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Abstract. Élie Cartan’s classification of the simple Lie algebras over R is
derived quickly from some structure theory over R and the classification over
C.

Élie Cartan classified the simple Lie algebras over R for the first time in 1914.
There have been a number of simplifications in the proof since then, and these are
described in [3, p. 537]. All proofs assume the classification over C and a certain
amount of structure theory over R. Recent proofs tend to run to 25 pages. Here is
a shorter argument.

Theorem. Up to isomorphism, the only simple Lie algebras over R that are neither
complex nor compact are those in Cartan’s list as organized in [3, p. 518].

We use terminology as in [3]. Let g0 = k0 ⊕ p0 be a Cartan decomposition of a
noncomplex simple Lie algebra over R, and let θ be the Cartan involution. Choose
a maximal abelian subspace t0 of k0 and extend to a maximally compact Cartan
subalgebra h0 = t0 ⊕ a0 of g0. Removal of subscripts 0 will indicate complexifica-
tions. Let ∆ = ∆(g, h) be the root system. Roots are imaginary on t0 and real
on a0. All roots are imaginary-valued or complex on h0; there are no real-valued
roots. Introduce a positive system ∆+ that takes it0 before a0. The map θ carries
roots to roots and permutes the simple roots. The complex simple roots move in
two-element orbits, while the imaginary simple roots are fixed. By the Diagram of
(g0, h0,∆

+), we mean the Dynkin diagram of ∆ with the two-element orbits under
θ so labeled and with the imaginary roots shaded or not, according as the simple
root is noncompact (root vector in p) or compact (root vector in k).

Lemma 1. If (g0, h0,∆
+) and (g′0, h

′
0, (∆

′)+) have the same Diagram, then g0 and
g′0 are isomorphic.

Proof. We may assume that the complexifications (g, h,∆+) are the same and that
the associated compact forms are the same: u0 = k0 ⊕ ip0 = k′0 ⊕ ip′0. Using the
conjugacy of compact forms, the conjugacy of maximal abelian subspaces within
them, and the standard construction of a compact form from h, we see that we can
normalize root vectors Xα, α ∈ ∆, as in Theorem 5.5 of [3, p. 176] and obtain u0

from {Xα} as in Theorem 6.3 of [3, p. 181].
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First suppose a0 = 0, so that all roots are imaginary. For α simple we have
θXα = ±Xα, the sign being + if α is compact and − is α is noncompact. The same
formula holds for θ′. Since h and the Xα’s for α simple generate g, it follows that
θ = θ′, hence that k = k′ and p = p′. Then g0 = g′0 is recovered as (u0∩k)⊕i(u0∩p).

If a0 6= 0, we may not have θ = θ′. For α ∈ ∆, write θXα = aαXθα.
Then aαa−α = 1 and aαaθα = 1. Since θ maps u0 ∩ span{Xα, X−α} to u0 ∩
span{Xθα, X−θα}, we see that āα = a−α. Therefore |aα| = 1. For each pair of

complex simple roots α and θα, choose square roots a
1/2
α and a

1/2
θα whose product is

1. Similarly write θ′Xα = bαXθα with |bα| = 1, and define b
1/2
α and b

1/2
θα for α and

θα simple. Define H and H ′ in h ∩ u0 by the conditions that α(H) = α(H ′) =

0 for α simple imaginary and that exp(1
2α(H)) = a

1/2
α , exp(1

2θα(H)) = a
1/2
θα ,

exp(1
2α(H ′)) = b

1/2
α , and exp(1

2θα(H ′)) = b
1/2
θα if α and θα are complex simple.

A little computation shows that θ′ ◦Ad(exp 1
2 (H −H ′)) = Ad(exp 1

2 (H −H ′)) ◦ θ,
from which it follows that k′ = Ad(exp 1

2 (H−H ′))k, p′ = Ad(exp 1
2 (H −H ′))p, and

g′0 = Ad(exp 1
2 (H −H ′))g0.

The next step is to identify some pairs of distinct Diagrams that correspond
merely to changes of ∆+. The argument is inspired by [2]. First let us assume that
a0 = 0, i.e., that the automorphism of ∆ given by θ is the identity. Let Λ be the
subset of it0 where all roots take integer values and where all noncompact roots
take odd-integer values. If {ωj} is the basis dual to the simple roots, then the sum
of those ωj corresponding to the noncompact simple roots is a member of Λ. The
set Λ is discrete, and we let H0 be a member of Λ as close to 0 as possible.

Lemma 2. If (∆+)′ is a positive system that makes H0 dominant, then there is at
most one noncompact simple root, say αi. If the basis dual to the simple roots of
(∆+)′ is {ωj}, then there cannot exist i′ such that 〈ωi − ωi′ , ωi′〉 > 0.

Proof. Since H0 is in Λ and is dominant, H0 =
∑
njωj with all nj integers ≥ 0.

If ni > 0, then H0 − ωi is dominant and thus has 〈H0 − ωi, ωi〉 ≥ 0 with equality
if and only if H0 = ωi. Then |H0 − 2ωi|2 ≤ |H0|2 with equality only if H0 = ωi,
and minimality forces H0 = ωi. Now let H0 = ωi. If 〈ωi − ωi′ , ωi′〉 > 0, then
|H0 − 2ωi′ |2 < |H0|2, in contradiction to minimality.

When a0 6= 0, Lemma 2 is to be applied to the part of it0 corresponding to the
span of the imaginary simple roots. The result is that we can associate to any g0

at least one Diagram in which at most one imaginary root is shaded.
Now we can read off the possibilities. First suppose that the automorphism of ∆

is the identity. If all roots are unshaded, then g0 is the compact form. Otherwise
exactly one simple root is shaded. For the classical Dynkin diagrams, let the double
line or triple point be at the right end, and let the ith root be shaded. In An, we
are led to su(i, n+ 1− i). In Bn, we are led to so(2i, 2n+ 1− 2i). In Cn, we are led
to sp(i, n− i) if i < n and to sp(n,R) if i = n. In Dn, we are led to so(2i, 2n− 2i)
if i ≤ n− 2 and to so∗(2n) otherwise.

For the exceptional Dynkin diagrams, a little checking that compares the second
conclusion of Lemma 2 with the fundamental weights (see [1, pp. 260-275]) shows
that αi in Lemma 2 has to be a node (endpoint vertex) of the Dynkin diagram.
Moreover, in G2, αi has to be the long simple root, while in E8, it cannot be the
node on the short branch. In E6 two nodes are equivalent by outer automorphism.
Thus we obtain at most three Lie algebras for E7; at most two for E6, E8, F4; and
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at most one for G2. These are E II, E III for E6, E V, E VI, E VII for E7; E VIII,
E IX for E8; F I, F II for F4; and G for G2.

When the automorphism of ∆ is not the identity, the Dynkin diagram is An, Dn,
or E6. For An, there is no imaginary simple root if n is even, and there is one if n is
odd. For n even we are led to sl(n+ 1,R), while for n odd we are led to sl(n+ 1,R)
if the root is shaded and to su∗(n + 1) if the root is unshaded. For Dn, the first
n− 2 simple roots are imaginary. If all are unshaded, we are led to so(1, 2n− 1).
If the ith simple root is shaded, i ≤ n− 2, we are led to so(2i+ 1, 2n− 2i− 1). For
E6, the triple point and the node on the short branch are imaginary. If neither is
shaded, we are led to E IV, while if either one is shaded, we are led to E I.

Note added in proof. David Vogan has pointed out that any Dynkin diagram
marked with an involution and having a subset of its one-element orbits shaded
is a Diagram for some g0. The proof is in the spirit of Lemma 1. Existence of the
exceptional simple real Lie algebras follows.
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