MAT 342 Applied Complex Analysis
Final Exam Example
May 2016

1. (12 pts, 4 pts each)
 a) Define the notion complex differentiable.

 b) Define the principle branch of the logarithm.

 c) State Cauchy’s residue theorem.
2. (12 pts, 4 pts each)
 a) Find the multiplicative inverse of $3 + 4i$ and write the solution in rectangular form.
 b) Find all $z \in \mathbb{C}$ such that $z^2 = 4i$.
 c) Prove the triangle inequality: For all $z, w \in \mathbb{C}$, the inequality

\[|z + w| \leq |z| + |w| \]

holds.
3. (10 pts) Find all $z \in \mathbb{C}$ such that

$$z^4 + z^3 + z^2 + z + 1 = 0.$$
4. (12 pts) Let f be an entire function such that

$$f(z) = f(z + 1) = f(z + i)$$

for all $z \in \mathbb{C}$. Prove that f is constant.
5. (10 pts) Let p be a polynomial of degree d_p and let q be a polynomial of degree d_q with $\max\{d_p, d_q\} \geq 1$. Assume that q is not constantly 0 and that p and q do not share a common zero. Let $f : \mathbb{C} \setminus \{z \in \mathbb{C} \mid q(z) = 0\} \to \mathbb{C}$ be given by

$$f(z) = \frac{p(z)}{q(z)}.$$

Let $z_0 \in \mathbb{C}$. Prove that there exists some $z \in \mathbb{C}$ such that $f(z) = z_0$.

Continue on page 6
6. (12 pts) Find the Laurent series of

\[f(z) = \frac{1}{(z-1)(z-3)} \]

in \(\{ z \in \mathbb{C} \mid 0 < |z - 1| < 2 \} \).
7. (12 pts, 4 pts each) Let
\[f(z) = \frac{1}{(z - 2)(z - 4)}. \]
Find the contour integrals of \(f \) along the circles about the origin of radius 1, 3 and 5, taken in counterclockwise direction.
8. (20 pts, 10 pts each) Compute both

a) \[\int_{0}^{\infty} \frac{1}{1 + x^4} \, dx \]

and

b) \[\int_{-\infty}^{\infty} \frac{x \sin(ax)}{x^4 + 4} \, dx \quad \text{where} \quad a > 0 \]

using residues.
Name: ___________________________ ID: ______________
Name: ___________________________ ID: _______________