MAT 342 Applied Complex Analysis
Spring 2016 Midterm Exam Example
Solutions

1. a) 1)

\[2\sqrt{3} - 1 + i(2 + i^3) = 2\sqrt{3} - 1 + 2i + i^4 = 2\sqrt{3} + 2i = \sqrt{12 + 4e^{i\arctan\left(\frac{2}{\sqrt{3}}\right)}} \]

\[= 4e^{i\arctan\left(\frac{2}{\sqrt{3}}\right)} = 4e^{i\pi}\]

2)

\[1 + \cos\left(\frac{2\pi}{3}\right) + \cos\left(\frac{4\pi}{3}\right) + i\left(\sin\left(\frac{2\pi}{3}\right) + \sin\left(\frac{10\pi}{3}\right)\right) \]

\[= 1 + \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right) + \left(\cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3} + 2\pi\right)\right) \]

\[= 1 + e^{i\frac{2\pi}{3}} + e^{i\frac{4\pi}{3}} = 1 + e^{i\frac{2\pi}{3}} + \left(e^{i\frac{2\pi}{3}}\right)^2 \]

\[= \frac{\left(e^{i\frac{2\pi}{3}}\right)^3 - 1}{e^{i\frac{2\pi}{3}} - 1} = 0 \]

b) 1)

\[\frac{3e^{-i\pi}}{\sqrt{(1 - i)(1 + i) + 2 e^{i2\pi}}} = \frac{3e^{-i\pi}}{\sqrt{1 + 1 + 2}} = \frac{3}{2}e^{-i\pi} = -\frac{3}{2} \]

2)

\[\frac{-1 + i}{\sqrt{3} - i} = \frac{(-1 + i)(\sqrt{3} + i)}{(\sqrt{3} - i)(\sqrt{3} + i)} = \frac{-\sqrt{3} - i + i\sqrt{3} - 1}{4} = \frac{-1 - \sqrt{3} + i\sqrt{3} - 1}{4} \]

2. a) Let \(z = x + iy\) and \(w = a + ib\) be complex numbers. We then have

\[|z + w|^2 + |z - w|^2 = |(x + a) + i(y + b)|^2 + |(x - a) + i(y - b)|^2 \]

\[= (x + a)^2 + (y + b)^2 + (x - a)^2 + (y - b)^2 \]

\[= x^2 + 2xa + a^2 + y^2 + 2yb + b^2 \]

\[+ x^2 - 2xa + a^2 + y^2 - 2yb + b^2 \]

\[= 2(x^2 + y^2 + a^2 + b^2) = 2(|z|^2 + |w|^2) \]

b) Geometrically, the vectors \(z + w\) and \(z - w\) are the diagonals of a parallelogram spanned by the vectors \(z\) and \(w\). The equation above now states the well-known fact that the sum of the squares of the lengths of the two diagonals equals the sum of the squares of the lengths of the four sides of the parallelogram.
3. a) A set S of complex numbers is called open if it does not contain any of its boundary points. (Equivalently, every point of S is an interior point of S.) A set S of complex numbers is called closed if it contains all of its boundary points. (Equivalently, the complement $\mathbb{C} \setminus S$ of S in \mathbb{C} is open.)

b) 1) The set $M_1 = \{ z = 1 + re^{i\theta} \mid r > 0, 0 \leq \theta \leq \frac{\pi}{2} \}$ is neither open nor closed: The point $z = 2 = 1 + e^{i0}$ lies in M_1. For any $\varepsilon > 0$, the point $z - i\frac{\varepsilon}{2}$ lies not in M_1 since $\operatorname{Arg}(z - i\frac{\varepsilon}{2}) < 0$ but it lies in the ε-neighbourhood of z. Hence, z is a boundary point of M_1 which lies in M_1. Thus, M_1 is not open.

We have $1 \notin M_1$, but for any $\varepsilon > 0$ the point $1 + \frac{\varepsilon}{2} = 1 + \frac{\varepsilon}{2} e^{i0}$ lies in M_1. Hence, 1 is a boundary point of M_1 which does not lie in M_1. This implies that M_1 is not closed.

2) The set $M_2 = \{ z \in \mathbb{C} \mid (\operatorname{Re}(z))^2 = \operatorname{Im}(z) \}$ is not open but closed. Let $z \in M_2$, i.e. $z = x + iy$ for some $x \in \mathbb{R}$. Let $\varepsilon > 0$ and let $w = z + \frac{\varepsilon}{2} = x + i(x^2 + \frac{\varepsilon^2}{4})$. Then, $w \notin M_2$ but $w \in B_\varepsilon(z)$. Hence, z is a boundary point of M_2 which implies that M_2 is not open.

To show that M_2 is closed, we will show that any sequence in M_2 which converges in \mathbb{C} in fact converges in M_2. It is easy to see that this is equivalent to the statement that M_2 is closed. Let $(z_n)_{n \in \mathbb{N}}$ be a sequence in M_2. Assume that $z_n \to z = x + iy \in \mathbb{C}$ as $n \to \infty$. Let $z_n = x_n + iy_n$. Then, both $x_n \to x$ and $y_n \to y$ as $n \to \infty$. We have to show that $y = x^2$.

Since $z_n \in M_2$, we have $y_n = (x_n)^2$ for all $n \in \mathbb{N}$. Because the function $f : \mathbb{R} \to \mathbb{R}$, $f(t) = t^2$, is continuous, we have $f(x_n) \to f(x) = x^2$ as $n \to \infty$ but also $f(x_n) = (x_n)^2 = y_n \to y$ as $n \to \infty$. Hence, $y = x^2$ which implies that $z \in M_2$. Thus, M_2 is closed.

3) The set $M_3 = \left\{ z \in \mathbb{C} \mid \left(\frac{\operatorname{Re}(z)}{4}\right)^2 + \left(\frac{\operatorname{Im}(z)}{4}\right)^2 < 1 \right\}$ is open but not closed.

We first prove, that M_3 is open. Let $z = x + iy \in M_3$. Then $\frac{x^2}{16} + \frac{y^2}{4} < 1$.

Let $t = 1 - \frac{x^2}{16} - \frac{y^2}{4}$. Then $t > 0$. Let $\varepsilon = \min\{1, \frac{8t}{2|x|+8|y|+8}\}$. We then have $1 \geq \varepsilon > 0$.

Let $w = a + ib \in B_\varepsilon(z)$. Thus, $|x-a|, |b-y| \leq |z-w| < \varepsilon$.

$$\frac{a^2}{16} + \frac{b^2}{4} = \frac{(a-x+x)^2}{16} + \frac{(b-y+y)^2}{4} = \frac{x^2}{16} + \frac{y^2}{4} + \frac{(a-x)^2}{16} + \frac{2x(a-x)}{4} + \frac{(b-y)^2}{4} + \frac{2y(b-y)}{4} \leq 1 - t + \frac{|a-x|^2}{16} + \frac{2|x||a-x|}{4} + \frac{|b-y|^2}{4} + \frac{2|y||b-y|}{4} \leq 1 - t + \frac{\varepsilon^2}{16} + \frac{2|x|\varepsilon + 4\varepsilon^2 + 8|y|\varepsilon}{4} \leq 1 - t + \frac{\varepsilon^2}{16} + \frac{5 + 2|x| + 8|y|}{16} \leq 1 - t + \frac{t}{2} = 1 - \frac{t}{2} < 1$$
Hence, $w \in M_3$ which implies that M_3 is open.

To see that M_3 is not closed, consider the point $z = x + iy = 4$. Then, $z \not\in M_3$ since $(\frac{4}{7})^2 + (\frac{0}{7})^2 = 1$. Let $\delta > 0$. If $\delta > 4$, then $0 \in B_\delta(z) \cap M_3$. If $\delta < 4$, then $z - \frac{\delta}{2} \in B_\delta(z) \cap M_3$. Hence, z is a boundary point of M_3 which does not lie in M_3. Thus, M_3 is not closed.

4. a) Let $z_0, w_0 \in \mathbb{C}$ and let f be a function. The notion $\lim_{z \to z_0} f(z) = w_0$ means that for any $\varepsilon > 0$ there exists a $\delta > 0$ such that $|f(z) - w_0| < \varepsilon$ whenever $|z - z_0| < \delta$.

 b) 1) By a theorem from the lecture, we need to check whether $\lim_{z \to 0} \frac{\frac{1}{z^2} - \frac{2}{z} + 1}{\frac{\pi}{z^3} + \frac{1}{3z^2}}$ exists. For $z \neq 0$, we have
 \[\frac{\frac{1}{z^2} - \frac{2}{z} + 1}{\frac{\pi}{z^3} + \frac{1}{3z^2}} = \frac{1 - 2z^2 + z^3}{\pi + i3z}. \]
 Since $\lim_{z \to 0} (1 - 2z^2 + z^3) = 1$ and $\lim_{z \to 0} (\pi + i3z) = \pi \neq 0$, we know that the limit exists with $\lim_{z \to 0} \frac{\frac{1}{z^2} - \frac{2}{z} + 1}{\frac{\pi}{z^3} + \frac{1}{3z^2}} = \frac{1}{\pi}$. Hence, $\lim_{z \to \infty} \frac{\frac{1}{z^2} - \frac{2}{z} + 1}{\frac{\pi}{z^3} + \frac{1}{3z^2}} = \frac{1}{\pi}$.

 2) We have
 \[\frac{z^2 + 2z - 3}{z^2 - 3z + 2} = \frac{(z - 1)(z + 3)}{(z - 1)(z - 2)} = \frac{z + 3}{z - 2}. \]
 Hence,
 \[\lim_{z \to 1} \frac{z^2 + 2z - 3}{z^2 - 3z + 2} = \lim_{z \to 2} \frac{z + 3}{z - 2} = \frac{4}{-1} = -4. \]

5. a) Let $f(z) = u(r, \theta) + iv(r, \theta)$. The Cauchy-Riemann equations are fulfilled in $z_0 = r_0 e^{i\theta_0}$ if
 \[ru_r(r_0, \theta_0) = v_\theta(r_0, \theta_0) \quad \text{and} \quad u_\theta(r_0, \theta_0) = -rv_r(r_0, \theta_0). \]

 b) Since $\sqrt{\cdot}$ is the principle branch of the squareroot function, we have for every $z = re^{i\theta} \in D$
 \[f(z) = \sqrt{r} e^{i\frac{\theta}{2}} = \sqrt{r} \cos \left(\frac{\theta}{2}\right) + i\sqrt{r} \sin \left(\frac{\theta}{2}\right) = u(r, \theta) + iv(r, \theta). \]
 Hence, the first order partial derivatives of u and v with respect to r and θ exist and we have
 \[u_r(r) = \frac{1}{2\sqrt{r}} \cos \left(\frac{\theta}{2}\right) \quad u_\theta(r, \theta) = -\frac{\sqrt{r}}{2} \sin \left(\frac{\theta}{2}\right) \]
 \[v_r(r) = \frac{1}{2\sqrt{r}} \sin \left(\frac{\theta}{2}\right) \quad v_\theta(r, \theta) = \frac{\sqrt{r}}{2} \cos \left(\frac{\theta}{2}\right). \]
Hence,

\[ru_r(r, \theta) = \frac{\sqrt{r}}{2} \cos \left(\frac{\theta}{2} \right) = v_\theta(r, \theta) \]

\[rv_r(r, \theta) = \frac{\sqrt{r}}{2} \sin \left(\frac{\theta}{2} \right) = -u_\theta(r, \theta). \]

Thus, the Cauchy-Riemann equations are fulfilled throughout \(D \). Since the first order partial derivatives of \(u \) and \(v \) are continuous throughout \(D \), \(f' \) exists everywhere in \(D \).

6. a) A function \(f \) defined on an open set \(S \) is called analytic, if it is differentiable at any point \(z \in S \).

b) For \(z = x + iy \in \mathbb{D} \), we have

\[u(x, y) = e^{\pi x} \cos(\pi y) + 2xy \quad \text{and} \quad v(x, y) = e^{\pi x} \sin(\pi y) - x^2 + y^2. \]

Thus, the first order partial derivates of \(u \) and \(v \) exist and

\[u_x(x, y) = \pi e^{\pi x} \cos(\pi y) + 2y = v_y(x, y) \]

\[u_y(x, y) = -\pi e^{\pi x} \sin(\pi y) + 2x = -v_x(x, y). \]

Hence, the Cauchy-Riemann equations are fulfilled throughout \(\mathbb{D} \). Since the first order partial derivatives of \(u \) and \(v \) are continuous throughout \(\mathbb{D} \), the function \(f \) is differentiable throughout \(\mathbb{D} \), hence analytic.