Imbedding Discrete Series in $L^2(G/H)$

A. W. KNAPP*

SUNY at Stony Brook

This report partly discusses joint work with M. W. Baldoni-Silva and partly carries out a suggestion of D. A. Vogan.

Let G/H be a semisimple symmetric space, with G linear connected semisimple and with H the identity component of the group of fixed points of an involution. The problem is: For a generic discrete series representation of $L^2(G/H)$, with given Langlands parameters (in the classification of irreducible representations of G), find an explicit nonzero intertwining operator C carrying the Langlands quotient into the realization in $L^2(G/H)$.

Heuristic Principle. A natural intertwining operator T from $\text{ind}_H^G \pi_1$ to $\text{ind}_H^G \pi_2$ is given by some interpretation of

$$Tf(x) = \int_{H_2/(H_1 \cap H_2)} \pi_2(\delta) f(xh \delta) \, dh,$$

provided that π_1 and π_2 act on the same Hilbert space and are equal on $H_1 \cap H_2$ except for the natural combination of change-of-measure factors. This formula is to be valid, with a suitable interpretation, even when $H_2/(H_1 \cap H_2)$ has no invariant measure.

This formula, together with an analytic continuation, accounts for the standard Knapp-Stein operators.

It accounts also for a simplification in the search for C in the present situation. Namely the Langlands realization is as a quotient of some $\pi = \text{ind}_H^G \text{MAN}(\sigma \otimes \varepsilon^* \otimes 1)$ for a parabolic subgroup MAN. Thus $H_1 = MAN$, $\pi_1 = \sigma \otimes \varepsilon^* \otimes 1$, $H_2 = H$, and $\pi_2 = 1$. For the compatibility property to apply directly, one needs σ and 1 to act on the same space. This situation is quite special. When it occurs, we can interpret $H/(H \cap MAN)$ as $H \cap K$, where K is maximal compact in G, and T becomes $Tf(x) = \int_{K} ...$.

*Supported by National Science Foundation Grant DMS 91-00367.
\[\mathcal{E} \] we can take as the desired \(\mathcal{E} \). In general, with \(\sigma \) and \(1 \) acting on different spaces, \(\mathcal{E} \) should involve as an additional ingredient a passage from \(\sigma \) to \(1 \). The Reduction Theorem below will make precise the fact that the passage from \(\sigma \) to \(1 \) is the only obstacle to finding \(\mathcal{E} \).

If the desired \(\mathcal{E} \) can be found, then the linear functional \(e \) on the analytic vectors of \(\pi = \text{ind}_{\text{MAX}}^G(\sigma \otimes e^\nu \otimes 1) \) given by \(e = (\text{evaluation at } 1) \circ \mathcal{E} \) satisfies

1. \(e \) is \(H \)-invariant \((e(x) = e \text{ for } h \in H) \) and continuous
2. \(\{ e(\pi(x)f) \mid x \in G \} \) is bounded in \(C \) for each analytic vector \(f \)
3. \(e(\mathcal{E}^{-1}(\psi_\lambda)) \neq 0 \), where \(\psi_\lambda \) is Flensted-Jensen's generating element of the given discrete series of \(L^2(G/H) \).

Conversely any linear functional \(e \) on the analytic vectors of the correct \(\pi \) satisfying (1), (2), and

(3') \(e \neq 0 \)
determines a nonzero intertwining operator into \(L^2(G/H) \).

For a generic Flensted-Jensen parameter \(\lambda \), Schlichtkrull found the Langlands parameters of the discrete series representation of \(L^2(G/H) \) with Flensted-Jensen parameter \(\lambda \). Let \(g = h \oplus q \) be the decomposition of the Lie algebra of \(G \) according to the involution, and let \(g = t \oplus p \) be a compatible Cartan decomposition. Flensted-Jensen's parameter is a linear functional on a maximal abelian subspace \(t \) of \(t \cap q \) (and \(t \) is assumed maximal abelian in \(q \)). Let \(L \) be the centralizer of \(t \) in \(G \). Let \(A \) be the abelian factor of an Iwasawa decomposition of \(L \), and let \(MAN \) be a corresponding parabolic subgroup with \(N \) chosen suitably. Also let \(K \) be the compact subgroup corresponding to \(t \), and let \(\mu_\lambda \) be the highest weight of the \(K \)-type constructed from \(\lambda \) by Flensted-Jensen.

According to Schlichtkrull, the Langlands parameters are \(\nu = \rho_\lambda \) (half the sum of the positive restricted roots of \(L \), with multiplicities) and the discrete series \(\sigma \) of \(M \) constructed by the Vogan algorithm from the \(K \)-type \(\mu_\lambda \). The quotient \(M/(H \cap M) \) is a semisimple symmetric space, and the theorem below reduces the construction of the linear functional \(e \) for \(G \) to the construction of a corresponding linear functional \(l \) for \(M \).

Reduction Theorem. Let the discrete series \(\sigma \) act on \(V^\sigma \). Suppose \(l \) is a linear functional on the analytic vectors of \(V^\sigma \) such that

1. \(l \) is \((H \cap M) \)-invariant \((l(\sigma(h)) = l \text{ for } h \in H \cap M) \) and continuous
\((2_M)\) \(\{l(\sigma(m)v) \mid m \in M\}\) is bounded in \(C\) for each analytic vector \(v\).

\((3_M)\) \(l(v_{H \cap M \cap K}) \neq 0\) if \(v_{H \cap M \cap K}\) is a nonzero \(H \cap M \cap K\) fixed vector in the minimal \(M \cap K\) type of \(\sigma\).

Define \(\epsilon\) on the analytic vectors \(f\) of \(\text{ind}_{M \cap K}^{G}(\sigma \otimes e^v \otimes 1)\) by

\[\epsilon(f) = \int_{H \cap K} l(f(k)) \, dk.\]

Then \(\epsilon\) satisfies \((1), (2), (3)\) and defines the required nonzero intertwining operator into \(L^2(G/H)\).

One expects \(l\) to be defined by integration:

\[l(v) = \int_{H \cap M} \{\sigma(h)v, v_{H \cap M \cap K}\} \, dh.\] \((*)\)

The following partial results support this expectation:

(a) The integral \((*)\) always converges for \(\sigma\) generic and \(v\) analytic, and \((1_M)\) holds.

(b) For \(l\) as in \((*)\), \((2_M)\) and \((3_M)\) hold when \(M\) is compact, when \(M/(H \cap M)\) is a group case, and when \(M/(H \cap M) = SO(2,1)/SO(1,1)\).

(c) For \(l\) as in \((*)\), \((3_M)\) holds if \(\sigma\) is a holomorphic discrete series representation of \(M\).