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Abstract

This article describes ways in which to get an overview of some of the goals
and methods of Langlands program, and it points to treatments of some
examples that are worth keeping in mind.
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The overall nature of the Langlands program is captured well by some quotations
from introductions to Langlands’s own papers that are cited here. Langlands
writes,1 “There are at least three different problems with which one is confronted
in the study of L-functions: the analytic continuation and functional equation; the
location of the zeros; and in some cases, the determination of the values at special
points. The first may be the easiest. It is certainly the only one with which I have
been closely involved.

“There are two kinds of L-functions, and they will be described below: mo-
tivic L-functions which generalize the Artin L-functions and are defined purely
arithmetically, and automorphic L-functions, defined by data which are largely
transcendental. Within the automorphic L-functions a special class can be singled
out, the class of standard L-functions, which generalize Hecke L-functions and for
which the analytic continuation and functional equation can be proved directly.

“For the other L-functions the analytic continuation is not so easily effected.
However all evidence indicates that there are fewer L-functions than the definitions
suggest, and that every L-function, motivic or automorphic, is equal to a standard
L-function. Such equalities are often deep, and are called reciprocity laws, for
historical reasons. Once a reciprocity law can be proved for an L-function, analytic
continuation follows, and so, for those who believe in the validity of the reciprocity

∗This article is in the public domain.
1In his Helsinki paper, “L-functions and automorphic representations,” 1980.
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laws, they and not analytic continuation are the focus of attention, but very few
such laws have been established.

“The automorphic L-functions are defined representation-theoretically, and
it should be no surprise that harmonic analysis can be applied to some effect in
the study of reciprocity laws. . . . ”

In an earlier paper2 Langlands elaborates on this thought. He defines in
the usual way classical modular forms f of weight k on the upper half plane
relative to SL(2, Z) and then converts f to an associated function φf on the
group G = SL(2, R) by setting

φf (g) = (ci + d)−kf
(
(ai + b)(ci + d)−1

)

if g =
(

a b
c d

)
. He continues, “If Γ is the group of integral matrices in G, then φf

is a function on Γ\G. The functions φf associated to those f which have a finite
norm in the Petersson metric3 can be characterized in terms of the representations
of G. Associating to each h in G the operator λ(h) on L2(Γ\G) defined by

(λ(h)φ)(g) = φ(gh),

we obtain a representation of G on L2(Γ\G). There is a representation πk of G
on a Hilbert space Hk and a distinguished subspace H0

k of Hk so that φ is a φf if
and only if there is a G-invariant map of Hk to L2(Γ\G) which takes H0

k to the
space generated by φ.

“This is the first hint that it might not be entirely unprofitable to study
automorphic forms in the context of group representations. The Hecke operators,
which play a major role in the study of modular forms, provide a second. . . . ”

Langlands goes on to say what the Hecke operators look like in this setting.
For this purpose he passes to an adele group defined by G, extends λ so that λ(f)
is meaningful for certain compactly supported functions on the adele group, and
discusses the situation briefly. Then he says, “The theory of modular forms and
the operators λ(f) is far from complete. Indeed very little attempt has been made,
so far as I can see, to understand what the goals of the theory should be. Once it
is put in the above form it is clear that the concepts at least admit of extension to
any reductive algebraic group defined over a number field. It may be possible to
give some coherency to the subject by introducing the simple principle, implicit
in the work of Harish-Chandra, that what can be done for one reductive group
should be done for all.”

As Langlands says, it was unclear at the time what the goals of the theory
should be. But a year later, he was completely clear what the theory should be in
the simplest nontrivial case. This is not the case of GL(2) but of a general abelian
reductive group. The special case of the abelian group GL(1) is the case of class
field theory. Langlands writes,4 “There is reason to believe that there is a close

2In the written version of his Whittemore lectures “Euler products” at Yale, given in 1967.
3This condition forces f to be a cusp form.
4In his paper “Representations of abelian algebraic groups,” first drafted in 1968.
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relation between the irreducible representations, in the sense of harmonic analysis,
of the group of rational points on a reductive algebraic group over a local field
and the representations of the Weil group of the local field in a certain complex
group. There should also be a relation, although it will not be so close, between the
representations of the global Weil group, in the associated complex group and the
representations of the adèle group that occur in the space of automorphic forms.
The nature of these relations will be explained elsewhere. For now all I want to do
is explain and prove the relations when the group is abelian. I should point out
that this case is not typical. For example, in general there will be representations
of the algebraic group not associated to representations of the Weil group.”

The first steps in the Langlands program, as envisioned in the present notes,
are to understand some of the detail of what Langlands has just said. As the
discussion proceeds, there will sometimes be references to papers in one of the
following three conference proceedings:

Corvallis proceedings: Borel, A., and W. Casselman (editors), Automorphic Forms,
Representations, and L-Functions, Corvallis, 1977, Proceedings of Symposia in
Pure Mathematics, vol. 33, Parts 1 and 2, American Mathematical Society, 1979.

Motives proceedings: Jannsen, U., S. Kleiman, and J.-P. Serre (editors), Motives,
Seattle, 1991, Proceedings of Symposia in Pure Mathematics, vol. 55, American
Mathematical Society, 1994.

Edinburgh proceedings: Bailey, T. N., and A. W. Knapp (editors), Representa-
tion Theory and Automorphic Forms, Instructional Conference, Edinburgh, 1996,
Proceedings of Symposia in Pure Mathematics, vol. 61, American Mathematical
Society, 1997, download table of contents from
http://www.math.sunysb.edu/∼aknapp/books/edinburgh/
edinburgh-contents.pdf.

Expository overviews

This section contains a list of five expositions of the Langlands program and
includes some comments about each:

Langlands, R. P., Representation theory: its rise and its role in number theory,
Proceedings of the Gibbs Symposium, Yale, 1989, American Mathematical Society,
1990, pp. 181–210, download from
http://sunsite.ubc.ca/DigitalMathArchive/Langlands/pdf/gibbs-ps.pdf.

Langlands, R. P., L-functions and automorphic representations, Proceedings Inter-
national Congress of Mathematicians, Helsinki, 1978, 1980, pp. 165–175, down-
load from
http://sunsite.ubc.ca/DigitalMathArchive/Langlands/pdf/lfunct-ps.pdf.

Knapp, A. W., Introduction to the Langlands program, Edinburgh proceedings,
pp. 245–302, download from
http://www.math.sunysb.edu/∼aknapp/pdf-files/245-302.pdf.
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Gelbart, S., An elementary introduction to the Langlands program, Bull. Amer.
Math. Soc. 10 (1984), 177–219.

Bump, D., J. W. Cogdell, E. de Shalit, D. Gaitsgory, E. Kowalski, S. S. Kudla,
An Introduction to the Langlands Program, Jerusalem, 2001, Birkhäuser, 2003.

Borel, A., Formes automorphes et séries de Dirichlet (d’après R. P. Langlands),
Séminaire Bourbaki (1974/1975: Exposés No. 453–470), Lecture Notes in Mathe-
matics, Springer-Verlag, vol. 514, 1976, Exp. No. 466, pp. 183–222.

The Langlands paper for the Gibbs Symposium is the most elementary of
these expositions. It works with examples of reciprocity, one quadratic and one
involving a polynomial of degree 5, and then it gives a brief introduction to p-adic
numbers and the representation theory of SL(2) over R and over p-adic fields. It
concludes with some discussion of automorphic L-functions and some philosophy.

The Langlands paper for the Helsinki congress is an overview at a higher level
of sophistication. It begins by discussing Artin L-functions and Artin’s approach
to prove their regularity by showing that they match some of Hecke’s L-functions.
Langlands introduces an L-function for any nonsingular projective variety over
a number field (at least at all but finitely many places) and speculates on its
regularity. Next he introduces the standard L-functions, discusses the possibilities
for handling Artin L-functions when the representation is 2-dimensional, sketches
how to associate an automorphic L-function to each irreducible representation of
G(A) (with G being a connected reductive group over a global field and A being
the adeles of the global field), mentions how the conjectural functoriality implies
that this automorphic L-function equals a standard one, and concludes with some
examples related to his base change for GL(2).

In the Knapp paper, the first five sections summarize abelian class field the-
ory largely for number fields, introduce the Weil group of a local field, and apply
Artin reciprocity to prove the equality of Artin and Hecke L-functions for one-
dimensional representations of the Galois group of an abelian extension. The
other five sections say something about the Langlands program. They discuss
linear algebraic groups, introduce the L2 space of interest for automorphic forms,
discuss how classical modular forms lead to representation-theoretic automorphic
forms, state Harish-Chandra’s key theorem that the space of functions automor-
phic relative to a certain set of data is finite-dimensional, define cusp forms, state
what the theory is for GL(n), give a rough description of how the theory is framed
for more general reductive groups, and say something about functoriality.

Gelbart’s paper in its Section II introduces four classical themes—the local-
global principle, Hecke theory and the centrality of automorphic forms, Artin L-
functions, and group representations in number theory. Section III briefly discusses
the theory of automorphic representations of GL(n). Section IV is about the
Langlands program, defining all but finitely many factors of L-functions, saying
some words about L-groups and functoriality, mentioning some results that are
known (as of 1984), and briefly summarizing some techniques of proof.

The book by Bump et al. is a collection of expository articles. It begins with
the elementary theory of L-functions and classical automorphic forms, introduces
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Artin L-functions and the L-functions of elliptic curves, explains Tate’s thesis,
brings in spectral theory and the trace formula, discusses the theory for GL(n),
discusses L-groups and functoriality, and introduces the “geometric Langlands
program.”

Borel’s Séminaire Bourbaki paper is a gentle version of Borel’s article “Au-
tomorphic L-functions” in the Corvallis proceedings (see below). It goes through
the theory in successively greater degrees of generality and does not strive for the
degree of completeness found in the Corvallis article.

Automorphic forms on GL(2)

Gelfand and Fomin realized already in the 1950s that the theory of modular
forms had something to do with group representations for GL(2). There are three
expository books that are largely about GL(2) and expand on this notion:

Gelfand, I. M., M. I. Graev, and I. I. Pyatetskii-Shapiro, Representation Theory
and Automorphic Forms, W. B. Saunders, Philadelphia, 1969.

Gelbart, S., Automorphic Forms on Adele Groups, Princeton University Press,
1975.

Bump, D., Automorphic Forms and Representations, Cambridge University Press,
1997.

The differences among these books are relatively small and result somewhat
from the differing years of publication. They all discuss classical modular forms,
embed their theory eventually into GL(2, A), where A is the ring of adeles of Q
or a number field, discuss aspects of the representation theory of GL(2) over a
local field, study the space of “cusp forms” of GL(2, A), and prove that this space
decomposes discretely. The Gelbart and Bump books establish the theory of Eisen-
stein series for GL(2) and work with ingredients of the trace formula, explicitly or
implicitly. Some of these results are influenced by the Jacquet–Langlands theory
to be discussed next, and they have bearing on the theory of standard L-functions
in the next subsection.

The representation-theoretic aspect of the above three expositions appears
within the often-quoted research monograph

Jacquet, H., and R. P. Langlands, Automorphic Forms on GL(2), Lecture Notes
in Mathematics, vol. 114, 1970, download from
http://sunsite.ubc.ca/DigitalMathArchive/Langlands/pdf/a-ps.pdf

This book goes beyond the mathematics in the above three expository books,
finding a sufficient condition for the “converse theorem” to hold, i.e., for an irre-
ducible representation of the adele group to contribute to the space of cusp forms
of GL(2, A). The condition of contributing to the space of cusp forms needs some
explanation, which is deferred to the next subsection. Readers who want to stop
preparations and get right into the theory can begin with the Jacquet–Langlands
book. Those who try the Jacquet–Langlands book and decide that they want to
begin with a gentler treatment may consult
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Godement, R., Notes on Jacquet–Langlands’ theory, duplicated notes, Institute
for Advanced Study, 1970.

This book may be found in many research libraries, but it was never officially
published and therefore is not in the Library of Congress.

Automorphic representations of GL(n): Local Langlands correspon-
dence, standard L-functions

Work on generalizing Tate’s thesis for GL(1) so that it applies to GL(n) dates
to a paper of Tamagawa in 1963. Further progress was made by Maloletkin in 1971,
and a complete theorem for “cuspidal” irreducible representations of GL(n) was
obtained in

Godement, R., and H. Jacquet, Zeta Functions of Simple Algebras, Lecture Notes
in Mathematics, vol. 260, Springer-Verlag, 1972.

The word “cuspidal” requires explanation. Write G( · ) for GL(n, · ). As in
the theory for GL(2, · ) mentioned above, one wants to understand the space of
complex-valued functions on G(F )\G(A), where F is a number field and A is the
ring of adeles of F . Already for n = 1, this quotient does not have finite measure,
and one cannot expect L2 of it to be very interesting. Instead, one defines Z( · ) to
be the group of scalar matrices, so that Z(F )\Z(A) is isomorphic to the group of
ideles. If χ is any character of Z(F )\Z(A), define L2(G(F )\G(A))χ to be the space
of complex-valued functions on G(A) such that f is left-invariant under G(F ), |f | is
left-invariant under Z(A), |f | is in L2((Z(A)G(F ))\G(A)), and f(zx) = χ(z)f(x)
for all z ∈ Z(A) and x ∈ G(A).

The cuspidal subspace of L2(G(F )\G(A))χ is described precisely in Sec-
tion 7 of the Knapp exposition mentioned above in the subsection “Expository
overviews.” Roughly speaking, this is the subspace of f ’s for which f(ng), for
each g ∈ G(A), always has integral 0 taken over N(F )\N(A) if N is the unipotent
radical of any proper parabolic subgroup of G; but this condition needs to be made
precise because a general f is not well defined on sets of measure 0 like Ng. At any
rate, it is a theorem of Gelfand and Piatetski–Shapiro that the cuspidal subspace
L2(G(F )\G(A))χ decomposes discretely into irreducible representations of G(A)
with finite multiplicities. The irreducible constituents are the cuspidal irreducible
representations of G(A).

It was known for general linear groups G that any irreducible “admissible”
representation of G(A) is a kind of infinite tensor product over all places v of
irreducible admissible representations of each group G(Fv), and the paper

Flath, D., Decomposition of representations into tensor products, Corvallis pro-
ceedings, Part 1, pp. 179–183.

eventually generalized this theorem to all reductive groups. Applying this con-
clusion to a cuspidal irreducible representation π in the case of the general linear
group exhibits π as this kind of tensor product of irreducible representations πv of
GL(n, Fv). Godement and Jacquet found a function-theoretic way of associating
a local L factor L(s, πv) and an ε factor ε(s, πv) to πv, and they defined L(s, π)
and ε(s, π) to be the corresponding products over all places v. Their construction
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agrees with Hecke’s L and ε factors for Grossencharacters (the case n = 1). They
proved that the global L and ε satisfy a functional equation relating matters at s
for π to matters at 1− s for the contragredient of π. From the functional equation
it follows that these functions are meromorphic in the whole complex plane.

In 1973 Langlands gave his classification of irreducible admissible representa-
tions over R and C, and Silberger and Wallach proved enough of a corresponding
classification over nonarchimedean local fields that the condition “cuspidal” could
be removed in the above construction of L and ε. Since the noncuspidal part of
L2(G(F )\G(A))χ does not decompose discretely, some condition has to remain
in place of “cuspidal.” Langlands called this condition “automorphic,” and it is
defined in

Langlands, R. P., On the notion of an automorphic representation, Corvallis pro-
ceedings, Part 1, pp. 203–207, download from
http://sunsite.ubc.ca/DigitalMathArchive/Langlands/pdf/notion-ps.pdf.

With this advance, Jacquet was able to extend the Godement–Jacquet construc-
tion of L and ε, including the resulting functional equation, to all automorphic
representation of G(A) for G = GL(n, · ). The result and an exposition, respec-
tively, appear in

Jacquet, H., Principal L-functions of the linear group, Corvallis proceedings, Part
2, pp. 63–86,

Jacquet, H., Principal L-functions for GL(n), Edinburgh proceedings, pp. 321–329.

The L-functions obtained for GL(n) in this way are what Langlands calls the
“standard L-functions” in his Helsinki paper.

The 1973 classification paper of Langlands of irreducible admissible represen-
tations of real algebraic groups handled matters in two stages. One stage, purely
a matter of harmonic analysis on reductive groups, was to give a parametrization
of the irreducible representations useful in harmonic analysis. The second stage
was to recast this parametrization in terms of finite-dimensional complex repre-
sentations of the Weil group of R. This latter parametrization is what is called
the local Langlands correspondence over R. An exposition of the two stages for
GL(n) appears in

Knapp, A. W., Local Langlands correspondence: the archimedean case, Motives
proceedings, Part 2, pp. 393–410.

Meanwhile, to each finite-dimensional representation of the Weil group of R cor-
responds a local L-function and a local ε factor, and one can check that under the
local Langlands correspondence over R, L and ε match the factors of Godement–
Jacquet and Jacquet. Consequently the local L and ε in the Jacquet papers are
consistent with Langlands’s framework for reciprocity theorems for GL(n), at least
over the field R. These remarks apply to the field C also.

What about nonarchimedean local fields? Let us leave aside general G and
consider only general linear groups. Is there a nice parametrization of the irre-
ducible admissible representations of each GL(n) by n-dimensional complex rep-
resentations of the Weil group of the local field in such a way that the associated
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local L and ε factors match the ones of Godement and Jacquet? One necessary
adjustment found by Deligne is that the Weil group of the field is not quite large
enough. A modification, now known as the Weil–Deligne group, is to be used
instead. Even with this change, making this question precise was not a trivial
matter, but Henniart managed to find in 1991 a set of conditions on local L and
ε factors ensuring uniqueness of a local Langlands correspondence. An exposition
of these conditions and their setting is in

Kudla, S. S., The local Langlands correspondence: the non-archimedean case,
Motives proceedings, Part 2, pp. 365–391.

Henniart’s 1991 result did not address existence, but it at least identified a precise
problem. The existence was finally proved by Harris and Taylor and by Henniart
in the late 1990s. A nice exposition of this result and its meaning for the Langlands
program is given in

Rogawski, J., The nonabelian reciprocity law for local fields, Notices of the Ameri-
can Mathematical Society, vol. 47 (2000), no. 1, 35–41, download from http://www.
ams.org/notices/200001/comm-rogawski.pdf.

Initial details

The initial steps in the Langlands program are taken in three papers, all of
which have informative introductions and all of which are otherwise difficult to
read. The list of papers follows, and then comes some commentary about each.
Afterward comes information about where one can find this mathematics in other
sources:

Langlands, R. P., Representations of abelian algebraic groups, duplicated notes,
Yale University, 1968, published as Pacific J. Math. 61 (1998), 231–250, download
from
http://sunsite.ubc.ca/DigitalMathArchive/Langlands/pdf/Abel-ianAlg-
ps.pdf.

Langlands, R. P., On the classification of irreducible representations of real alge-
braic groups, mimeographed notes, Institute for Advanced Study, 1973, published
in P. J. Sally and D. A. Vogan (editors), Representation Theory and Harmonic
Analysis on Semisimple Lie Groups, Math. Surveys and Monographs, vol. 31,
American mathematical Society, 1989, pp. 101–170, download from
http://sunsite.ubc.ca/DigitalMathArchive/Langlands/pdf/irred-ps.pdf.

Langlands, R. P., Problems in the theory of automorphic forms, Lectures in Modern
Analysis and Applications III, Lecture Notes in Mathematics, Springer-Verlag, vol.
170, 1970, pp. 18–61, download from
http://sunsite.ubc.ca/DigitalMathArchive/Langlands/pdf/prob-lems-ps.
pdf

The first of these papers carries out a certain duality calculation for connected
abelian reductive groups, i.e., algebraic tori that are not necessarily split. In
retrospect this paper is showing that the full Langlands program works for tori.
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The second paper classifies the irreducible admissible representations of re-
ductive algebraic groups G over R. Sections 3–4 carry out the relevant harmonic
analysis, and their main result parametrizes the irreducible admissible represen-
tations by triples (MAN, π, ν), where MAN is a parabolic subgroup containing
a fixed minimal parabolic subgroup, π is an equivalence class of irreducible tem-
pered representations of M , and ν is a complex-valued linear functional on the
Lie algebra of A whose real part is in the open positive Weyl chamber. Two other
theorems in these sections show (a) that each irreducible tempered representation
is an irreducible constituent of a standard representation unitarily induced from a
parabolic subgroup MAN with a discrete series representation on M and a unitary
character on A and (b) that any two standard unitarily induced representations
are unitarily equivalent or else have no irreducible constituent in common. Section
2 translates these results into a conclusion that the irreducible admissible repre-
sentations of G are parametrized by certain homomorphisms of the Weil group of
R into a certain complex group called the L-group of G.

The third paper outlines the general program, including functoriality. Func-
toriality on the level of a local field F concerns the following situation. If two
groups G1 and G2 are given and if a representation of G2 is given by a homomor-
phism of ϕ of the Weil or Weil–Deligne group of F into the complex L-group of
G2, then any homomorphism of the L-group of G2 into the L-group of G1 yields
by composition with ϕ a homomorphism of the Weil/Weil–Deligne group of F into
the L-group of G1. There ought to be a corresponding representation of G1, and
the local L factors should be compatible. Functoriality makes specific conjectures
about this situation and about a global version of it. Most of the paper consists
of conjectures; rather little is proved. An interesting example is given how the
validity of functoriality when one of the groups is trivial implies the “Artin conjec-
ture,” which says that the Artin L-function for each nontrivial irreducible Galois
representation is entire.

Parenthetically the expectation that functoriality holds very generally or
completely generally is what lies behind the expectation that the standard L-
functions from GL(n) should be so ubiquitous. In fact, if G is any reductive group
and LG is its L-group, then LG is a complex matrix group and hence is a subgroup
of some GL(n,C). Unwinding what functoriality suggests, one sees that any auto-
morphic L-function for G ought to be an automorphic L-function for some GL(n).
Arthur has investigated the validity of this case of functoriality for classical groups.

A difficult but more readable account of matters in the above three papers
of Langlands is the paper

Borel, A., Automorphic L-functions, Corvallis proceedings, Part 2, pp. 27–61.

It may be helpful to get into Borel’s account gradually, and Borel’s Séminaire
Bourbaki account listed above under “Expository overviews” can help with the
transition. Borel omits most of the details concerning the classification of ir-
reducible admissible representations of real algebraic groups. A messy but well
motivated proof of this classification appears in
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Knapp, A. W., Representation Theory of Semisimple Groups, An Overview Based
on Examples, Princeton University Press, 1986; reprinted in paperback, 2001.

A tidy but less well motivated proof of the classification appears in

Borel, A., and N. R. Wallach, Continuous Cohomology, Discrete Subgroups, and
Representations of Reductive Groups, Princeton University Press, 1980; second
edition, American Mathematical Society, 2000.

Trace formula and base change
A key point of the Langlands program is to show that motivic L-functions

are automorphic, specifically that they are standard L-functions for GL(n), and
one can ask what techniques are available to show this kind of thing. A technique
that has yielded some success is the trace formula, and the first stunning use of
the trace formula in the Langlands program to prove something classical was the
proof by Langlands in

Langlands, R. P., Base Change for GL(2), Princeton University Press, 1980, down-
load from
http://sunsite.ubc.ca/DigitalMathArchive/Langlands/pdf/book-ps.pdf

that Artin L-functions corresponding to 2-dimensional “tetrahedral” representa-
tions are entire. This subsection will discuss the circle of ideas that revolves around
the trace formula and base change.

A beautiful qualitative description of the trace formula and its uses has re-
cently appeared in

Arthur, J., A (very brief) history of the trace formula, Pacific Institute for the
Mathematical Sciences, vol. 10, no. 2, winter 2007, pp. 8–11, download from
http://www.claymath.org/cw/arthur/pdf/HistoryTraceFormula.pdf.

As this paper makes clear, the trace formula is an identity for a particular reductive
group saying that two quantities can be interpreted as the same trace computed
in two different ways. The variable in the identity is a certain kind of function
that one can shape as desired. In applications the trace formula is typically to be
applied to two different groups. For certain functions on one group, one introduces
corresponding functions on the other group in such a way that most of the terms
in the two trace formulas match. An equality results for each such matching pair
of functions, and some conclusion is drawn.

Base change provides a context for discussing this matter in more detail.
The introduction to Base Change for GL(2) by Langlands contains a discussion,
partly historical, of base change and its relation to Artin’s conjecture. It is fairly
readable. The full proof involves some delicate computations that may make it
hard to understand what is really happening. In that spirit, an exposition of the
proof may be a helpful way to begin. One such exposition, minus the use of the
trace formula, appears in

Rogawski, J. D., Functoriality and the Artin conjecture, Edinburgh proceedings,
pp. 331–353, download from
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http://www.math.ucla.edu/∼jonr/eprints/artin.pdf.
A detailed development of the trace formula for GL(2) gives a first sense of

the nature of the formula. (However, GL(2) is only one group, and applications
typically involve two different groups.) One such development is in Section 9 of
Automorphic Forms on Adele groups by Gelbart. Another is in the paper

Knapp, A. W., Theoretical aspects of the trace formula for GL(2), Edinburgh
proceedings, pp. 355–405, download from
http://www.math.sunysb.edu/∼aknapp/pdf-files/355-405.pdf.

A book that treats the trace formula more generally, providing detail about
Arthur’s early papers and sometimes specializing to GL(2) for illustration is

Gelbart, S., Lectures on the Arthur–Selberg Trace Formula, American Mathemat-
ical Society, 1996.

A beginning introduction to how to apply the trace formula is the article

Knapp, A. W., and J. D. Rogawski, Applications of the trace formula, Edinburgh
proceedings, pp. 413–431, download from
http://www.math.sunysb.edu/∼aknapp/pdf-files/413-431.pdf.
This can well be read in conjunction with the short paper

Kottwitz, R., Orbital integrals and base change, Corvallis proceedings, Part 2, pp.
111–113,

which gives a better sense of the kind of thing that has to be verified for the
Langlands proof.

Finally two other expositions of Base Change for GL(2) are

Gelbart, S., Automorphic forms and Artin’s conjecture, Modular Functions of One
Variable VI, Bonn, 1976, Lecture Notes in Mathematics, vol. 627, Springer, 1977,
pp. 241–276,

Gérardin, P., and J. P. Labesse, The solution of a base change problem for GL(2)
(following Langlands, Saito, Shintani), Corvallis proceedings, Part 2, pp. 115–133.


