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1. SOME ANSWERS TO PROBLEMS FROM §2.2

The steady-state solution of the given problem is the solution v(z) of the following
boundary value problem:

v(0) =Ty, v(a)=T;.
The most general solution to (1) is of the form
v(z) = vp(x) + van(x) ,
where v, is a solution of the homogeneous equation
d*v
dx?

and v,p(x) is any particular solution of (1). It is obvious that one such particular
solution is given by the constant function

Unn(2) =T,

_721/:0,

while the general solution to the homogeneous equation is given by
vp(z) = c1€7® + coe 7.
Therefore,
v(z) =T+ c1e" + coe™ .
But v(z) must satisfy the boundary conditions (2). So
v(0)=T+c1+c =T,
while
v(ia) =T+ 1" + e =T .
Solving the system of equations (3), (4) for ¢; and ¢y, we obtain that

. T — (TO — T)€,7a -T - T — (T() — T)Efya =T
B e’ — e B e=7e — ere '

C1 ) Co

So the steady-state solution that we search for is given by
T1 - (T() - T)ef”m - T T1 - (TO - T)e"“ -T

v(iz) =T+ e’ + e .
ere — e—a e~va — eva
The steady-state solution solves the boundary value problem
d*u
w = O, O<zr< a,
du

dx(o) =0, u(a)=Tp.

The most general solution to the ordinary differential equation is

u(r) = ¢+ e
1



We find the constants ¢; and ¢y by imposing the boundary conditions. By the van-
ishing of the derivative at x = 0, we conclude that co = 0. On the other hand,
u(a) = ¢; = Tp. So the desired steady-state solution is given by the function

u(z) =Ty,

a constant.

2. SOME ANSWERS TO PROBLEMS FROM §2.3

Let us call w,(z,t) the terms in the series:

Ty — (~1)"T) _,»
wy(z,t) = —gﬂe”‘nkt sin (A\,kx), Ay =nm/a.

T n
Then the first four terms in the series are:

2 n2 k
wi(x,t) = —;(TO +T)e” 2" sin (%) ,
2Ty — T, 2 2rk
’LUQ(./L',t):_; 02 16_472&sin( ﬁax),
ws(z )__ETO_{_Tle*QLaQM sin 3rkx
S T 3 a )’
210 —T7 _16x2kt | Adrkx
wy(z,t) = g 2 sin —

Initially, that is to say, at ¢ = 0, the function u is identically zero: u(x,0) = 0. On
the other hand, as t — oo, the function u approaches the steady-state solution to the
problem, that is limy_,o, u(z,t) = v(z) = 100 + 200z. The graphs below depict the
solution at t = 0, t = 0.2, t = 0.5 and ¢t = oo (since there are very few differences
between the graphs at ¢ = 0.5, £ = 1.0 and £ = oo, I chose to depict these graphs
instead of those asked for in the exercise; these graphs were obtained using Maple):
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Notice that there is very little distinction between the graphs of u(z, 0.5) and u(z, o).
So in just 0.5 sec, the distribution of temperature in the rod is almost equal to the
steady-state temperature.



6) Since the boundary conditions are homogeneous, the steady-state solution of this
problem is the function identically zero. If we apply the method of separation of
variables, we find the family of functions w,(z,t) = e Mk gin Az, A, = nm/a, n =
1,2,3,..., solutions to the heat equation and the given boundary conditions. We
then apply the principle of superposition to obtain a solution that satisfies the initial
value as well. If

w(z,t) = ibne_(na_w) M si (?) ,
n=1

then ~
nm
0= S bosin () =g, 0 <,
w(z, 0) sin ( — Bx r<a

if, and only if, the b,’s are the coefficients of the sine Fourier series of the function
Bx. So we must choose

2 [ 2 2
b, = —/ Bx sin (@>dx = ﬂcosmr = ﬂ(—l)",
a Jo a nm nm
and the desired solution to our initial boundary value problem is
260 = (—1)" (2= )k o (PTE
Y- )i g (7).
u(z,t) - Z e sin

n a

n=



