structure of the space of such minimizers and to describe
the behavior of the corresponding mass functional on the space of minimizers. Before proceeding
further, we recast the Bartnik mass in a slightly different manner, by focusing on the role played
by the boundary geometry on the two sides of ∂Ω.

For a pair (Ω, gΩ) as above, let γ = gΩ|T (∂Ω) be the induced metric on ∂Ω, and let H be the
mean curvature of ∂Ω, (with respect to the unit outward normal). The pair (γ,H) will be called the
(geometric) Bartnik boundary data of (Ω, gΩ). More generally, a pair (γ,H), where γ is a smooth
Riemannian metric on S2 and H is a smooth function on S2, will be called Bartnik boundary data.

Bartnik pointed out that a minimizer g of (1.1) would only be expected be to Lipschitz along
the “seam” ∂Ω, obeying the boundary conditions [9], [8]

(1.2) γ∂Ω = γ∂M , H∂Ω = H∂M ,

where M is the complement of the embedded image of Ω in R3. The significance of matching the
mean curvatures on both sides is that it assures the scalar curvature is distributionally non-negative
across the seam. The scalar curvature is also well-known to be distributionally non-negative if

(1.3) γ∂Ω = γ∂M , H∂Ω ≥ H∂M ,

are satisfied; we discuss this point further in Remark 2.10. The boundary condition (1.3) was also
considered by Miao [39] and Shi–Tam [48]. Thus, we consider the following reformulation of the
Bartnik mass. Fix M as a smooth manifold-with-boundary diffeomorphic to the closure of R3 \ B̄,
and consider the space P(M) of smooth, AF Riemannian metrics g on M with non-negative scalar
curvature, with P0(M) being the subset such that (M, g) contains no horizons (as defined above).
We call g ∈ P(M) an admissible extension of a region (Ω, gΩ) as above if (1.3) holds. We recast
the Bartnik mass as:

(1.4) mB(Ω, gΩ) = inf{mADM (g) : g ∈ P0(M) is an admissible extension of (Ω, gΩ)}.

One might also consider the mass defined by the equality condition (1.2). Both of these versions
have previously appeared in the literature.

These three definitions, based on (1.1)–(1.3), all require a precise choice among the various
possible definitions of horizon. A major reason a horizon is defined here to be a surrounding
minimal surface (as opposed to an arbitrary minimal surface in M) is that P0(M) is then open in
P(M), cf. Lemma 2.1 below, so that this condition is stable. (This is unknown for other definitions
of the horizon condition).

Regarding then the boundary conditions (1.1)–(1.3) themselves, we prove in Theorem 2.11 below
that if a minimizer subject to (1.3) exists in P0(M), it necessarily satisfies (1.2) (cf. also prior work
of Miao on this issue [40]). This result strongly suggests the two definitions of Bartnik mass based on
(1.2) and (1.3) are equivalent and also very likely equivalent to (1.1), cf. Remark 2.10. Henceforth,
we adopt (1.4) as the definition of the Bartnik mass, with horizon definition above.

The following three conjectures are due to Bartnik; they are discussed in [6], [9] and in most
detail in [8].

Conjecture I. Any region (Ω, gΩ) as above, with H∂Ω > 0, admits an admissible extension in
P0(M).

Thus, conjecturally, any metric of non-negative scalar curvature on a ball can be extended to an
AF manifold with non-negative scalar curvature, where the extension has no horizons and (1.3) is
satisfied. (The hypothesis of positive boundary mean curvature is imposed because if, for instance,
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H∂Ω were negative everywhere, then any AF extension would contain a horizon.) This general
extension conjecture essentially appears in [8], Problem 1. It implies that any region (Ω, gΩ) as
above has a well-defined Bartnik mass (1.4).

Conjecture I is known as the Bartnik extension conjecture and remains open in general (even
allowing extensions in P(M)). Further discussion of the conjecture and some partial results are
given in Section 3.

Conjecture II. For any region (Ω, gΩ) as above with H∂Ω > 0, there exists an admissible extension
g ∈ P0(M) realizing the Bartnik mass (1.4). Moreover, g satisfies the boundary conditions (1.2).

Conjecture II is known as the Bartnik mass-minimization conjecture. Bartnik [8], [10] developed
a heuristic program suggesting that a metric g realizing the Bartnik mass (1.4) on M is an asymp-
totically flat (AF) solution of the static vacuum Einstein equations, i.e. there is a potential function
u : M → R, with u→ 1 at infinity, such that

(1.5) uRicg = D2u, ∆u = 0.

This has been partially verified, using quite different methods, by Corvino [19], [20], cf. Remark
2.9 for further discussion. We give a rigorous proof of Bartnik’s proposal.

Theorem 1.1. A metric g minimizing the Bartnik mass (1.4), with H∂Ω > 0, admits an AF
potential function u > 0 such that (g, u) is an AF solution of the static vacuum Einstein equations
(1.5). Moreover, such a minimizer g satisfies (1.2).

We refer to Theorem 2.8 and Theorem 2.11 for further details.

Conjecture III. For any geometric Bartnik boundary data (γ,H) on S2, with H > 0, there exists
a unique extension g ∈ P0(M) of (γ,H), such that the pair (g, u) solves the static vacuum Einstein
equations (1.5), with u > 0 and u→ 1 at infinity.

Conjecture III is known as the Bartnik static metric extension conjecture.

In addition to the horizon issue, the assumption H > 0 in Conjectures II and III is made due to
the black hole uniqueness theorem, cf. [26], [15], and also [41]. Namely, the data (γ, 0) are boundary
data of a static vacuum solution only for γ a round, constant curvature metric on S2, realized by
the family of Schwarzschild metrics. Thus Conjectures II and III are well-known to fail for H = 0
boundary data.

It is clear that Conjectures II and III each imply Conjecture I. Using Theorem 1.1, Conjecture II
implies the existence part of Conjecture III for the special case of boundary data (γ,H) obtained
from a region Ω with non-negative scalar curvature and H > 0. On the other hand, even for
this special class of boundary data, Conjecture III does not imply Conjecture II, since all mass-
minimizing sequences for a given body Ω may fail to converge to a limit. As discussed in Proposition
2.7, the static vacuum solutions given in Conjecture III are critical points of the ADM mass mADM

(with fixed boundary conditions), but it is not clear that these are minimizers. If Conjecture II
holds, so minimizers exist, then the uniqueness of Conjecture III would imply that all critical points
are minimizers.

Given this background, the main purpose of this work is to prove that Conjecture II is not true
in the generality stated, so that further hypotheses are required to maintain its validity (see the
discussion at the end of Section 5). As discussed below, similar remarks apply to Conjecture III.
This failure is related to the degeneration of the exterior manifold-with-boundary structure on M ,
given control on the boundary data in (1.2) or (1.3). This is most simply described in the passage
from embedded spheres to immersed spheres in R3.

Let Imm(B̄,R3) be the space of smooth immersions

F : B̄ → R3,
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of the closed 3-ball B̄ ⊂ R3; thus F extends to an immersion of an open neighborhood of B̄. Let
F ⊂ Imm(B̄,R3) denote the subspace of immersions that restrict to embeddings on the interior of
B̄ and on which the self-intersection set Z of F |∂B̄ = F |S2 consists of a finite, nonzero number of
double points. Thus, there is a finite set Z = (∪zi) ∪ (∪z′i) ⊂ S2 such that F is injective on B̄ \ Z,
F (zi) = F (z′i) for each i, and F (zi) 6= F (zj) for i 6= j. For F ∈ F , the set F (B̄) is not a smooth
region in R3. However, the pullback (B̄, F ∗(gEucl)) is obviously a smooth, locally flat Riemannian
manifold with boundary. It is easy to see that F provides a large, infinite-dimensional space of
such locally flat domains. We also remark that there is a large class of immersions F ∈ F such that
(B̄, F ∗(gEucl)) has positive boundary mean curvature; however, this condition will not be needed
in the following.

Theorem 1.2. Conjecture II is false for any region (B̄, F ∗(gEucl)) for F ∈ F as above. In partic-
ular, there is no admissible extension of (B̄, F ∗(gEucl)) whose ADM mass attains the Bartnik mass
(which equals zero).

In fact we prove Theorem 1.2 for the stronger no-horizon condition that the extension M has no
compact minimal surfaces at all (see Remark 4.10).

In particular, this also shows that strict positivity of the Bartnik mass fails, i.e. the result of
Huisken–Ilmanen [25] that mB(Ω, gΩ) = 0 implies local flatness is optimal. This is because the
proof of Theorem 1.2 will show that (B̄, F ∗(gEucl)) has zero Bartnik mass and does not embed
isometrically in Euclidean 3-space, cf. also Remark 4.4.

Note that for F ∈ F , there is a sequence of embeddings Fi of the closed 3-ball into R3 with Fi → F
smoothly, with the corresponding embedded spheres Fi(S

2) converging smoothly an immersed
sphere. In particular the class F of immersions is at the boundary of the space of embeddings. Of
course Conjecture II holds for regions Ω isometrically embedded in R3.

As noted above, the pulled-back Euclidean metrics F ∗i (gEucl) converge smoothly to a limiting
smooth flat metric on the abstract 3-ball B̄ with limit boundary data (γ,H). However, the flat
metrics on the complementary manifolds Mi = R3 \ Fi(B̄) degenerate in the limit. It is a priori
possible that there is a distinct sequence of (non-flat) admissible extensions gi of the boundary
data (γ,H) with mADM (gi) converging to the infimum of the mass of such extensions, which do
not degenerate and so give a limit realizing the Bartnik mass. The main content of Theorem 1.2 is
to prove that in fact this does not occur.

We conjecture that this phenomenon is quite general, i.e. Conjecture II is false for any domain
(B̄, F ∗(gEucl)) obtained from an immersion F : B̄ → R3 that is not an embedding (even if F is not
at the boundary of the space of embeddings), cf. Conjecture 4.12.

A version of the discussion above also holds with respect to Conjecture III. Namely, let Em,α be
the moduli space of AF static vacuum solutions (g, u), u > 0, on M = R3 \ B. The moduli space
Em,α is the space of all static vacuum metrics (g, u) which are Cm,α smooth up to ∂M , modulo

the action of the Cm+1,α diffeomorphisms Diffm+1,α
1 (M) of M equal to the identity on ∂M (and

asymptotic to the identity at infinity). It is proved in [2] (cf. also [4]) that Em,α is a smooth Banach
manifold, and moreover the map to Bartnik boundary data

(1.6) ΠB : Em,α →Metm,α(S2)× Cm−1,α(S2),

ΠB(g, u) = (γ,H),

is a smooth Fredholm map, of Fredholm index 0. Here, Metm,α(S2) is the space of Cm,α Riemannian
metrics on S2 with the Cm,α topology.

Now consider the map ΠB restricted to the open subspace Em,α+ of static vacuum metrics with
H > 0 at ∂M :

(1.7) ΠB : Em,α+ →Metm,α(S2)× Cm−1,α
+ (M).
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Conjecture III is equivalent to the statement that ΠB in (1.7) is a bijection. However, it is proved
in [4] that ΠB is not a homeomorphism; in fact the inverse map to ΠB, if it exists, is not continuous
in general. The failure of the homeomorphism property is closely related to the behavior of ΠB at
the boundary of the space of (flat) embeddings within the larger space of immersions, discussed
above in connection with Conjecture II.

Theorem 1.2 shows that a major obstacle in establishing the validity of Conjecture II is controlling
the behavior of mass-minimizing sequences arbitrarily close to the boundary ∂M = ∂Ω, given
control on the Bartnik boundary data (γ,H), so that the manifold-with-boundary structure of M
does not degenerate. A similar difficulty arises in proving Conjecture III; for example, it is much
simpler to control the behavior of sequences of static vacuum solutions in the interior of M (away
from ∂M) compared with controlling the behavior near the boundary; see for example the analysis
in [1]. We expect a similar phenomenon for more general mass-minimizing sequences.

In contrast to the negative results above on Conjectures II and III, we present positive evidence
for the validity of Conjecture I in Section 3. We prove in Proposition 3.2 that if the boundary data

(γ,H) admit an extension to an AF metric of non-negative scalar curvature, then so do (γ, H̃),

for any H̃ ≥ H. Combining this with previous results in [34] and [3] leads to the verification of
Conjecture I for a wide variety of boundary data (γ,H), although without addressing the issue of
horizons.

The contents of the paper are briefly as follows. In Section 2, we discuss the various possible
definitions of horizon as well as the boundary conditions (1.2)–(1.3), and the relations of minimizers
of the Bartnik mass with the static vacuum Einstein equations. The main results are Theorems
2.8 and 2.11 mentioned above. In Section 3 we discuss Conjecture I and present new evidence for
its validity in general. Section 4 is devoted to the proof of Theorem 1.2, while Conjecture III is
discussed further in Section 5. We note that although the topics of these sections are of course
inherently related, the sections themselves are essentially independent of each other.

Acknowledgments: This work began at the conference “Static metrics and Bartnik’s quasi-local
mass conjecture” in May 2016 at the Universität Tübingen. We are grateful to the University for
financial support and in particular to Carla Cederbaum, for providing the opportunity to initiate
this collaboration. M.A. was partially supported by NSF Grant DMS 1607479.

2. Mass minimizers and the static vacuum Einstein equations

In this section, we discuss relations between the various notions of Bartnik mass from the Intro-
duction and their relations with the static vacuum Einstein equations.

Starting with an idea suggested by Brill–Deser–Fadeev in [13], Bartnik in [8], [10] presented a
heuristic argument that critical points of the mass on the space of solutions of the (time-symmetric)
4-dimensional vacuum Einstein constraint equations, with fixed boundary data (γ,H), should be
given by solutions of the static vacuum Einstein equations. This strongly suggested that minimizers
of the Bartnik mass (with respect to a suitable horizon condition) should then also be static vacuum
Einstein solutions. Some recent work along these lines has also been carried out by McCormick
[36], [37].

The main results of this section are a full proof of Bartnik’s proposal, cf. Theorem 2.8. In
addition, Theorem 2.11 shows that a Bartnik mass minimizer defined according to (1.3) actually
satisfies (1.2), leading to a corresponding strong monotonicity result in Corollary 2.12.

Throughout, M will be a smooth 3-manifold with boundary, diffeomorphic to R3 \ B, where B
is an open ball. A Cm,α Riemannian metric g on M (i.e. Cm,α up to and on ∂M) will be called
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asymptotically flat (AF) if

gij − δij ∈ Cm,αδ (M),

where Cm,αδ (M) is the weighted Hölder space of functions on M that decay to 0 at a rate r−δ with

kth + α derivatives decaying at the rate r−δ−k−α, k ≤ m, cf. [17] for example. The rate δ is fixed
throughout and assumed to satisfy

1
2 < δ < 1.

We also fix any m ≥ 3 and α ∈ (0, 1).
Given a fixed δ as above, let Pm,α(M) = Pm,αδ (M) be the space of AF metrics g on M with

non-negative scalar curvature s = sg. Recall that the ADM mass mADM of g ∈ Pm,α(M) is only
defined [5] for metrics with

(2.1) s ∈ L1(M).

The Bartnik mass (1.4) is then obtained by minimizing the ADM mass on Pm,α(M) subject to
the boundary conditions (1.3) on ∂M and subject to the no-horizon condition. Alternatively, one
might consider minimizing the mass subject to the stronger condition (1.2).

As mentioned in the Introduction, there are several notions of horizon appearing in the literature
without a general current consensus. The most strict condition is that (M, g) has no immersed
compact minimal surfaces; let ms

B denote the corresponding Bartnik mass. Variations of this
condition such as no stable compact minimal surfaces or embedded compact minimal surfaces have
also been considered. In some cases, the minimal surfaces are required to be topological spheres.

A somewhat weaker condition is that there are no immersed compact minimal surfaces surround-
ing ∂M in M , i.e. any path from ∂M to infinity must pass through the surface. (Again one might
consider variations such as no stable or no embedded surrounding compact minimal surfaces).

Let mw
B denote the corresponding Bartnik mass; then one clearly has

(2.2) mw
B ≤ ms

B.

The same relation holds with respect to the weaker and stronger boundary conditions (1.3) and
(1.2), respectively.

Moreover, a third definition was suggested by Bray [12], requiring that ∂M be outer-minimizing
in (M, g). This version of the mass will be discussed briefly in Section 5, but not used before then.

One of the main reasons for preferring the weaker condition is the following stability result. Let

(2.3) Pm,α0 (M) ⊂ Pm,α(M)

be the subset of metrics that have no immersed minimal surface surrounding ∂M .

Lemma 2.1. Pm,α0 (M) is an open subset of Pm,α(M).

Proof: We show that the complement is closed. Let {gi} be a sequence in Pm,α(M) \ Pm,α0 (M)
converging to some g ∈ Pm,α(M). Each gi is an AF metric on M such that (M, gi) contains an

immersed minimal surface Σi surrounding ∂M . The unbounded component M̂i of M \Σi is then AF
with a boundary of zero mean curvature in a generalized sense. One may then minimize the area

functional for surfaces in M̂i, since ∂M̂i, together with a large sphere S near infinity (independent
of i), serve as well-defined barriers. It follows from well-known results of Meeks–Simon–Yau [38]

that M̂i contains a minimal surface Σ̂i that has the least area among surfaces enclosing ∂M̂i. In

particular, Σ̂i is stable. Further, the area of Σ̂i with respect to gi is uniformly bounded, since Σ̂i

has less gi-area than S, and areagi(S) → areag(S). Using the well-known curvature estimates of

Schoen, it is then standard, (cf. [18] for example) that a subsequence of Σ̂i converges to a stable
minimal surface Σ in (M, g). Clearly Σ encloses ∂M , so that g ∈ Pm,α(M) \ Pm,α0 (M).
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It is mainly for this stability behavior that we choose a horizon to be a surrounding minimal
surface. (Such stability is unknown for other definitions of horizon in an AF manifold with bound-
ary.) A further reason is that static vacuum Einstein metrics have no horizons in this sense (except
for Schwarzschild metrics), by a result of Miao [41]. (This is again unknown for general minimal
surfaces). As discussed in the Introduction however, we disprove Conjecture II for the stronger
mass ms

B, (for the weaker boundary condition (1.3)). By (2.2), this implies the same result for
mw
B. In Remark 4.11, we point out that Theorem 1.2 holds for mw

B for the stronger boundary
condition (1.2). Theorem 2.11 below strongly suggests that with respect to Pm,α0 (M) as in (2.3),
the boundary conditions (1.3) and (1.2) give equal Bartnik masses; this is less clear for the stronger
definition ms

B.
To summarize, as in (1.4), we set

(2.4) mB(Ω, gΩ) = mB(γ,H) = inf{mADM (g) : g ∈ Pm,α0 (M), g|∂M = γ,H∂M ≤ H}.

Note that an immediate consequence of the definition is the following (weak) inverse monotonicity
property: if H ′ ≤ H, then

(2.5) mB(γ,H) ≤ mB(γ,H ′).

A strong monotonicity will be proved in Corollary 2.12 below.

Returning to the discussion prior to (2.1), let Sm,α(M) = Sm,aδ (M) be the space of pairs (g, u),
with g a Cm,αδ AF metric on M and u an AF function, i.e. u − 1 ∈ Cm,αδ (M), so that u → 1
at infinity. We write Sm,α(M) = Metm,αAF (M) × Cm,αAF (M). The data (g, u) correspond to AF
Lorentzian metrics on M = R×M of the form

(2.6) gM = −u2dt2 + g.

Unless stated otherwise, we assume throughout that u > 0 so that gM is a well-defined metric on
M. Metrics of the form (2.6) (or such pairs (g, u)) will be referred to as static; this is not to be
confused with other notions of static (e.g. static vacuum or Corvino’s definition of static in [19]).

Clearly Sm,α(M) = Metm,αAF (M) × Cm,αAF (M) is a smooth Banach manifold. Let Sm,α+ (M) ⊂
Sm,α(M) be the subset such that

sg ≥ 0.

Thus, Sm,α+ (M) = Pm,α(M) × Cm,αAF (M). Note that the boundary ∂(Sm,α+ (M)) is the set of pairs
(g, u) ∈ Sm,α+ (M) such that sg = 0 at some point in M . We point out that the condition (2.1) is
not assumed a priori on Sm,α+ .

Consider the Regge–Teitelboim Hamiltonian [46] in this setting:

H : Sm,α(M)→ R,

(2.7) H(g, u) =

∫
M
usdvg − 16πmADM (g),

where s = sg is the scalar curvature of g. Note that since sgM = sg − 2∆u
u and dVgM = udVg,

the first term gives the Einstein–Hilbert action on the 4-manifold M modulo a divergence term
(namely −2∆u). The reason for this modification of the Einstein–Hilbert action is to obtain a
well-defined variational problem for the ADM Hamiltonian; we refer to [46] for details.

If s /∈ L1(M), then the individual terms in (2.7) are ill-defined although the combination is
well-defined. Explicitly, following [10], (2.7) may be rewritten in the form

(2.8) H(g, u) =

∫
M

(u− 1)sdvg −
∫
M

(R0 − s)dvg,
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where u− 1 ∈ Cm,αδ (M) and R0 is the bulk integral for the mass, given by

R0 = (δ0δ0g −∆g0(trg0g))
dvg0

dvg
,

where g0 is any background metric agreeing with g near ∂M and is Euclidean outside a compact set,
and δ0 is the corresponding divergence. By the divergence theorem,

∫
M R0dvg = 16πmADM (g),

when the ADM mass is defined, cf. [10]. Thus the Regge–Teitelboim Hamiltonian (2.8) is well-
defined and a smooth functional on the full Banach manifold Sm,α(M). Of course the definitions
(2.7) and (2.8) agree when s ∈ L1(M).

Let

(2.9) S∗u = D2u− (∆u)g − uRic,

be the formal L2-adjoint of the linearization s′ = Dsg of the scalar curvature. The static vacuum
Einstein equations (1.5) are equivalent to the system (g, u) ∈ Sm,α(M) such that

(2.10) S∗u = 0, ∆u = 0.

Note that static vacuum metrics are necessarily scalar-flat, s = 0, and are also necessarily in
Pm,α0 (M), i.e. as noted above, have no horizons (except for Schwarzschild metrics), cf. [41]. (The
relation ∆u = 0 in (2.10) follows from S∗u = 0 by taking the trace, and using the Bianchi identity,
together with the assumption of asymptotic flatness).

The following result is essentially classical and is a version of results proved in [46], [21], [10]; a
simple proof in this notation is also given in [4]. Let N be the unit normal at ∂M pointing into M
and let A be the 2nd fundamental form of ∂M in M .

Proposition 2.2. The L2-gradient of H on Sm,α(M) is given by

(2.11) ∇H = (S∗u+ 1
2usg, s, uA−N(u)γ, 2u)

in the sense that, if (h, u′) is any variation of (g, u) inducing the variation (hT , H ′h) of boundary
data (γ,H), then

(2.12) dH(g,u)(h, u
′, hT , H ′h) =

∫
M

[〈S∗u+ 1
2usg, h〉+ su′] +

∫
∂M

[〈uA−N(u)γ, hT 〉+ 2uH ′h].

(The volume forms associated with the metrics on M and ∂M are omitted, to simplify the
notation). Note that Proposition 2.2 applies even if u ∈ Cm,αAF (M) is not positive everywhere.

Let Sm,α(γ,H)(M) be the space of static metrics with fixed Bartnik boundary conditions; thus

Sm,α(γ,H)(M) consists of pairs (g, u) ∈ Sm,α(M) with the metric g having fixed boundary data equal to

(γ,H) at ∂M . It is straightforward to show that Sm,α(γ,H)(M) is a smooth, closed Banach submanifold

of Sm,α(M), for all choices of (γ,H) ∈ Metm,α(S2) × Cm−1,α(S2). Tangent vectors to Sm,α(γ,H)(M)

are variations (h, u′) of (g, u) such that (hT , H ′h) = (0, 0) at ∂M , where hT is the restriction of h
to T (∂M) and H ′h is the variation of the mean curvature in the direction of h.

Proposition 2.2 thus shows that critical points of the Hamiltonian H on Sm,α(γ,H)(M) are given

exactly by static vacuum Einstein metrics realizing the given boundary data (γ,H).

In contrast, we show next that there are no critical points of the mass

mADM : D ⊂ Sm,α(γ,H)(M)→ R,

where D is the domain on which mADM is well-defined. Given H, let Sm,α
(γ,H≤)

(M) be the space of

static metrics with boundary metric γ and mean curvature ≤ H at ∂M .
8



Lemma 2.3. For any (g, u) ∈ Sm,α(γ,H)(M) for which mADM is defined, one has

(2.13) (DmADM )g 6= 0.

If, in addition, (g, u) ∈ Sm,α+ (M), then (DmADM )g is non-vanishing in the directions of Sm,α+ (M)∩
Sm,α(γ,H)(M). Furthermore, if

(2.14) sg 6≡ 0,

then there is an infinitesimal deformation (h, 0) of (g, u) in the direction of Sm,α+ (M)∩Sm,α
(γ,H≤)

(M)

such that

(2.15) (DmADM )g(h) < 0,

so that there are metrics g′ ∈ Sm,α+ (M) ∩ Sm,α
(γ,H≤)

(M) with mADM (g′) < mADM (g).

Proof: We use a well-known conformal argument, cf. [19] for example. Suppose g is an AF metric
and g̃ = v4g is a conformal deformation of g, with v > 0 in Cm,αAF , so that g̃ is AF. The scalar
curvatures of g̃ and g are related by

v5s̃ = −8∆v + sv.

Suppose the ADM mass m of g is defined, and that ∆v ∈ L1(M). Then the ADM mass m̃ of g̃ is
also defined, and a well-known formula (cf. [39], eqn. (46)) relating m and m̃ reads

(2.16) m̃ = m− 1

2π
lim
r→∞

∫
S(r)

N(v)dV,

where N is the outward unit normal at the coordinate sphere S(r), and dV is the induced volume
form on S(r). Apply (2.16) to the curve of metrics gt = F ∗t ((1+ tϕ)4g), where ϕ is a superharmonic
function on (M, g), ∆ϕ ≤ 0, with ϕ = 0 in a neighborhood of ∂M and with ϕ harmonic outside a
large compact set, tending to a constant −c at infinity. It is easy to see such functions exist. The
maps Ft : M → M are a smooth family of diffeomorphisms equal to the identity near ∂M and
equal to the map x→ (1− tc)−2x near infinity with F0 = Id. (The diffeomorphisms are needed to
put the curve gt in the space Metm,αAF (M)). Note that sg ≥ 0 implies sgt ≥ 0.

Taking the derivative of (2.16) and using the divergence theorem gives, for r sufficiently large,

m′h = (DmADM )g(h) = − 1

2π

∫
S(r)

N(ϕ)dV > 0,

for the variation h = ∂tgt|t=0. (Note the diffeomorphisms Ft may be neglected in this calculation,
since the ADM mass is diffeomorphism invariant). Since h preserves the boundary conditions, this
proves the first two statements.

To prove the last statement, let v be the unique solution to the equation −8∆v + sv = 0 with
v = 1 on ∂M and v → 1 at infinity. In particular, v ∈ Cm,αAF . By the minimum principle, v > 0 on
M , so that g̃ = v4g is well-defined, and sg̃ = 0. By the maximum principle, v < 1 in the interior of
M (since s is not identically zero), so that N(v) ≥ 0 near infinity and N(v) ≤ 0 at ∂M . There is an
ε > 0 such that the level set v−1(1− ε) has a compact, regular component L that is topologically a
sphere in the AF end of M . Applying the divergence theorem in the region outside of L, it follows
that

m̃ = m− 1

2π
lim
r→∞

∫
S(r)

N(v)dV < m.

Moreover, one has H̃ = H + 4N(v) < H on ∂M , by the Hopf maximum principle.
One may also linearize this argument by choosing v = vt as above solving −8∆v+tsv = 0, so that

−8∆vt + svt = svt − tsvt = svt(1 − t) ≥ 0, i.e. the conformally deformed metric has non-negative
scalar curvature. Taking the derivative at t = 0 gives the result.
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Lemma 2.3 shows the special role accorded to the scalar-flat metrics on M . In the context of
the 4-metric (2.6) on M, the equation

s = 0,

on (M, g) is exactly the set of vacuum Einstein constraint equations (since the 2nd fundamental
form K of M in M vanishes). Let

Cm,α = {(g, u) : sg = 0} ⊂ Sm,α(M).

be the space of solutions of the constraint equations on Sm,α(M). Note that there is no condition
on the lapse u (except u > 0 and u − 1 ∈ Cm,αδ ). Of course Cm,α is a (small) subset of the full
boundary ∂(Sm,α+ (M)). Note also that since static vacuum metrics are scalar-flat, any critical point
(g, u) of H on Sm,α(γ,H)(M) must lie in Cm,α.

For g ∈ Cm,α the Cauchy data (g,K) = (g, 0) generate, at least formally, a solution to the
Einstein vacuum equations on M, for some time interval t ∈ I. However, such vacuum solutions
will not be time-independent and of the form (2.6) in general. The Einstein vacuum solutions of
the form (2.6) with fixed boundary data correspond exactly to critical points of H on Sm,α(γ,H)(M).

(We do not address here the issue of whether the initial boundary value problem for the Einstein
equations with boundary data (γ,H) is locally well-posed).

To proceed further, we need to examine the smoothness of the spaces Cm,α and Cm,α(γ,H), where the

latter is the subset of Cm,α consisting of pairs (g, u) where g induces Bartnik boundary data (γ,H).

Proposition 2.4. The scalar curvature map

s : Sm,α(M)→ Cm−2,α
δ+2 (M), (g, u) 7→ s(g).

is a smooth submersion at any (g, u) ∈ Sm,α(M), i.e. the linearization Dsg is surjective and its
kernel splits. The same statement holds for the restricted map

(2.17) s : Sm,α(γ,H)(M)→ Cm−2,α
δ+2 (M), (g, u) 7→ s(g).

Consequently, the spaces Cm,α and Cm,α(γ,H) are smooth Banach manifolds, (closed submanifolds of

Sm,α(M)).

A similar result was proved by Bartnik (Thm. 3.7 of [10]) for complete AF manifolds in a Hilbert
space setting for the general constraint equations. The proof below is conceptually related. On the
one hand, it is simpler than Bartnik’s since one only has to take account of the scalar constraint
(s = 0); on the other hand it is more difficult, due to the presence of boundary conditions.

Proof: We prove the second statement (i.e., for Sm,α(γ,H)(M)), which implies the first (for Sm,α(M)).

The proof proceeds (of course) by the implicit function theorem in Banach spaces. To apply this,
one needs to prove that the linearization s′ = Dsg in (2.17), i.e.

(2.18) s′ : TSm,α(γ,H)(M)→ TCm−2,α
δ+2 (M), (h, u′)→ s′(h),

is surjective and the kernel Ker s′ splits as a subspace of TSm,α(γ,H)(M) at (g, u).

To do this, we first assume that s′ has closed range and prove surjectivity. The proof that s′ does
in fact have closed range, with splitting kernel, will follow afterwards (independent of the proof of
surjectivity).

As in (2.9), let S∗ be the formal L2-adjoint of the linearization s′. If s′ has closed range but is not
surjective, then (by the Hahn–Banach theorem) there is a nontrivial distribution ϕ (a continuous

linear functional on Cm−2,α
δ+2 (M) ∼= TCm−2,α

δ+2 (M)) such that, first for all variations (h, u′) of (g, u)
with compact support,

ϕ(s′(h)) = 0.
10



To show that ϕ is regular, consider variations of the form h = fg, where f is a smooth function
of compact support contained in the interior of M . Since s′(fg) = −2∆f − sf , we see that ϕ is
a weak (i.e. distribution) solution of −2∆ϕ − sϕ = 0. By elliptic regularity (i.e. the well-known
Weyl Lemma and Schauder estimates), ϕ is Cm,α in the interior of M . It follows that for all h of
compact support and vanishing on ∂M , one has

0 =

∫
M
ϕs′(h) =

∫
M
〈S∗ϕ, h〉.

In particular (g, ϕ) solves S∗ϕ = 0 in the interior of M so that (g, ϕ) is a static vacuum solution,
(cf. the discussion following (2.10)). Since Ricg ∈ Cm−2,α, integration of the static equations
ϕRic = D2ϕ shows that ϕ is Cm,α up to ∂M .

The distribution pairing above is thus the integral pairing of functions on (M, g), so that

(2.19)

∫
M
ϕs′(h) = 0,

for all h of compact support. Next choose δ′ with δ < δ′ < 1, so that TMetm,αδ′ (M) ⊂ TMetm,αδ (M)
and consider a general h ∈ TMetm,αδ′ (M). Let χi : M → [0, 1] be a sequence of smooth, radially

symmetric cut-off functions of compact support on M , with χi(r) = 1 for r ∈ [0, Ri], |dkχi(r)| ≤
ck/r

k for r ∈ [Ri, 2Ri] and χi(r) = 0 for r ≥ 2Ri. For Ri → ∞, one then has χih → h in

TMetm,αδ (M) and similarly s′(χih)→ s′(h) in Cm−2,α
δ+2 (M), for such h.

Thus, since ϕ is a bounded linear functional, (2.19) holds for all h ∈ TMetm,αδ′ (M). Since h

is arbitrary in TMetm,αδ′ (M), so that s′(h) decays only as r−δ
′−2, it is not difficult using direct

calculations based on the static vacuum equations (1.5), to see that ϕ → 0 at infinity in M and
from that, ϕ = 0 on M . Alternatively, by Proposition 2.1 of [11], if ϕ 6≡ 0 on M , ϕ converges on
the AF end of M either to an affine function or a non-zero constant at infinity. Either of these is
impossible with ϕ representing a bounded linear functional on Cm−2,α

δ+2 (M). It follows that ϕ = 0,

a contradiction, and hence s′ is surjective (provided it has closed range).
It remains to prove that the linearization s′ in (2.18) has closed range, with split kernel. The

usual proofs of these properties for compact manifolds or complete AF manifolds, based either on
conformal deformations, or on the structure of the formally elliptic operator s′ ◦ (s′)∗, will not work
in this setting due to the presence of the boundary conditions.

Consider the 4-manifoldM and static metrics gM onM, as in (2.6). The Ricci curvature of the
metric gM, determined by (g, u), is given by

RicgM = (Ricg −u−1D2u,−u−1∆u),

where the first component is the Ricci curvature in the “horizontal” directions, (tangent to M)
while the second is the Ricci curvature in the “vertical” direction (tangent to R). Passing to the
associated Einstein tensor RicgM −

sgM
2 gM of gM gives

(2.20) EgM =
(
Eg − u−1(D2u− 1

2∆u g),−s
2

)
.

Consider now the divergence-gauged Einstein operator at a background metric g̃M ∈ Sm,α(M):

Φg̃M : Sm,αδ (M)→ Sm−2,α
δ+2 (M),

(2.21) Φg̃M(gM) = EgM + 2δ∗gMδg̃M(gM),

where δg̃M is the divergence operator with respect to g̃M and δ∗gM is the formal L2-adjoint of δgM .

(Here, we view Sm−2,α
δ+2 (M) as the Banach space of pairs (τ, f), where τ is a symmetric 2-tensor

on M and f is a function on M with τij and f in Cm−2,α
δ+2 (M).) It is proved in [2], [4], that the
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linearization DΦ of Φ at gM = g̃M is a well-defined 2nd order elliptic boundary value problem with
respect to the boundary conditions

(2.22) (δgM ĥ, h
T , H ′h) = (0, 0, 0) at ∂M.

Here ĥ = (h, u′) is the variation of gM while h is the variation of g.
By elliptic theory, the linearized operator (h, u′h) → DΦ(h, u′h) at (g, u) with boundary con-

ditions (2.22) is Fredholm, so that the kernel KerDΦ and image ImDΦ are of finite dimension
and codimension respectively. In particular, DΦ has closed range. Since perturbations of elliptic
differential operators are still elliptic, Φ in (2.21) is a nonlinear Fredholm operator on the space
Sm,α0 (M) ⊂ Sm,αδ (M) of static metrics gM near g̃M satisfying the boundary conditions

(δg̃MgM|∂M , g|∂M , Hg) = (0, γ,H).

It is well-known that nonlinear Fredholm maps are locally proper (and so locally closed), cf. [49].
Since Φ is locally closed, so is the associated graph operator

Φ̂g̃M : Sm,α0 (M)→ Sm,α0 (M)× Sm−2,α
δ+2 (M),

(2.23) Φ̂g̃M(gM) = (gM, EgM + 2δ∗gMδg̃M(gM)).

Now the target space of Φ̂ has a natural L2-orthogonal decomposition along the second factor,
given by

(2.24) Sm−2,α
δ+2 = Ker δgM ⊕ Im δ∗gM ,

where δ∗gM acts on Cm−1,α vector fields V on M vanishing at ∂M . Here Sm−2,α
δ+2 is viewed as the

fiber over gM of the projection π : Sm,α0 (M) × Sm−2,α
δ+2 (M) → Sm,α0 (M), so the splitting (2.24)

depends on gM.
It is easy to see that the decomposition (2.24) is along closed subspaces, giving then a splitting

of the trivial bundle π above into two closed subbundles (the Ker δ and Im δ∗ subbundles) over

Sm,α0 (M). Since Φ̂ is locally closed, it is locally closed on each closed subbundle. Now by the

Bianchi identity, EgM ⊂ Ker δgM and δ∗gMδg̃MgM ∈ Im δ∗ so these factors of Φ̂ map into the

different subbundles. It follows that π1 ◦ Φ̂ = E is locally closed, where π1 is the projection onto
the first (Ker δ) subbundle. This implies in particular that the vertical component s of EgM in
(2.20) is locally closed. Since the linearization of a locally closed operator has closed range, it
follows that s′ has closed range.

Finally we prove that the kernel Ker s′ splits. Considering the horizontal and vertical decom-
position of the target space Sm−2,α

δ+2 (M) discussed above (2.21), define S1 = (DΦ−1)(∗, 0) and

S2 = (DΦ−1)(0, ∗). Clearly S1 and S2 are closed subspaces of TSm,α0 (M). It is easy to see that
S1 + S2 is also a closed subspace, of finite codimension (the latter since the range of DΦ has finite
codimension). Thus S1 + S2 admits a closed complement, S3:

TSm,α0 (M) = (S1 + S2)⊕ S3.

Now, the intersection S1 ∩ S2 equals KerDΦ, which is finite dimensional since DΦ is Fredholm.
Hence KerDΦ ⊂ S2 has a closed complement S′2 in S2. This gives a direct sum decomposition

(2.25) TSm,α0 (M) = S1 ⊕ S′2 ⊕ S3.

A simple calculation (cf. equation (2.16) in [4] for instance), gives S1 = {ĥ : s′(h)+δ∗δh(V, V ) = 0}
where V is the unit vertical vector (tangent to the R-factor inM). Similarly, a simple computation
on the warped product metric gM gives δ∗δh(V, V ) = δh(∇ log u), so that S1 = {h : s′(h) +
δh(∇ log u) = 0}.
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The computations above hold for any (g, u) ∈ Sm,αδ (M). Consider then the path (gt, ut) =
(g, (1 − t)u + t), t ∈ [0, 1], in Sm,αδ (M). The splitting (2.25) above holds for all t and gives a
splitting at (g, 1) of S1 = Ker s′. Since s′ is independent of u, this splitting holds for all u. This
proves Ker s′ splits.

The implicit function theorem (regular value theorem) for Banach manifolds then implies the
remaining part of the Proposition.

Remark 2.5. Proposition 2.4 is closely related to the issue of linearization stability of solutions
of the vacuum Einstein equations on M and to the work of Fischer, Marsden, and Moncrief [21].
While Proposition 2.4 is known to be false for compact manifolds M , it is known to be true for
complete AF manifolds (in both cases without boundary)

Proposition 2.4 has the following useful corollary. Consider the map to Bartnik boundary data:

(2.26) πB : Cm,α(M)→Metm,α(S2)× Cm−1,α(S2), πB(g, u) = (γ,H),

where Metm,α(S2) is the space of Cm,α Riemannian metrics on S2 with the Cm,α topology. Propo-
sition 2.4 shows that Cm,α(M) is a smooth Banach manifold; clearly πB is a smooth map of Banach
manifolds.

Corollary 2.6. The map πB in (2.26) is a submersion, i.e. DπB is surjective, with splitting kernel.
In particular πB is an open map.

Proof: Proposition 2.4 implies that for any (γ,H) ∈ ImπB, the map s′ is a submersion on

Cm,α(γ,H)(M). Thus, for any given g (or (g, u)) in π−1
B (γ,H) and for any f ∈ Cm−2,α

δ+2 (M) there exists

an h (or (h, u′)) in T(g,u)Sm,α(M) satisfying (hT , H ′h) = (0, 0) at ∂M and such that s′(h) = f . Now

given an arbitrary boundary variation (hT , H ′h), let he ∈ T(g,u)Sm,α(M) be an extension of (hT , H ′h)

to a variation of g on M of compact support. Then s′(he) = ϕe, for some ϕe ∈ Cm−2,α
δ+2 (M). Let h0

be a solution of s′(h0) = ϕe with zero boundary data. Then h := he − h0 satisfies s′(h) = 0 and h
has the given boundary data (hT , H ′h). This proves that DπB is surjective.

Further, one has KerDπB = TCm,α(γ,H) which was proved to split in Proposition 2.4.

More generally, for a given function σ ∈ Cm−2,α
δ+2 (M), let

(2.27) Cm,ασ (M) = {g ∈Metm,αδ (M) : sg = σ}.

One has a corresponding map πB as in (2.26) and the same proof as above shows that πB remains
a submersion, for any σ.

Although the mass mADM has no critical points on Sm,α(γ,H)(M), it may have critical points on

distinguished subsets of Sm,α(γ,H)(M) (constrained critical points). In view of Lemma 2.3, we focus

in particular on the submanifold Cm,α(γ,H). Clearly

mADM : Cm,α(γ,H) → R,

is a smooth functional.

Proposition 2.7. Critical points of the ADM mass mADM on Cm,α(γ,H) are exactly metrics g that

admit an AF function u such that (g, u) is an AF solution of the static vacuum Einstein equations
on M with given boundary data (γ,H).
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Note that we are not yet claiming that u > 0; this is addressed in Theorem 2.11 for Bartnik
mass minimizers.
Proof: On Cm,α(γ,H), by (2.7) one has

(2.28) H = −16πmADM : Cm,α(γ,H) → R.

The critical points of mADM on the constraint space Cm,α(γ,H) are thus exactly the same as critical

points of H on Cm,α(γ,H), and in the following we work with H. Note that the potential function u is

irrelevant at this point (since mADM is independent of u); thus in the following and for the moment,
we make a fixed (but arbitrary) choice of u = u0 > 0, with u0 − 1 ∈ Cm,αδ (M).

Let then (g, u0) be a critical point of the constrained variational problem, i.e.

dH(g,u0)(h, u
′) = 0,

for all (h, u′) ∈ T(g,u0)C
m,α
(γ,H), i.e. s′(h) = 0 and (hT , H ′h) = (0, 0) at ∂M . A standard Lagrange

multiplier theorem, discussed explicitly in a related context in [10], Thm. 6.3, shows that there

is a distribution λ on Cm−2,α
δ+2 (M), (the Lagrange multiplier), such that for all, i.e. unconstrained,

variations (h, u′) ∈ T(g,u0)S
m,α
(γ,H),

(2.29) dH(g,u0)(h, u
′) = λ(s′(h)).

Since sg = 0, one has by Proposition 2.2,

(2.30) dH(g,u0)(h, u
′) =

∫
M
〈S∗u0, h〉 =

∫
M
u0s
′(h),

for all variations (h, u′) that are compactly supported and vanish on ∂M . Combining these state-
ments gives

λ(s′(h))−
∫
M
u0s
′(h) = 0,

for all such compactly supported variations h. Thus, exactly as in the proof of Proposition 2.4, the
distribution u := u0 − λ is a Cm,α solution of the static vacuum equations with respect to g on M
up to ∂M . Again as in the proof of Proposition 2.4, λ→ 0 at infinity (since λ is a bounded linear

functional on Cm−2,α
δ+2 (M)) and hence u− 1 ∈ Cm,αδ (M).

We note that the potential u of an AF static vacuum metric (M, g) is uniquely determined by
g (up to multiplication by a scalar) if g is not flat, cf. Proposition 10 of [52]. On the other hand,
any affine function u is the potential of a flat static exterior solution (M, gEucl). As discussed in
Remark 2.9 below, it is not fully known in general whether, if (M, g) is an AF static metric, then
the potential u must also be AF.

We now state and prove one of main results of this section:

Theorem 2.8. An AF metric g on M realizing the Bartnik mass (2.4) of the boundary data (γ,H)
is an AF static vacuum solution (g, u), with u → 1 at infinity, satisfying the boundary conditions
(1.3).

Proof: The Bartnik mass mB is obtained by minimizing mADM subject to the no-horizon condition
and constraints that s ≥ 0, the boundary metric γ is fixed, and the mean curvature of ∂M is at
most H = H∂Ω pointwise. If g ∈ Pm,α0 (M) realizes mB, then a neighborhood of g in Pm,α(M) is
in Pm,α0 (M) by Lemma 2.1. Lemma 2.3 then implies that g must be scalar-flat, sg = 0. The result
then follows from Proposition 2.7, since g is a critical point of mADM on Cm,α(γ,H).
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Remark 2.9. Corvino showed that metrics minimizing the Bartnik mass of a domain Ω are static
vacuum outside Ω̄ by constructing suitable localized scalar curvature deformations [19]. However,
this result did not address the issues of the horizon conditions, nor the global behavior of the
potential function u, and did not fully address the boundary conditions.

Using this method, an elementary argument in [19] shows that the boundary condition (1.3)
is preserved; however, it is not clear whether the original (stronger) condition (1.2) is preserved;
(cf. Remark 2.10 and Theorem 2.11 below). This last issue has very recently been addressed in [20].
In addition, the proof that a minimizer is static vacuum does require some stability condition, such
as that in Lemma 2.1.

Moreover, in such an approach it remains unclear under what conditions the potential function
u satisfies u > 0 or even u → 1 at infinity M , i.e. u may not be asymptotically flat in the usual
sense. This issue has been considered recently by Galloway–Miao in [22] and Miao–Tam in [42].
With regard to the relations between Conjectures II and III, we note that the space Em,α of static
vacuum metrics (M, g, u) is not well-behaved if one allows the potential u to vanish, since the
(suitably gauged) static vacuum equations (2.10) become degenerate elliptic at the zero-locus of u.
Similarly, it is not well-behaved if the potential u is not asymptotic to a non-zero constant.

Remark 2.10. We recall briefly the reasoning that leads to the Bartnik boundary conditions (1.2)
and (1.3). By combining the Gauss and Ricatti equations on M at ∂M = ∂Ω one finds

(2.31) N(H) = 1
2(sγ − sg − |A|2 −H2).

Since the metric γ is fixed on ∂Ω, the scalar curvature sγ is fixed, while the last three terms in
(2.31) are negative, since sg ≥ 0. It follows that N(H) is uniformly bounded above, but may a
priori become arbitrarily negative in (weak) limits. Thus in passing to a limit of a mass-minimizing
sequence of extensions, one expects

(2.32) H∂M ≤ H∂Ω,

so that the exterior mean curvature may drop from that given by the region Ω, as in (1.3). Note
that the positive mass theorem still holds on such manifolds with corners, cf. [39], [48]. On the
other hand, if A and Rg remain bounded on a minimizing sequence, then one has

(2.33) H∂M = H∂Ω.

Unfortunately, it is not clear how to give a topology on Pm,α(M) to effectively implement such a
structure in limits.

Conversely, given (say) smooth boundary data (γ,H) on S2 that arise as boundary data for a
smooth metric gΩ of non-negative scalar curvature on Ω ' B̄, one expects that there is a smooth AF
metric on R3 of non-negative scalar curvature in which (Ω, gΩ) isometrically embeds, (corresponding
to the original definition (1.1)). This remains to be fully proved however.

Next we prove that boundary conditions (2.33) are actually realized for a minimizer of the ADM
mass, as defined in (1.3), provided one uses the definition (2.3) for Pm,α0 (M). This result was
obtained by Miao for the case in which (γ,H) has strictly positive Gauss curvature (and H > 0)
using a different technique; see Proposition 3.4 of [40].

Theorem 2.11. Suppose that an AF metric g on M realizes the Bartnik mass of the boundary
data (γ,H) in the sense of (2.4) (i.e. with boundary conditions (2.32)), where H > 0. Then (2.33)
holds, and the AF static vacuum potential u is strictly positive on M .

Proof: Suppose (M, g) realizes the Bartnik mass (2.4) of (Ω, gΩ), so that as in (2.32), H∂M ≤ H∂Ω.
We first show that (2.33) holds. Let U ⊂ ∂M be the open set on which strict inequality holds:

H∂M < H∂Ω on U.
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By Theorem 2.8, the metric g is static vacuum, and so in particular scalar-flat. Let u be the
corresponding AF static vacuum potential.

Consider the map πB in (2.26). By Corollary 2.6, πB is a submersion at (g, 1) and so for any
variation (hT , H ′h) of the boundary data (γ,H∂M ), there is a variation h of g such that s′(h) = 0.
Choose

(2.34) (hT , H ′h) = (0, q),

where q is a smooth function on ∂M supported in U and such that

(2.35)

∫
∂M

uq > 0.

Clearly, there are many such choices of q, unless u ≡ 0 on U . However, if u ≡ 0 on U , then H∂M ≡ 0
on U , since the zero set of a static vacuum potential is totally geodesic. Consider two cases. First,
if U is a proper subset of ∂M , then H∂M ≡ 0 on U contradicts H∂Ω > 0, since H∂M = H∂Ω outside
U . Second, if U = ∂M , then (M, g, u) is a Schwarzschild metric, by the black hole uniqueness
theorem. In particular, γ = γ2m is a round metric. Since H∂Ω > 0 and H∂M = 0, it is easy to see
that (M, g) cannot be a minimal mass extension. (For example, one may take an equidistant round
sphere r > 2m close to the horizon r = 2m of the Schwarzschild metric and rescale, decreasing the
mass).

Now, let h be the corresponding variation of g with s′(h) = 0, satisfying (2.34). Since s′(h) = 0
and (g, u) is static vacuum, one has from (2.28), (2.12), and (2.34) that

(2.36) −16πm′ADM (h) = dH(g,u)(h, 0) = 2

∫
∂M

uq > 0,

so that m′ADM (h) < 0. This gives, at the infinitesimal level, a mass-decreasing variation of (g, 1)
in T(g,1)C

m,α

(γ,H≤∂Ω)
(M). Now consider the curve of boundary data (γ,H∂M + tq) (for instance) with

t small. Again by Corollary 2.6, this curve lifts (via π−1
B ) to a curve gt in the slice or closed

complement to Ker s′ = T(g,1)Cm,α in Cm,α. It follows that mADM (gt) < mADM (g) for t > 0 small

and since πB(gt) = (γ,H + tq), gt ∈ Cm,α
(γ,H≤∂Ω)

(M), again for t small. Since by Lemma 2.1, gt has no

horizons for t small, this contradicts the definition of Bartnik mass. Thus (2.33) holds.
Next, suppose u < 0 somewhere on M . By the maximum principle, u < 0 at some point on

∂M . Let q be a smooth, non-positive function on ∂M , supported in the set where u < 0, satisfying
(2.35). A similar argument to that given above produces a mass-decreasing path of metrics in
Cm,α

(γ,H≤∂Ω)
(M), again contradicting the definition of the Bartnik mass. Thus u ≥ 0 on M .

Finally, if u(p) = 0 for some p ∈M , then p ∈ ∂M by the maximum principle. At p, by the static
vacuum equations, 0 = uRic = D2u and hence D2u = 0 at p. The restriction of D2u to ∂M gives
(D2)Tu + N(u)A = 0 and taking then the trace over ∂M gives ∆∂Mu + N(u)H = 0. Since p is a
minimum of u, ∆∂Mu ≥ 0, while by the Hopf boundary point maximum principle, N(u) > 0. It
follows then that H(p) ≤ 0, a contradiction. This proves u > 0.

Theorems 2.8 and 2.11 together imply Theorem 1.1 from the introduction.
An immediate corollary of Theorem 2.11 is the strict monotonicity of the Bartnik mass, improving

(2.5) when mB is realized.

Corollary 2.12. Suppose 0 < H ≤ H ′ and H < H ′ on some open set U ⊂ ∂M . If the data (γ,H)
is realized by a mass-minimizing extension in Pm,α0 (M), then

(2.37) mB(γ,H ′) < mB(γ,H).
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3. Remarks on Conjecture I

In this section, we present several results that provide further positive evidence for the validity
of Conjecture I, regarding the existence of AF extensions of non-negative scalar curvature.

The main extension results to date are based on the quasi-spherical method introduced by Bartnik
[7]. For example, using this method, it can be established that any boundary data (γ,H) with γ
of positive Gauss curvature Kγ > 0 and H > 0 admits an extension in P(M) (see [7], [48], [50]).
More recently, extension results have also been obtained by Lin [31] and Lin–Sormani [32] using a
modified Ricci flow.

We write (γ,H) ∈ Pm,α(M) if the boundary data (γ,H) on S2 admit an admissible extension
g ∈ Pm,α(M), and similarly for Pm,α0 (M).

We first note the following general result.

Proposition 3.1. The spaces Pm,α(M) and Pm,α0 (M) are open in Metm,α(S2)× Cm−1,α(S2).

Proof: This is an immediate consequence of Corollary 2.6, in the scalar-flat case. The general case
follows as in (2.27). Lemma 2.1 then implies the statement for Pm,α0 (M).

For the discussion to follow, we will not address the horizon issue, which is more difficult to
understand when dealing with more global problems.

We first prove a general result that the space Pm,α(M) is invariant under pointwise increase of
the mean curvature H, keeping the boundary metric γ fixed, (compare with the proof of Theorem
2.11). In fact, even a small decrease on H is allowed. The method of proof will also be used in the
proof of Theorem 1.2 given in Section 4.

Proposition 3.2. Suppose (γ,H) ∈ Pm,α(M). There exists a Cm−1,α function µ > 0 on S2,
(depending on (γ,H)), such that for any Cm−1,α function H0 on S2 satisfying

(3.1) H0 ≥ H − µ,

pointwise, one has (γ,H0) ∈ Pm,α(M).

Proof: Suppose (γ,H) ∈ Pm,α(M), so that there is an AF extension g of (γ,H) with scalar
curvature s ≥ 0. For simplicity, we will assume (γ,H) and g are smooth. We first consider the case
H0 ≥ H and construct an AF extension of (γ,H0) by a conformal deformation of g.

For a conformal metric g̃ = v4g with v > 0, the scalar curvature s of g changes as

(3.2) v5s̃ = −8∆v + sv =: f,

where ∆ is the Laplacian operator on (M, g). Since s ≥ 0, −8∆ + s is a positive operator (for
Dirichlet boundary data). Clearly g̃ ∈ P(M) requires f ≥ 0.

Let B(r) = {x ∈ M : dist(x, ∂M) ≤ r}, so that ∂B(r) = ∂M ∪ S(r). Given f ≥ 0 of compact
support on M , let vr be the unique solution to (3.2) on B(r) with Dirichlet boundary data vr = 1
on ∂M ∪ S(r). By the maximum principle, vr > 0 on B(r). It is standard that, letting r → ∞,
vr → v with v > 0 on M , v = 1 at ∂M , and v → 1 at infinity. In particular, g̃ is a conformal AF
metric on M , with induced boundary metric

γ̃ = γ at ∂M,

and boundary mean curvature

H̃ = v−2H + 4v−2N(log v),

where N is the unit normal into M with respect to g. Hence

(3.3) H̃ = H + 4N(v).
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To obtain H̃ = H0, we choose f ≥ 0 appropriately so that the solution v to (3.2) with boundary
conditions of 1 on ∂M and at infinity satisfies N(v) = 1

4(H0 −H).
Write (3.2) in the form

(3.4) L(v) := ∆v − 1
8sv = −1

8f.

On the bounded domain (B(r), g), L has a (negative) Green’s function G, with G(x, y) = 0 for
(say) y ∈ ∂M ∪ S(r). It is standard that we may take r → ∞ to obtain a (negative) Green’s
function G of (M, g) with O2(1/|y|) decay at infinity for G(x0, y), for any fixed x0.

The Poisson kernel P of L is given by P (x, y) = −NxG(x, y), for x ∈ ∂M and is positive for y
in the interior of M . Green’s formula gives for x ∈M ,

(3.5) v(x) = 1
8

∫
M
G(x, y)(−f(y))dy +

∫
∂M

P (y, x)v(y)dy + lim
r→∞

∫
S(r)

NyG(x, y)v(y)dy.

Here dy represents the corresponding volume forms on M , ∂M , and S(r), respectively, with respect
to g. Choosing f = s, the function v = 1 solves (3.4) uniquely, so that

(3.6) 1 = 1
8

∫
M
G(x, y)(−s(y))dy +

∫
∂M

P (x, y)1 + lim
r→∞

∫
S(r)

NyG(x, y)1dy.

Since v = 1 on ∂M and v → 1 at infinity, it follows that for general f of compact support, the
solution v to (3.4) is given by

(3.7) v(x) = 1 + 1
8

∫
M
G(x, y)(s(y)− f(y))dy.

Thus, for x ∈ ∂M ,

(3.8) N(v)(x) = 1
8

∫
M
P (x, y)(f(y)− s(y))dy.

It is standard that v has sufficient decay at infinity (e.g., v(y)− 1 = O2(|y|−2) so that g̃ is asymp-
totically flat.

Now we claim that given any smooth function ϕ ≥ 0 on ∂M , there is a Ck function f ≥ 0 (for
any k > 0) with compact support on M , such that

(3.9) ϕ(x) = N(v)(x) = 1
8

∫
M
P (x, y)(f(y)− s(y))dy.

This will complete the proof (in the case H0 ≥ H), by choosing ϕ = 1
4(H0 −H) ≥ 0.

To prove the claim, note first that by the basic reproducing property of the Poisson kernel,

(3.10)

∫
∂M

P (x, y)ϕ(y)dy = ϕ(x).

Choose a constant d0 > 0, smaller than the distance to the cut-locus of the normal exponential
map of ∂M into M , and let ∂M r = {y ∈M : dist(y, ∂M) = r} for 0 ≤ r ≤ d0. Define a continuous
linear operator Ar : Ck(∂M r)→ Ck(∂M r) by

(3.11) Ar(χ)(x) = χr(x) =

∫
∂Mr

Pr(x, y)χ(y)dy,

where x ∈ ∂M r and Pr = P |∂Mr . Using the identification of ∂M with ∂M r via the normal
exponential map, we may regard Ar as a map Ck(∂M)→ Ck(∂M). It is well-known (and easy to
see) that

Ar → Id, as r → 0,
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as bounded linear operators on Ck(∂M). Since the space of invertible operators is open, we may
shrink d0 > 0 if necessary so that given ϕ ∈ Ck(∂M) there exists a unique ϕr ∈ Ck(∂M r), r ≤ d0,
satisfying

(3.12)

∫
∂Mr

Pr(x, y)ϕr(y)dy = ϕ(x).

Note that Pr is smooth in r for r > 0, and hence so is ϕr. The (higher order) normal derivatives
∂krP (x, y) govern (by convolution) the (higher order) normal derivatives of harmonic functions on
M at ∂M ; it follows that ϕr is also smooth in r at r = 0.

Now, let ρ(r) be a smooth function of r ≥ 0 with ρ(0) = 1, ρ(r) = 0 for each r ≥ d0, and∫ d0

0 ρ(r) = d0
2 . Integrating over r and using the Gauss Lemma and Fubini theorem (or the coarea

formula) gives

(3.13)

∫
M
P (x, y)ρ(r(y))ϕr(y)dy = ϕ(x)

∫ d0

0
ρ(r)dr =

1

2
d0ϕ(x).

Thus the Ck function given by f(y) = s(y) + 16
d0
ρ(r(y))ϕr(y) satisfies (3.9). It is clear that f is

Ck smooth and extends smoothly by zero to M . This proves the claim (3.9). Note that f is not
uniquely determined.

To complete the proof when µ > 0, consider the given extension (M, g) of (γ,H), and take the
unique, smooth solution to 

∆u = 0 on M

u = 1 on ∂M

u→ 1
2 at ∞

Then the conformal metric ĝ = u4g belongs to Pm,α(M), induces the metric γ on its boundary,
and the induced mean curvature on ∂M given by

Ĥ = H + 4N(u).

By the maximum principle, N(u) < 0 on ∂M . Thus, (γ,H − µ) ∈ Pm,α(M) for the choice
µ = −4N(u) > 0. The result now follows by applying the argument above to (γ,H − µ).

It is useful to understand how the mass mADM changes under the deformations in Proposition
3.2. Thus recall from (2.16) that if g̃ = v4g, then

m̃ = m− 1

2π
lim
r→∞

∫
S(r)

N(v)dV.

In the context of the proof of Proposition 3.2 above, suppose f(y) ≥ s(y) ≥ 0, so that, in

particular, H̃ ≥ H. Then (3.7) shows v ≥ 1 and v → 1 at infinity, so that N(v) ≤ 0 near infinity
and thus,

m̃ ≥ m.
Thus, roughly speaking, as one increases H, the mass m increases under conformal changes, when

keeping the boundary metric fixed. On other hand, if 0 ≤ f(y) ≤ s(y), so that H̃ ≤ H, then (3.7)
shows v ≤ 1 and v → 1 at infinity, so that

m̃ ≤ m.
In particular, one can decrease the mass conformally if s ≥ 0 is not identically zero; compare with
Lemma 2.3.

When combined with existing results, Proposition 3.2 gives further partial evidence for the
validity of Conjecture I.
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Given a metric γ on S2, let λ1(−∆γ+Kγ) > 0 be the lowest eigenvalue of the operator −∆γ+Kγ ,
where ∆γ is the Laplacian with respect to γ and Kγ is the Gauss curvature.

Corollary 3.3. One has (γ,H) ∈ Pm,α(M) for all H > 0 and all γ such that λ1(−∆ +K) > 0.

Proof: In [34], Mantoulidis and Schoen constructed extensions g ∈ Pm,α(M) of (γ, 0) for γ satis-
fying λ1(−∆ +K) > 0. The result then follows from Proposition 3.2.

This generalizes (with a different proof) previous extension results of Bartnik [7] and Miao [40].

Corollary 3.4. For any (γ,H) with H > 0 there is a λ0 > 0 such that

(γ, λH) ∈ Pm,α(M),

for all λ ≥ λ0.

Proof: The proof is based on work in [2], [4] and [3] on the moduli space Em,α of Cm,α AF static
vacuum solutions (g, u), u > 0, on M = R3 \B. Namely, the map to Bartnik boundary data

(3.14) ΠB : Em,α →Metm,α(S2)× Cm−1,α(S2),

ΠB(g, u) = (γ,H),

is a smooth Fredholm map, of Fredholm index 0. (This is discussed further in Section 5). Consider
the map ΠB restricted to the space Em,α+ of static vacuum metrics with H > 0 at ∂M :

(3.15) ΠB : Em,α+ →Metm,α(S2)× Cm−1,α
+ (M).

Consider also the action of scalars λ ∈ R+ on Cm−1,α
+ (S2) where (λ,H)→ λH. Let Dm−1,α

+ (S2) be

the space of equivalence classes [H] = [λH]. The space Dm−1,α
+ (S2) is clearly a Banach manifold.

It is proved in [3] that the induced quotient map

Π̃B : Em,α+ →Metm,α(S2)×Dm−1,α
+ (S2),

Π̃B(g) = (γ, [H]),

is a smooth surjective Fredholm map of Fredholm index 1. Hence, for any given boundary data
(γ,H), H > 0, there exists λ0 = λ0(γ,H) such that (γ, λ0H) are the Bartnik boundary data of a
complete AF static vacuum solution (M, g, u). Since g ∈ Pm,α(M), the result then follows from
Proposition 3.2.

Corollary 3.4 may be contrasted with the result in [27] that for given Bartnik boundary data
(γ,H), with H > 0, there is a largest value λ0 <∞ such that (γ, λH) has a s ≥ 0 infilling for λ < λ0,
and no such infilling, for λ > λ0. Here, an s ≥ 0 infilling is a compact Riemannian 3-manifold with
boundary inducing Bartnik boundary data (γ,H) that has non-negative scalar curvature. That
result required γ to have positive Gauss curvature Kγ , but a recent result of Mantoulidis and Miao
(Theorem 1.3 of [33]) implies that λ0 <∞ without assuming Kγ > 0.

4. Proof of Theorem 1.2

The main purpose of this section is to prove Theorem 1.2. Most of the section will be devoted
to proving:

Theorem 4.1. Let F ∈ F be as in the statement of Theorem 1.2. Then

(4.1) mB(B̄, F ∗(gEucl)) = 0,

where mB is the Bartnik mass defined by (1.4).
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Remark 4.2. The result would be immediate if it were known that the Bartnik mass is continuous
(or even lower semi-continuous) in the smooth topology on the space of metrics on B̄ of non-
negative scalar curvature, since (B̄, F ∗(gEucl)) can be smoothly approximated, up to isometry, by
domains in R3 which have zero Bartnik mass. It is proved in [28], [29] that the ADM mass is lower
semi-continuous in the pointed C2 and C0 topologies. However, this does not directly imply lower
semi-continuity of the Bartnik mass: the main difficulty is that it is not known that “close” Bartnik
data necessarily have “close” competitors for near-minimal mass extensions.

Before proving Theorem 4.1, we first show how it is used to prove Theorem 1.2:

Proof of Theorem 1.2: Consider a pair (B̄, F ∗(gEucl)), where F ∈ F . Let F0 : S2 → R3 be F |S2 ,
an immersion of S2 into R3. Let γ0 = F ∗0 gEucl and H0 : S2 → R be the induced metric and mean
curvature.

Now, suppose the Bartnik mass of (B̄, F ∗(gEucl)) is realized by an extension (M, g) ∈ P0(M), so
that (1.3) holds with Ω = B̄. By Theorem 4.1, the ADM mass of (M, g) vanishes.

Glue (B̄, F ∗(gEucl)) and (M, g) along their boundaries so as to satisfy (1.3), producing a Rie-
mannian manifold (N,h), without boundary, that is asymptotically flat and smooth with non-
negative scalar curvature away from the gluing hypersurface. The ADM mass of (N,h) also van-
ishes. By the rigidity case of the positive mass theorem “with corners” in dimension three [39], [48],
(N,h) is isometric to (R3, gEucl) and H0 = H∂M . In particular, there is an isometric embedding
G of (B̄, F ∗(gEucl)) into (R3, gEucl). If we set G0 = G|S2 , then G∗0gEucl = F ∗0 gEucl = γ0 and the
mean curvature of the embedding G0 is H0. Thus, we have two immersions F0 and G0 of S2 into
R3 both realizing the same induced metric and the same mean curvature. The contradiction will
arise because F0 is not an embedding but G0 is, and we will show below that F0 and G0 are in fact
congruent.

A pair of immersions F1, F2 of a surface into R3 with the same induced metric and mean curvature
is called a Bonnet pair, and it is well-known that there are no non-trivial Bonnet pairs of spherical
topology. We recall the simple proof. Let Ai be the 2nd fundamental form of Fi. Since H1 = H2

and γ1 = γ2 ≡ γ, the Gauss–Codazzi equations give

δγ(A1 −A2) = 0,

where δγ is the divergence. Also trγ(A1 − A2) = 0. Thus A1 − A2 is a holomorphic quadratic
differential on S2. Since the only such is 0, one has A1 = A2. It then follows from the fundamental
theorem for surfaces in R3 (rigidity) that the immersions F1 and F2 are congruent.

Corollary 4.3. The space of compact regions (Ω, gΩ) of non-negative scalar curvature that admit
a mass-minimizing extension in P0(M) is not closed in the smooth topology.

This Corollary will make it hard to prove the existence of mass-minimizing extensions by studying
limits of mass-minimizing sequences in general.

Remark 4.4. Recall a result of Huisken–Ilmanen [25] on the rigidity of the Bartnik mass: if
mB(Ω) = 0, then Ω is locally flat. The proof of Theorem 1.2 above implies the converse of this
result is false, for domains Ω for which Conjecture II holds. To see this, consider a locally flat
domain (Ω, gΩ) = (B̄, F ∗(gEucl)), where F : B̄ → R3 is a smooth immersion which is not an
embedding. If mB(Ω) = 0 and mB(Ω) is realized by a minimum-mass extension (i.e. Conjecture II
holds at Ω), then the proof of Theorem 1.2 above gives a contradiction. Hence, either mB(Ω) > 0
or Conjecture II fails at Ω (or both).

Proof of Theorem 4.1: Let F : B̄ → R3 be the immersion in F . We detail the proof when
the self-intersection set Z ⊂ S2 = ∂B̄ consists of two distinct points z, z′ with F (z) = F (z′) but
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with F injective on B̄ \ Z. The proof in the general case of a finite number of double points is a
straightforward modification of this case.

Let F0 denote the restriction F |S2 , an immersion (but not embedding) of S2 into R3, and let

(γ0, H0) = (F ∗0 gEucl, HF0)

be the induced metric and mean curvature of F0, defined on S2.
Let ε > 0. We will prove that (B̄, F ∗(gEucl)) admits an admissible extension in P(M) whose

ADM mass is ≤ Cε for a constant C depending only on F . For ε > 0 small enough, the extension
will be in P0(M) in the strong sense, i.e. it contains no immersed minimal surfaces. The proof is
rather long, consisting of five steps.

Step 1: Modification of gEucl to introduce positive scalar curvature. Let Ω ⊂ R3 be the image of F ,
a compact set. Fix a neighborhood U of Ω, and let R0 = 1

ε be chosen so that the interior of the
ball B(R0) of radius R0 contains the closure of U (decreasing ε if necessary).

To begin, we smoothly deform the Euclidean metric gEucl on R3 to produce a new Riemannian
metric ĝ with the following properties: ĝ = gEucl on U ; ĝ has non-negative scalar ŝ that is strictly

positive somewhere, zero on R3 \ B(R0), and
∫
R3 ŝd̂V ≤ ε; ĝ is asymptotically flat with ADM

mass ≤ ε. To be definite, we construct ĝ by applying a conformal factor w4 to gEucl, where w is
superharmonic, harmonic outside B(R0), identically 1 on U , and approaches a constant less than
1 at infinity. Additionally, we can choose w so that

(4.2) 1− ε ≤ w, 1

w
≤ 1 + ε, |∇w| ≤ ε,

where |∇w| is taken with respect to gEucl. In particular, there exists a closed ball K, contained in
B(R0) \ U , such that

(4.3) ŝ ≥ α0 > 0 on K,

for some constant α0 = α0(ε).

Step 2: Construction of family of metrics ḡt to obtain correct boundary metric. In this step we will
perturb the immersion F0 to an embedding. This will of course alter the boundary data (γ0, H0),
so we will also perturb the metric ĝ so as to restore the original boundary metric γ0. This change
will introduce a small amount of negative scalar curvature and will possibly violate (1.3); these
issues will be addressed in Step 3.

To begin, let N0 be the unit outward normal vector field along F0, viewed as a function on S2

(taken with respect to ĝ, or equivalently, with respect to gEucl). Fix a number δ > 0 sufficiently
small so that Bz(2δ) ∩ Bz′(2δ) = ∅; here Bz(r) ⊂ S2 is the open geodesic r-ball about z, with
respect to the induced metric γ0. Let q : S2 → R≥0 be a smooth, non-negative bump function that
equals 1 on Bz(δ) and is zero outside Bz(2δ). Let A ⊂ S2 be the open annular region:

(4.4) A = int (Bz(2δ) \Bz(δ)) .
An example illustrating this setup is sketched in Figure 1.

For t ≥ 0, define a smooth family of maps Ft : S2 → R3 by

(4.5) Ft(x) = F (x)− tq(x)N0(z),

where N0(z) is treated as a constant vector field on R3. For 0 < t < t0 sufficiently small, Ft is an
embedding and Ft(S

2) is contained inside U . The mapping t 7→ Ft(S
2) gives a local flow of surfaces

in which the set Ft(Bz(δ)) is translated in the −N0(z) direction at speed 1, and Ft(S
2 \ Bz(2δ))

does not move. Thus, the only change to the geometry occurs in Ft(A).
For 0 < t < t0, the smooth, embedded 2-sphere Ft(S

2) bounds a smooth, compact region Ωt in
R3 that is diffeomorphic to a closed 3-ball. Let Mt = R3 \ int(Ωt), a smooth manifold with compact
boundary ∂M t. Note that Ft is a diffeomorphism of S2 onto ∂M t.
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Figure 1. An illustration indicating the initial setup in the proof of Theorem 4.1.

Lemma 4.5. There exists a domain V ⊂⊂ U ⊂ R3 and a smooth family of Riemannian metrics
{ḡt}0≤t<t0 on R3 such that:

ḡ0 = ĝ on R3; ḡt = ĝ outside of V, for t ∈ [0, t0),

and, on S2,

F ∗t ḡt = F ∗0 gEucl = γ0, for t ∈ [0, t0).

Moreover, V satisfies

(4.6) V ∩ Ft(S2) = Ft(int(Bz(
9
4δ) \Bz(

3
4δ))).

Proof: The following construction takes place within U , so we regard gEucl and ĝ as equal in
the remainder of this proof. Fix t ∈ (0, t0), and let γt be the metric on the embedded surface
Ft(S

2) ⊂ R3 induced by gEucl. Let r(x) = distgEucl
(x, ∂M t) be the Euclidean distance of x ∈ R3 to

∂M t = Ft(S
2). Recall that γt = γ0 outside Ft(Bz(2δ)) (where here we are identifying γ0 = F ∗0 gEucl

with the induced metric on F0(S2)). Let Σr
t be the image of Ft(A) under the time r Euclidean

exponential map normal to Ft(A) (the r-equidistant surface to Ft(A)); here r ∈ (−r0, r0) and r0 is
chosen small enough so that Σr

t ⊂ Mt ∩ U for r ≥ 0 and Σr
t is smooth for all r ∈ (−r0, r0). Note

that r0 may be chosen independent of t; it depends only on δ and the surface F0(S2). (See the left
side of Figure 2).

Let Ot be the union of the surfaces Σr
t for |r| < r0, an open set. In Ot, by the Gauss Lemma for

the normal exponential map,

gEucl = dr2 + γrt ,

where γrt is the metric induced on Σr
t by gEucl. Note γ0

t = γt on Σ0
t . Define a new metric on Ot by

ḡt = dr2 + γ̄rt ,

where γ̄rt is a smooth metric on Σr
t , varying smoothly in r, such that γ̄0

t = γ0|Σ0
t

and γ̄rt = γrt , for

|r| ≥ r0/2. (If t = 0, define ḡ0 = gEucl on O0.) Note that γ̄0
t , a metric on Ft(A), extends smoothly

to γt on Ft(S
2), since γt = γ0 outside Ft(A).

To complete the construction, let V be an open set contained in U and containing
⋃

0<t<t0

Ot and

satisfying (4.6). (See the right side of Figure 2).
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9
4δ))

V

Figure 2. This illustration shows part of the setup of the proof of Lemma 4.5.

Extend ḡt smoothly to V (and smoothly in t ∈ [0, t0) as well, which can be arranged in the above
construction) so that ḡt induces the metric γ0 on Ft(S

2) and ḡt agrees with ĝ near ∂V . Then ḡt
extends to a smooth family of metrics on R3, with ḡt = ĝ outside of V .

Note that ḡt = ĝ = gEucl on a neighborhood of F0(z) = F0(z′). Since the family ḡt is smooth in t
and ḡ0 = ĝ has non-negative scalar curvature, the scalar curvature s̄t of ḡt is non-negative outside
V and converges uniformly to zero inside V as t→ 0.

To summarize at this point, we have the asymptotically flat Riemannian manifold (Mt, ḡt), for
each t ∈ (0, t0), for which the induced metric on the boundary (when pulled back to S2 via Ft)
equals the original boundary metric γ0. The mean curvature H̄t of ∂Mt (viewed as a function on
S2) converges uniformly to the original H0 as t→ 0. Moreover,

(4.7) H̄t = H0 on S2 \A′

for all t ∈ (0, t0), where A′ = F−1
t (V ∩Ft(S2)) = int(Bz(

9
4δ)\Bz(

3
4δ)) is a slightly enlarged annulus.

The space (Mt, ḡt) is almost, but not quite, an admissible extension of (B̄, F ∗(gEucl)), for two
reasons: first, the mean curvatures of the boundaries do not agree (although they are close, for
t small) and more generally do not necessarily satisfy (1.3) (i.e., H̄t ≤ H0); second, the scalar
curvature s̄t is not non-negative (although it is nearly so, for t small.). We address these two
problems in the next step.

Step 3: Conformal deformation to correct scalar curvature and boundary mean curvature. Next,
we perform a conformal deformation to (Mt, ḡt). For each t ∈ (0, t0), consider the linear elliptic
problem

(4.8)


L̄tvt = 0 in Mt

vt = 1 on ∂Mt

vt → 1 at infinity,

where L̄t := ∆̄t − 1
8 s̄t. Assuming for the moment a smooth, positive solution vt exists, define the

conformal metric

g̃t = v4
t ḡt on Mt.

Then the induced metric on the boundary stays the same:

F ∗t g̃t = F ∗t ḡt = F ∗0 gEucl = γ0,
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by Lemma 4.5. Also, the mean curvature H̃t of ∂Mt with respect to g̃t is given by

(4.9) H̃t = H̄t + 4N̄t(vt),

where N̄t is the unit boundary normal on (Mt, ḡt) (viewed as a function on ∂Mt, pointing into Mt).
In this step we’ll prove that a solution vt > 0 to (4.8) exists and that, moreover,

(4.10) H̃t < H0,

for t sufficiently small.
One small difficulty is that, in contrast to the setting of Proposition 3.2, since s̄t may be nega-

tive at some points, −L̄t may not automatically be a positive operator (with Dirichlet boundary
conditions), so that the equation (4.8) may not a priori always be uniquely solvable. Similarly,
the associated Green’s function and Poisson kernel may not be uniquely defined, or have appro-
priate signs. On the other hand, these properties are relatively simple to prove. Note first that

L̄t : Ck+2,α
δ (Mt)→ Ck,αδ+2(Mt) (where we recall the weighted Hölder space notation from Section 2)

is formally L2(Mt, ḡt)-self-adjoint with respect to zero Dirichlet boundary conditions on ∂M t. In
the statement below, let M0 ⊂ R3 be the closure of the complement of Ω.

Lemma 4.6. For t0 > 0 sufficiently small, −L̄t is a positive operator for 0 < t < t0, with

respect to Dirichlet boundary conditions. Hence, given ft ∈ Ck,αδ+2(Mt), there is a unique solution

ωt ∈ Ck+2,α
δ (Mt) to L̄tωt = ft with ωt = 0 on ∂M t. Moreover, if ft → f0 in Ck,αδ+2(M0) as t → 0,

then the solutions ωt converge to the solution ω0 of L̄0ω0 = f0 in Ck+2,α
δ (M0).

Finally, the Green’s function Ḡt(x, y) and Poisson kernel P̄t(x, y) for L̄t exist and satisfy

Ḡt(x, y) ≤ 0, P̄t(x, y) ≥ 0,

with strict inequality for y in the interior of Mt.

Proof: Note that M0 is not a manifold with boundary (as ∂M0 = F0(S2) is not embedded), but it
does satisfy the Poincaré “exterior cone condition” (cf. [23]), and is therefore a regular domain for
the Dirichlet problem for the operator

L̄0 = L̂ := ∆̂− 1
8 ŝ,

where we recall that ŝ ≥ 0. Clearly, −L̄0 is a positive operator with respect to Dirichlet boundary
conditions, ω = 0 on ∂M0 and ω → 0 at infinity. In particular, for the bottom of the L2 spectrum
one has

λ0 = inf

∫
M0
−fL̄0fdV 0∫
M0

f2dV 0

> 0,

where the inf is taken over nonzero smooth functions f of compact support in M0. It is standard
that there exists a positive Green’s function Ḡ0 for L̄0 on M0.

As t ↘ 0, the boundaries ∂Mt converge to ∂M0, locally smoothly. Similarly, the operators L̄t
converge smoothly to the operator L̄0 (and are equal outside a compact set). Moreover, the bottom
eigenvalue λt0 of −L̄t varies continuously with t as t→ 0, and hence λt0 > 0, for t sufficiently small.

Thus −L̄t is a positive operator for t sufficiently small; it is then standard, cf. [30] for instance,
that the Green’s function Ḡt exists and is strictly negative in the interior of Mt and hence the
Poisson kernel is strictly positive (since P̄t(x, y) = −NxḠt(x, y) and Ḡt(x, y) = 0 for x ∈ ∂M t).
The existence and uniqueness, along with the convergence, then follows from standard elliptic
estimates.

It follows from Lemma 4.6 that (4.8) has a unique, smooth solution.
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Remark 4.7. The main technical problem that arises in the discussion to follow is that for xt →
x = F0(z), i.e. xt converging to the singular point,

P̄t(xt, ·)→ 0

(uniformly) on Mt. Thus the Poisson kernel P̄t(xt, ·) degenerates at F0(z). Closely related to this
is the fact that the Martin boundary of M0 equals the Euclidean boundary away from the point
F0(z) but at the cusp point F0(z) is much larger; there is a minimal positive harmonic function
supported at F0(z) for each angle of approach to the singular point F0(z). This is discussed in
Example 3 of [35].

Returning to the analysis of (4.8), it follows as in the discussion concerning (3.7) that

(4.11) vt(x) = 1 + 1
8

∫
Mt

Ḡt(x, y)s̄t(y)dy,

for t ∈ (0, t0), where dy denotes the volume form dV t(y) of ḡt. As in (3.8), this gives for x ∈ ∂Mt,

(4.12) N̄t(vt)(x) = −1
8

∫
Mt

P̄t(x, y)s̄t(y)dy.

Let
Ct(δ) = Ft(Bz(δ) ∪Bz′(δ)) and Dt(δ) = Ft(S

2 \ (Bz(δ) ∪Bz′(δ))).
The geometry of ∂M t is controlled in Dt(δ) but degenerates in Ct(δ) as t→ 0. Of course,

∂M t = Ct(δ) ∪Dt(δ).

Lemma 4.8. For t0 > 0 sufficiently small, the solution vt to (4.8) is positive and satisfies

(4.13) N̄t(vt) < 0, on ∂Mt, for 0 < t < t0

Moreover, there exists b > 0, independent of t ∈ (0, t0), such that

(4.14) N̄t(vt)(x) < −b, for x ∈ Dt(
1
2δ), 0 < t < t0.

Proof: By Lemma 4.6, as t ↘ 0, vt converges, smoothly on compact subsets, to a limit solution
v0 to

(4.15) L̂v0 := ∆̂v0 −
1

8
ŝv0 = 0,

on (M0, ĝ) with boundary conditions v0 = 1 on ∂M0 and v0 → 1 at infinity. By the maximum
principle, since ŝ ≥ 0 (and is not identically zero), one has the following facts:

0 < v0 ≤ 1 on M0,

N0(v0) < 0 on F0(S2 \ {z, z′}).

Here, the unit normal to N0 is viewed as a (well-defined) vector field on F0(S2 \ {z, z′}) ⊂ ∂M0.
In particular, N0(v0) < −2b on Dt(

1
2δ) for some constant b > 0. Since vt → v0 locally in C1 (by

Lemma 4.6), and Dt(
1
2δ) converges smoothly to D0(1

2δ) as t→ 0, we have

N̄t(vt) < −b on Dt(
1
2δ),

for t sufficiently small, which proves (4.14). Also, by the (weighted) convergence of vt to v0 as in
Lemma 4.6, we have that vt > 0 for t sufficiently small.

The estimate (4.13) for x in Ct(
1
2δ) for t is somewhat more subtle. Considering (4.12), note that

P̄t(x, y) > 0 and s̄t ≥ α0 > 0 in K from (4.3), while s̄t slightly negative of order t in V , for V as in
Lemma 4.5. However, by Remark 4.7, the Poisson kernel P̄t(x, y) degenerates at the singular point
x = F0(z) as t→ 0: P̄t(Ft(z), y)→ 0 as t→ 0, uniformly in y. Thus the relative behavior of P̄t in
these two regions is not immediately clear.
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We will use the following boundary Harnack estimate to obtain uniform control, as t → 0, on
the relative behavior of P̄t(x, y) for y near to and away from the boundary ∂M t.

Sub-Lemma 4.9. There exists a constant C > 0 such that

(4.16) sup
y∈V ∩Mt

P̄t(x, y) ≤ C inf
y′∈K

P̄t(x, y
′),

for x ∈ Ct(1
2δ) and t ∈ (0, t0), where C is independent of such x and t.

The proof appears later.
Now it follows from (4.12) and the fact that any negative scalar curvature of ḡt lies within V

together with the lower bound s̄t ≥ α0 on K that for x ∈ Ft(S2),

N̄t(vt)(x) ≤ −1
8

∫
V ∩Mt

P̄t(x, y)s̄t(y)dy − 1
8

∫
K
P̄t(x, y)α0dy,

since P̄t(x, y) ≥ 0. It follows then from (4.16) that for x ∈ Ct(1
2δ),

N̄t(vt)(x) ≤ 1
8

(
sup

y∈V ∩Mt

P̄t(x, y)

)(
sup

y∈V ∩Mt

|s̄t(y)|

)
volḡt(V )− 1

8α0

(
inf
y′∈K

P̄t(x, y
′)

)
volĝ(K)

≤ 1
8

(
inf
y′∈K

P̄t(x, y
′)

)[
C

(
sup

y∈V ∩Mt

|s̄t(y)|

)
volḡt(V )− α0 volĝ(K)

]
.

Since s̄t converges uniformly to 0 on V and volḡt(V ) is bounded as t→ 0, the above is negative for
t sufficiently small, independent of x. This completes the proof of Lemma 4.8.

Now, we explain why (4.10) holds. Recall from (4.7) that H̄t = H0 on Ct(
3
4δ). Thus, (4.13)

and (4.9) show H̃t < H0 on Ct(
3
4δ). Also, H̄t converges uniformly to H0, so (4.9) and (4.14) show

(shrinking t0 if necessary) that H̃t < H0 on Dt(
1
2δ). This proves (4.10).

To conclude this step, we note that g̃t = v4
t ḡt is asymptotically flat: since s̄t vanishes outside a

compact set, vt is ḡt-harmonic outside a compact set. Since vt → 1 at infinity, it is well-known (and
not hard to show) that v4

t ḡt is asymptotically flat. Moreover, g̃t has zero scalar curvature. Thus,
g̃t is an admissible extension of (B̄, F ∗(gEucl)) in P(M), for t sufficiently small.

Step 4: Control of ADM mass of g̃t. By the conformal deformation formula (2.16), and the fact
that ĝ = ḡ0 = ḡt outside a compact set,

mADM (g̃t) = mADM (ḡt)−
1

2π
lim
r→∞

∫
Sr

N̄t(vt)dAt

= mADM (ĝ)− 1

2π

∫
SR1

N̄t(vt)dAt ≤ ε−
1

2π

∫
SR1

N̄0(vt)dA0

≤ ε+
1

2π

∫
SR1

|∇̄0(vt)|dA0,(4.17)

by the divergence theorem (since vt is ḡt-harmonic outside U for all t) and since ḡt = ḡ0 on SR1 .
Here R1 ≥ R0 + 1, where R0 is the value chosen in Step 1, i.e. SR0 encloses U ⊃ ∂M t. Increasing
R1 if necessary, we arrange that

(4.18)
|SR1 |ḡ0

4π(R1)2
≤ 2,

by asymptotic flatness.
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By Lemma 4.6, the convergence of vt to v0 is sufficient to guarantee that, by (4.17),

(4.19) mADM (g̃t) ≤ ε+
2

2π

∫
SR1

|∇̄0(v0)|dA0

for t sufficiently small. Using the Green’s function Ḡ0 to represent v0, we have, as in (4.11):

v0(x) = 1 + 1
8

∫
M0

Ḡ0(x, y)s̄0(y)dy = 1 + 1
8

∫
B(R0)

Ḡ0(x, y)s̄0(y)dy,

since s̄0 vanishes outside B(R0). By the standard decay of the Green’s function, there exists
constant C1 depending only on the initial immersion F such that

|∇̄0Ḡ0(x, y)|ḡ0 ≤
C1

|x|2

for |x| ≥ R1 and y ∈ B(R0). From the ε-bound on the L1 norm of the scalar curvature of ḡ0 = ĝ
from Step 1, this gives

|∇̄0v0(x)|ḡ0 ≤
C1ε

8|x|2
,

for |x| ≥ R1. Combining this with (4.19) and using (4.18) implies that

mADM (g̃t) ≤ ε+
2

2π

C1ε

8(R1)2
|SR1 |ḡ0

≤ (1 + C1)ε.

Step 5: Absence of Horizons. In this final step, we argue that if ε > 0 was chosen small enough
to begin with, then (Mt, g̃t) will not contain any horizons in the strong sense, i.e. no immersed
minimal surfaces, for t sufficiently small.

Recall from Step 1 that R0 = 1
ε > 0 was chosen so that B(R0) contains U , and ĝ was constructed

to be conformally flat with with zero scalar curvature outside B(R0). In particular, ḡt and g̃t also
have zero scalar curvature and are conformally flat outside B(R0). It follows that g̃t = u4

t gEucl in
R3 \B(R0), where ut > 0 is gEucl-harmonic for each t (specifically, ut = wvt).

In particular, using Lemma 4.6 and the decay of w, one has the Euclidean estimates

(4.20) |ut(x)− 1 + a| ≤ c0

|x|
and |∇ut(x)|gEucl

≤ c1

|x|2
,

for x ∈ R3 \B(R0), where c0 and c1 depend only on F , and 1−a is the constant that w (and hence
ut) approaches at infinity. By (4.2), 0 < a ≤ ε.

Suppose Σ is a compact, immersed minimal surface in (Mt, g̃t). The mean curvatures H̃t and
HEucl of Σ with respect to g̃t and gEucl are related by

0 = H̃t = (1 + f1)HEucl + f2

for smooth functions f1 and f2 on Σ, where |f1| and |f2| are bounded above by the C1 norm of
g̃t − gEucl. (This can be seen from the first variation of area formula, for instance). In particular,
by (4.2) and the fact that ḡt converges smoothly to ĝ as t→ 0, we have, for t sufficiently small,

(4.21) |HEucl| ≤ C2ε,

for a constant C2 depending only on F .
Let r = |x| be the Euclidean distance function from the origin, and let R1 = maxΣ r, achieved

at a point p0 ∈ Σ. By a standard comparison of mean curvature of Σ,

(4.22) HEucl(p0) ≥ HEucl(SR1) =
2

R1
.
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Thus, 1
R1
≤ C2ε

2 . If ε > 0 is sufficiently small, then R1 > R0. In particular, p0 ∈ R3 \ B(R0), so

that g̃t = u4
t gEucl in a neighborhood of p0. Thus

0 = H̃t = u−2
t HEucl + 4u−3

t NEucl(ut),

at p0. Combining this with (4.20),

(4.23) |HEucl(p0)| ≤ 4
|∇ut|
ut

(p0) ≤ 4c1

(R1)2

1

1− ε− c0
R1

Estimates (4.22) and (4.23) give a contradiction if ε is sufficiently small, since ε controls 1
R1

.

Thus, if ε is chosen to be sufficiently small in Step 1, then g̃t is an admissible extension of
(B̄, F ∗(gEucl)) in P0(M) for t sufficiently small. The proof of Theorem 4.1 is now complete, except
for the proof of Sub-Lemma 4.9, to which we now return.

Proof of Sub-Lemma 4.9. We will use the boundary Harnack principle for the elliptic operator
L̄t, cf. [16], Theorem 11.5, for instance. Recall that V , from Lemma 4.5, satisfies V ∩ Ft(S2) =
Ft(A

′) = Ft(int(Bz(
9
4δ) \ Bz(

3
4δ))) for each t, and that K is a set disjoint from U on which ŝ ≥

α0 > 0.
Let O2 ⊃ O1 ⊃ (V ∪K) be connected, bounded open sets in R3 chosen so that O2 ∩ Ct(5

8δ) = ∅
for all t ∈ (0, t0) and that O1 ⊂ O2. See Figure 3.

Ft(S
2) Ft(Bz(

1
2δ))

Ft(Bz′(
1
2δ))

V

(Mt, gt)

x

K

O1

Figure 3. The main sets used in the proof of Sub-Lemma 4.9 are shown above. O2 is not
pictured but can be viewed as a slight enlarging of O1.

Then for any x ∈ Ct(
1
2δ), the function y 7→ P̄t(x, y) is smooth and bounded on O2 ∩Mt and

vanishes on ∂Mt ∩O2.
Using Lemma 4.6, let νt by the unique solution to L̄tνt = 0 in Mt with boundary conditions

0 on ∂M t and 1 at infinity; νt limits, as t → 0, to a function ν0 on M0, satisfying 0 < ν0 < 1
in the interior of M0, by the maximum principle. The convergence is sufficient to guarantee that,
shrinking t0 if necessary,

• 0 < νt ≤ 2 in O2 ∩ int(Mt),
• νt(y) ≥ β for y ∈ K, where β > 0 is some constant independent of t,

By Lemma 4.6 again, for x ∈ Ct(1
2δ) and y ∈ O2, the Poisson kernel P̄t(x, y) satisfies P̄t(x, ·) = 0

on O2 ∩ ∂M t and P̄t(x, ·) > 0 in O2 ∩ int(Mt). Since L̄t is elliptic and νt(y) and y 7→ P̄t(x, y)
29



are L̄t-harmonic on O2 ∩Mt, the boundary Harnack principle (cf. [16]) implies that: for all y, y′ ∈
O1 ∩ int(Mt) and all x ∈ Ct(1

2δ), one has

(4.24)
P̄t(x, y)

νt(y)
≤ ct

P̄t(x, y
′)

νt(y′)

for some constant ct > 0 (depending on t), but independent of x. However, since L̄t and (Mt, ḡt)
converge smoothly as t→ 0, we may take the constant ct independent of t; call it C0.

Thus, using (4.24) and the relations on νt above,

sup
y∈V ∩Mt

P̄t(x, y) = sup
y∈V ∩int(Mt)

P̄t(x, y) ≤ sup
y∈O1∩int(Mt)

P̄t(x, y) ≤ sup
y∈O1∩int(Mt)

2P̄t(x, y)

νt(y)

≤ 2C0 inf
y′∈O1∩int(Mt)

P̄t(x, y
′)

νt(y′)
≤ 2C0 inf

y′∈K

P̄t(x, y
′)

νt(y′)
≤ 2C0

β
inf
y′∈K

P̄t(x, y
′).

This proves the result with C = 2C0
β . This also completes the proof of Theorem 4.1.

Remark 4.10. The proof of Theorem 4.1 actually shows the admissible extensions of (B̄, F ∗(gEucl))
contain no immersed compact minimal surfaces at all, thus disproving Conjecture II for the “strong”
version ms

B of the Bartnik mass.

Remark 4.11. In the proof of Theorem 4.1, we constructed admissible extensions of (B̄, F ∗(gEucl))
that obeyed the boundary conditions (1.3). However, it is possible with some further work to achieve
equality of the mean curvatures, i.e. (1.2), in the construction by following an argument similar to
the proof of Proposition 3.2. Specifically, one may replace (4.8) with L̄tvt = ft, where the functions
ft ≥ 0 are chosen to be supported near ∂M t and so that the normal derivatives N̄t(vt) satisfy (4.9)
with H̄t = H0. A similar argument to that in Step 5 above shows that (Mt, ḡt) has no immersed
minimal surfaces surrounding ∂M ; however since ft may blow up near the singular point F0(z), it
is not clear that (Mt, ḡt) has no immersed minimal surfaces at all.

To conclude this section, we note that it is not difficult to see that the proof of Theorem 1.2
generalizes to a larger class of immersions F at the boundary of the space of embeddings than the
particular class F used in Theorem 1.2. We will not pursue this in any further detail here. Instead,
we make the following general:

Conjecture 4.12. Conjecture II is false for any locally flat 3-ball. That is, if F is any smooth
immersion of a 3-ball B̄ in R3 that is not an embedding, then (B̄, F ∗(gEucl)) admits no admissible
extension realizing its Bartnik mass.

5. Remarks on Conjecture III

In this section, we discuss several aspects of Conjecture III, related to the analysis in the previous
section on Conjecture II.

To begin, (as noted briefly in the Introduction), it is proved in [2], [4] that the moduli space Em,α
of Cm,α AF static vacuum solutions (g, u), u > 0, on M = R3\B is a smooth Banach manifold. The
moduli space Em,α is the space of all such static vacuum metrics (g, u) which are Cm,α smooth up

to ∂M , modulo the action of the Cm+1,α diffeomorphisms Diffm+1,α
1 (M) of M equal to the identity

on ∂M and asymptotic to the identity at infinity. Moreover, the map to Bartnik boundary data

(5.1) ΠB : Em,α →Metm,α(S2)× Cm−1,α(S2) := B,
ΠB(g, u) = (γ,H),

is a smooth Fredholm map, of Fredholm index 0, i.e. dim KerDΠB = dim CokerDΠB, at any (g, u).
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The ADM mass of (M, g) is given by a simple Komar integral

(5.2) mADM (g) =
1

4π

∫
∂M

N(u)dvγ ,

and clearly the mass

(5.3) mADM : Em,α → R,

is a smooth function on Em,α.
Conjecture III is the statement that the map ΠB is a bijection when H > 0. As in (3.15), let

Em,α+ be the open Banach submanifold of static vacuum metrics with H > 0 at ∂M . The map

(5.4) ΠB : Em,α+ →Metm,α(S2)× Cm−1,α
+ (S2),

ΠB(g) = (γ,H),

is clearly also a smooth Fredholm map, of Fredholm index 0.
The question of whether ΠB in (5.4) is a bijection is a PDE issue (global existence and uniqueness

for an elliptic boundary value problem) which is now disconnected from the extension issue in
Conjecture I. The interior behavior in B = R3 \M no longer plays any role (besides assigning
boundary data). In particular, the mass function mADM in (5.3) may well have negative values on
Em,α+ . Put another way, it is not at all clear (at least in general) how to restrict the boundary data
(γ,H) to the smaller space B+ of such data which have non-negative scalar curvature in-fillings in
order to obtain meaningful information about the restricted map ΠB|D+ , where D+ = Π−1

B (B+).

It is proved in [4] that ΠB in (5.4) is not a homeomorphism. In fact, ΠB is not proper, and if
the inverse map is defined, it is not continuous. The reasons for this are more or less the same as
the behavior discussed in Theorem 1.2, namely the passage from embedded spheres to immersed
spheres, and it is worth discussing this in more detail.

Let Immm+1,α := Immm+1,α(S2,R3) be the space of Cm+1,α immersions F : S2 → R3. This is a
smooth Banach manifold (an open submanifold of the full mapping space Cm+1,α(S2,R3)). Simi-
larly the space Embm+1,α := Embm+1,α(S2,R3) of Cm+1,α of embeddings is an open submanifold of
Immm+1,α. Of course embeddings F ∈ Embm+1,α give static vacuum solutions (M, gEucl, 1) where
M is the unbounded component of R3 \ ImF ; thus

(5.5) Embm+1,α ⊂ Em+1,α

upon an appropriate identification. Immersions that are not embeddings no longer give such flat
static vacuum solutions. It is then natural to consider the behavior of the inclusion (5.5) at the
(point-set theoretic) boundary of Embm+1,α within Immm+1,α; denote this space as ∂ Embm+1,α.

In the following, we will identify immersions into R3 that differ by a rigid motion of R3. Rigid
motions, i.e. the isometry group of R3, act freely on Immm+1,α by post-composition. Let Immm+1,α

be the resulting smooth quotient space.
For F ∈ Immm+1,α, the induced metric γ = F ∗(gEucl) is a Cm,α metric on S2 while the mean

curvature H = HF is in Cm−1,α(S2). Note that the data (γ,H) are well-defined for F ∈ Immm+1,α.
Thus the map ΠB in (5.1) or (5.4), defined initially on Embm+1,α extends to a smooth map on the
larger space Immm+1,α; to avoid confusion, we denote this extended map as ΠIB.

Lemma 5.1. The map

ΠIB : Immm+1,α → B, ΠIB(F ) = (γ,H) = (F ∗(gEucl), HF ),

is a smooth proper embedding of Banach manifolds.
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Proof: The map ΠIB is injective by the proof of Theorem 1.2, i.e. the non-existence of (non-trivial)
Bonnet pairs. The proof that DΠIB is injective is essentially the same. Thus, the Gauss–Codazzi
(constraint) equations for the immersion F are δγ(A − Hγ) = 0, where δγ is the divergence.
Linearizing gives δ′γ′(A−Hγ) + δ(A′ −H ′γ −Hγ′) = 0. If (γ′, H ′) = (0, 0), this becomes δA′ = 0.

Since trA′ = (trA)′+ 〈A, γ′〉 = 0, it follows as before that A′ is a holomorphic quadratic differential
on S2 and hence A′ = 0. Thus the full Cauchy data (γ′, A′) of the immersion vanish. It follows by
(infinitesimal) rigidity of surfaces that F ′ is an infinitesimal rigid motion, so F ′ = 0 in TImmm+1,α.

Next we show that ΠIB is proper. Suppose Fi satisfy ΠIB(Fi) = (γi, Hi) → (γ,H) in B. Then
one has uniform control on δA and trA. It is well-known that (δ, tr) form an elliptic system for
symmetric bilinear forms on S2. Since the system has trivial kernel on Immm+1,α, elliptic regularity
gives uniform control on {Ai} in Cm−1,α. It is then standard that this gives uniform control on
{Fi} in Immm+1,α. Thus a (sub)-sequence of {Fi} converges to a limit F , which proves that ΠIB
is proper.

Let

M = Im(ΠIB) ⊂ B,
a properly embedded Banach submanifold representing the Bartnik boundary data of immersions
F : S2 → R3. Let

Memb ⊂M
be the open submanifold of embedded Bartnik boundary data, i.e. Memb = Im(ΠIB(Embm+1,α)).
Thus

Memb ⊂ Im(ΠB).

However, it is not at all clear if the full space of immersed boundary data M⊂ Im(ΠB).
As discussed in [4], the map ΠB is not proper when restricted to Embm+1,α ⊂ Em,α. Namely,

take any sequence of embeddings Fi converging to an immersion F that is not an embedding. The
Bartnik boundary data (γi, Hi) of Fi converge to the boundary data (γ,H) of F . However, the
sequence of static vacuum solutions (M, gi, 1) determined by Fi does not converge to a limit in Em,α
(since ∂(Embm+1,α) is not contained in Em,α).

In analogy to Conjecture 4.12, we make:

Conjecture 5.2. The Bartnik boundary data (γ,H), with H > 0, of any locally flat 3-ball (that is
not an embedded ball in R3) does not have a static vacuum extension, i.e. such (γ,H) ∈M\Memb

are not in the image of ΠB.

One may similarly conjecture that Conjecture 5.2 above holds more generally for immersions
F : S2 →M into any static vacuum solution (M, g, u) in place of flat R3, where F (S2) is a surface
surrounding ∂M .

We also conjecture there is a second region where Conjecture III breaks down. Recall that the
black hole uniqueness theorem [26], [15], together with [41], states that the only static vacuum
extension of the boundary data (γ, 0) is given by the Schwarzschild metric with γ = γ2m a round
metric of radius 2m.

Conjecture 5.3. For any γ ∈ Metm,α(S2) of non-constant Gauss curvature, there is a neighbor-

hood Uγ ⊂ Cm−1,α
+ (S2) with 0 ∈ Uγ , such that for H ∈ Uγ , the boundary data (γ,H) does not

bound a static vacuum metric (M, g, u). In particular, ΠB is not surjective near the Schwarzschild
metric.
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Partial evidence for this conjecture is given by the main compactness theorem (Theorem 1.2)
in [4]. Namely, if (M, gi, ui) is a sequence of static vacuum solutions, ui > 0, with boundary data
(γi, Hi)→ (γ,H) in B, with Hi > 0 and H ≥ 0, and if ∂M is strictly outer-minimizing in (M, gi, ui)
for all i, then a subsequence of (M, gi, ui) converges in Em,α to a limit (M, g, u) realizing the data
(γ,H). Setting H = 0, one has a contradiction to the black hole uniqueness theorem if γ 6= γ2m for
some m > 0. Hence, such outer-minimizing solutions cannot exist for i sufficiently large.

It remains an open question as to whether such static vacuum extensions exist with ∂M not
outer-minimizing. If such a sequence exists, either the curvature of gi must blow-up near ∂M or
the distance to the cut-locus of the normal exponential map must tend to zero (or both), as i→∞.

Remark 5.4. The compactness result above suggests modifying the Bartnik mass mB by allowing
for only outer-minimizing extensions, as suggested by Bray [12]. Note this rules out the construc-
tions above in the proof of Theorem 1.2 and the discussion above on Conjecture III, which are
certainly not outer-minimizing extensions. One may also restrict the map ΠB in (5.4) to the space

Ẽm,α of static vacuum solutions for which ∂M is strictly outer-minimizing. Note that Ẽm,α is an

open domain in Em,α+ . However, as discussed above, the restricted map ΠB on Ẽm,α is not surjective
(onto a product neighborhood of the Schwarzschild boundary data). Thus, Conjecture III also fails
for the modified mass m̃B.

Observe that boundary data (γ,H) near Schwarzschild data (γ2m, 0) do have outer-minimizing
extensions in Pm,α0 . The discussion above (together with Theorem 1.1) strongly suggests that
Conjecture II also fails for the modified mass m̃B, i.e. there exist (γ,H) for which there is no
mass-minimizing extension realizing m̃B.

Although Theorem 1.2 shows that Conjecture II is false in general, (and similarly the discussion
above indicates that Conjecture III is likely to be false in general) one would still like to find natural
geometric conditions on the boundary data (γ,H) of the region Ω under which these Conjectures
could remain valid. In a simpler but related setting, the guiding light along these lines is the
famous Weyl embedding theorem [43], [45] that a 2-sphere S2 with metric γ of positive Gauss
curvature embeds isometrically in R3 as the boundary of a convex body Ω. In particular, the
normal exponential map expN into the exterior M = R3 \ Ω has no cut or focal points.

As discussed in [4], [3] and seen here in Theorem 1.2, the presence of nearby cut or focal points of
expN is the primary difficulty in establishing Conjecture III and is of course also basic in establishing
Conjecture II. Thus, it is natural to ask:

Question. Are there natural geometric conditions on (γ,H) such that any extension of (γ,H) in
Pm,α or any static vacuum extension in Em,α+ , has a lower bound on the distance to the cut-locus
of expN?

Unfortunately, there is little evidence (if any) to suggest that the conditions Kγ > 0 and H > 0
are sufficient for this purpose, i.e. a simple, direct generalization of the Weyl embedding theorem
has little support for its validity. On the other hand, it would of course be interesting to find any
examples where Kγ > 0, H > 0 with the distance to the cut-locus of expN arbitrarily small.
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