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Abstract

For learning about the Langlands program, knowledge of Lie-group struc-
ture theory, algebraic number theory, algebraic geometry, modular forms,
and infinite-dimensional representation theory is appropriate. This article
describes how one can get a glimpse of the program with less background
than this.
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This is the first of two sets of notes that were put together in 2007 to provide
references for people interested in getting oriented about the Langlands program.
Many parts of the notes had been assembled earlier for more limited purposes, and
the author allowed the notes to be posted anonymously in 2007 in response to a
request by Lizhen Ji for an annotated list of books and references on the Langlands
program at a relatively elementary level. Some choices were necessary in books
and references for the list. In part the choices reflected the author’s taste. In part
they reflected an attempt to refer largely only to articles that are available online
and to books that appear in many libraries.

For learning about the Langlands program, knowledge of Lie-group structure
theory, algebraic number theory, algebraic geometry, linear algebraic groups, mod-
ular forms, and infinite-dimensional representation theory is appropriate. Many
people successfully come at the subject having studied at least one of these topics
extensively but not necessarily all of them. This first set of notes describes where
one can learn a little about each of these topics. Also it includes a few deep facts
that are not prerequisites but that set the stage for the goals of the program.

It is possible to get a glimpse of the Langlands program, however, with even
less background: one needs to understand structure theory of the general linear
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groups over the real and complex fields; some infinite-dimensional representation
theory of these groups, including the nature of the principal series; the fields of p-
adic numbers; and something about L-functions in connection with either algebraic
number theory or modular forms. References for these particular topics can be
extracted from what follows.

Lie-group structure theory

Three relatively recent introductory books about Lie groups, each with its
own attitude about the subject, are

Duistermaat, J. J., and J. A. C. Kolk, Lie Groups, Springer, 2000,

Rossmann,W.,Lie Groups, an Introduction through Linear Groups, Oxford, 2002,

Hall, B. C., Lie Groups, Lie Algebras, and Representations, an Elementary Intro-
duction, Springer, 2003.

Each of the above books contains a small amount of structure theory. A book at
a slightly more advanced level with a great deal more structure theory is

Knapp, A. W., Lie Groups beyond an Introduction, Birkhäuser, 1996; second edi-
tion, 2002.

The essential structure theory involves complex semisimple Lie algebras, Cartan
subalgebras, roots and weights, parabolic subalgebras, reductive groups, Cartan
and Iwasawa decompositions, and parabolic subgroups. This material is summa-
rized without proofs in

Knapp, A. W., Structure theory of semisimple Lie groups, Edinburgh proceedings,
pp. 1–27, download from
http://www.math.sunysb.edu/∼aknapp/pdf-files/1-27.pdf.
The expression “Edinburgh proceedings” refers to the volume

Bailey, T. N., and A. W. Knapp (editors), Representation Theory and Automorphic
Forms, Instructional Conference, Edinburgh, 1996, Proceedings of Symposia in
Pure Mathematics, vol. 61, American Mathematical Society, 1997, download table
of contents from
http://www.math.sunysb.edu/∼aknapp/books/edinburgh/edinburgh-
contents.pdf.

Algebraic number theory

The relevant algebraic number theory revolves around abelian class field the-
ory and the equality of two kinds of L-functions, one introduced by Artin and the
other by Hecke. Abelian class field theory describes concretely the finite Galois
extensions with abelian Galois group for a given base field. The eligible base fields
are called “global fields” by Weil and are of two kinds—number fields (finite exten-
sions of the rationals) and function fields in one variable over a finite field (finitely
generated fields of transcendence degree one over a finite field). A good deal of
the development can be done at once for the two kinds of fields; some books take
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advantage of this fact (not necessarily with better readability on first reading),
and others do not.

Often the mathematics in the number-field case is taught in a two-semester
course; the first semester treats the basics, and the second semester treats abelian
class field theory. There are three traditional books about the number-field case,
taking quite different approaches:

Cassels, J. W. S., and A. Fröhlich, Algebraic Number Theory, Academic Press,
1967, using an approach emphasizing completeness and cohomology,

Lang, S., Algebraic Number Theory, Springer-Verlag, second edition, 1986, using
an approach emphasizing a certain amount of complex analysis,

Weil, A., Basic Number Theory, Springer-Verlag, 1973, using an approach empha-
sizing the role of locally compact fields.

Lang’s book is limited to number fields, and the other two treat function fields
as well. Three techniques of importance in the study of the basics are unique
factorization of ideals for Dedekind domains, the theory of discrete valuations, and
completion of a global field with respect to a discrete valuation. The completion of
a global field with respect to a discrete valuation is called a local field; it is locally
compact. The distinct isomorphism classes of completions are called the places
of the global field. Some high points of a course on the basics are facts about
the discriminant of a number field, the Dirichlet Unit Theorem, and the finiteness
of the “class number.” The basics occupy Chapters I and II of Cassels–Fröhlich,
Chapters I–VI of Lang, and Chapters I–V of Weil.

Adeles and ideles, which are built from all the places of the given global field,
enter the theory at some point as convenient tools in preparation for abelian class
field theory; the adeles are a kind of product of the ring structures, and the ideles
are a kind of product of the multiplicative groups. These tools are introduced at
the end of Chapter II of Cassels–Fröhlich, in Chapter VII of Lang, and in the initial
development of Weil. The multiplicative group of the global field is a subgroup of
each completion, and the multiplicative group therefore embeds diagonally in the
group of ideles. The quotient is the all-important “idele class group” of the global
field.

For a number field, abelian class field theory may be viewed as built around
Artin reciprocity, a sweeping generalization of Gauss’s quadratic reciprocity. To
any finite abelian Galois extension K of the global field k, the norm map from K
to k yields a map from the idele class group of K into the idele class group of k,
and the image is an open subgroup of finite index. Artin reciprocity allows one to
prove that this mapping sets up a bijection between the abelian Galois extensions
(up to k isomorphism) and the open subgroups of finite index of the idele class
group.

Meanwhile, two kinds of L-functions of one complex variable s are associated
to this situation, and they are extremely important to understand for the Lang-
lands program. Each is a product over all places of elementary functions of s.
An Artin L-function is associated to each finite Galois extension of k and finite-
dimensional complex representation of the Galois group, while a Hecke L-function
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is associated to each “Grossencharacter,” namely each one-dimensional character
of the idele class group. The simplest nontrivial examples amount to this: When
k = Q and the extension field is Q(i) and the representation of the two-element
Galois group of Q(i)/Q is the nontrivial one-dimensional character, the Artin L-

function is the product over all odd primes p of the expression
(
1−

(
−1
p

)
p−s

)−1

,

where
(
−1
p

)
is the Legendre symbol ±1; there is also a factor corresponding to the

infinite place. Similarly for a suitable Grossencharacter, the Hecke L-function is
the product over all odd primes p of (1− (−1)(p−1)/2p−s)−1, times a factor corre-
sponding to the infinite place. These two L-functions are equal, factor by factor,
because

(
−1
p

)
= (−1)(p−1)/2 by the easiest case of quadratic reciprocity.

In the general case an Artin L-function always encodes certain arithmetic
information; it is an instance of what is called a “motivic” L-function. A Hecke
L-function encodes certain transformation-group behavior, in that it continues
meromorphically to the complex plane and satisfies a functional equation relating
its value at s to the value of a companion L-function at c − s for a certain c; it
is an instance of what is called an “automorphic” L-function. This automorphic
behavior was first proved by Hecke, and Hecke’s argument generalized the proof
of the functional equation of the Riemann zeta function that uses the Poisson
summation formula on the line. Tate in his thesis, which is reproduced in the
Cassels–Fröhlich book, showed how to prove the functional equation of the L-
function of a Grossencharacter by means of the Poisson summation formula for
the adele group of the number field.

When an Artin L-function is associated to a one-dimensional representation
of an abelian Galois group, Artin reciprocity points to a particular Grossenchar-
acter of interest, and the theorem is that these two L-functions coincide. The
motivic L-function is therefore exhibited as an automorphic L-function. The ef-
fort to show that every member of a suitably general class of motivic L-functions
is an automorphic L-function is a theme of the Langlands program. We shall see
another instance of this theme in the section “Modular forms.”

Abelian class field theory for function fields is related to the geometry of
curves, and this geometry is lost to some extent when number fields and function
fields are treated together. A book devoted just to the function-field case is

Serre, J.-P., Algebraic Groups and Class Fields, Springer-Verlag, 1988.

Comparing this book with the above books by Cassels–Fröhlich and Weil enables
one to understand at once both the similarities and the differences between the
number-field case and the function-field case. The book

Neukirch, J., Class Field Theory, Springer-Verlag, 1986

abstracts abelian class field theory to apply to any base field satisfying certain
axioms. The axioms are then verified in the number-field case. The preface says
that the theory applies in the function-field case after some modifications, but it
urges the reader to study the function-field case in the context of the associated
geometry.
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Algebraic geometry

The initial need for some algebraic geometry comes from the fact that the
above function fields are associated to curves over finite fields. The theory of
modular forms to be mentioned below points in addition to curves over any global
field and then to arbitrary varieties over such fields. Some basic knowledge of
algebraic geometry is therefore appropriate, both for the special theory of curves
and for general facts about varieties and maps between varieties.

The above-mentioned book by Serre deals with the function-theoretic proper-
ties of curves in Chapter II and with some of the geometric properties in Chapter
IV. For both of these chapters it is assumed that the base field is algebraically
closed, but later other fields are considered. A recent full-length book about the
function-theoretic properties of curves, working over any field, is

Villa Salvador, Topics in the Theory of Algebraic Function Fields, Birkhäuser,
2006.

A quite readable and more geometric treatment of curves over algebraically closed
fields is

Fulton, W., Algebraic Curves, An Introduction to Algebraic Geometry, W. A. Ben-
jamin, Inc., 1969, reprinted, Addison-Wesley, 1974 and 1989.

Fulton’s book works extensively with morphisms and puts less emphasis on the
function-theoretic aspects than Serre and Villa Salvador. Fulton’s book works a
little with high-dimensional varieties also.

The book

Hartshorne, R., Algebraic Geometry, Springer-Verlag, 1977

begins with a first chapter that quickly develops foundational material about va-
rieties and mappings between them. Geometric properties of curves are discussed
in Section 6 of this chapter. This subject matter depends a great deal on facts
from commutative algebra, many of which are proved in the first 35 pages of

Matsumura, H., Commutative Ring Theory, Cambridge University Press, 1986;
reprinted with corrections, 1989.

For an exposition that fills in the details of the Hartshorne book and includes the
necessary material from Matsumura’s book, see Chapters X and VII, respectively,
of

Knapp, A. W., Advanced Algebra, Birkhäuser, 2007.

Two other books on the elements of algebraic geometry, more leisurely than
Hartshorne’s, are

Harris, J., Algebraic Geometry, a First Course, Springer-Verlag, 1992,

and

Shafarevich, I. R., Basic Algebraic Geometry, vol. 1, Springer-Verlag, 1977; second
edition, 1994.
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Linear algebraic groups

The point of departure for the theory of linear algebraic groups is structure
theory for Lie groups, especially for semisimple Lie groups of matrices. The ob-
jective is to have a theory in which the real field is replaced by any field, but there
are some subtle changes. A good place to get oriented is the obituary of Armand
Borel in the Notices:

Arthur, J., E. Bombieri, K. Chandrasekharan, F. Hirzebruch, G. Prasad, J.-P.
Serre, T. A. Springer, and J. Tits, “Armand Borel (1923–2003),” Notices of the
American Mathematical Society, vol. 51, no. 5, 2004, 498–524, download from
http://www.ams.org/notices/200405/fea-borel.pdf.

Each of the eight authors contributed a segment of this article, and the segments
by Springer and Tits explain where the theory of algebraic groups comes from and
what it wants to do. They assume that one knows in advance a little structure
theory for Lie groups. The suggestion is to read the Springer segment first and
then the Tits segment.

The Springer and Tits segments of the Borel obituary contain no proofs, and
they minimize any mention of the algebraic geometry that underlies the subject.
In practice, it is necessary to use algebraic geometry and to adapt its use when the
underlying field is not necessarily algebraically closed. Three absolutely standard
books on the subject are

Borel, A., Linear Algebraic Groups, W. A. Benjamin, 1969; second edition, Springer-
Verlag, 1991,

Humphreys, J. E., Linear Algebraic Groups, Springer-Verlag, 1975,

Springer, T. A., Linear Algebraic Groups, Springer-Verlag, 1981; second edition,
1998.

All three books begin with material on algebraic geometry over an algebraically
closed field; Humphreys gives the most detail about this background. Borel and
the second edition of Springer give considerable detail about handling groups when
the underlying field is not algebraically closed, and Springer’s book is the easiest
for a first reading (in the view of MathSciNet).

Before these books appeared, the standard expository references were articles
in the Boulder proceedings:

Borel, A., and G. D. Mostow, Algebraic Groups and Discontinuous Subgroups,
Boulder, 1965, Proceedings of Symposia in Pure Mathematics, vol. 9, American
Mathematical Society, 1966.

Of particular interest from this volume for learning about algebraic groups are
certain articles listed below. These articles show the relative importance of various
topics, and they provide examples:

Borel, A., Linear algebraic groups, pp. 3–19,

Borel, A., and T. A. Springer, Rationality properties of linear algebraic groups,
pp. 26–32,
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Tits, J., Classification of algebraic semisimple groups, pp. 33–62,

Bruhat, F., p-adic groups, pp. 63–70,

Iwahori, N., Generalized Tits system (Bruhat decomposition) on p-adic semisimple
groups, pp. 71–83.

Modular forms
A classical modular form of weight k for the group SL(2, Z) is an analytic

function f on the upper half plane that is bounded at i∞ and has the property

that f(γz) = (cz + d)kf(z) for all γ =
(

a b
c d

)
in SL(2, Z) and all z in the upper

half plane. A cusp form is a modular form that vanishes at i∞. A beautiful
treatment of classical modular and cusp forms appears as Chapter VII of

Serre, J.-P., A Course in Arithmetic, Springer-Verlag, 1973.

A cusp form of weight k has a convergent expansion f(z) =
∑∞

n=1 cnqn, where
q = e2πiz, and the L-function of the cusp form is roughly the corresponding series
L(s, f) =

∑∞
n=1 cnn−s. (Again the definition is not exactly this but includes an

additional factor.) This function of s is meromorphic in the whole plane, and the
transformation properties of f under SL(2, Z) translate into the fact that L(s, f)
satisfies a functional equation relating L(s, f) and L(k − s, f∨) for a suitable f∨.
It is thus automorphic in the sense explained in the section “Algebraic number
theory.” However, further assumptions are needed for L(s, f) to be given by a
product expansion over all primes. The conditions are that c1 = 1 and that f be
a simultaneous eigenfunction of the commuting family of all “Hecke operators.”

What is relevant for current purposes is an extension of this theory in which
SL(2, Z) is replaced by its subgroup Γ0(N) of matrices whose lower left entry
is divisible by N . The corresponding theory for this subgroup was developed
partly by Hecke and was completed by Atkin and Lehner. In addition to the
normalization and an eigenfunction property, one needs to impose a condition on
the eigenfunction f that it does not come from an eigenfunction of lower N ; such
an f is called a newform. A detailed exposition can be found in Chapters VIII
and IX of

Knapp, A. W., Elliptic Curves, Princeton University Press, 1992.

Meanwhile an elliptic curve E over Q can be defined as a nonsingular pro-
jective plane curve whose restriction to the affine plane is of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

with coefficients in Q. (In more invariant terms, it is a nonsingular projective
curve over Q of genus 1 with a Q rational point.) The coefficients may be taken
to be in Z. After a change of variables, the equation may be assumed to have a
certain minimality property defined relative to its discriminant ∆. For each prime
p, put ap = p + 1 − |Ep|, where Ep is the curve reduced modulo p and |Ep| is
the number of points on Ep, including the point at infinity. The L-function of E,
denoted by L(s,E), is defined as the product over p of a factor equal either to
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(1 − app
−s + p1−2s)−1 if p does not divide ∆ or to (1 − app

−s)−1 if p divides ∆.
There is also a factor corresponding to the infinite place. This function and its
properties are discussed in Chapter X of the above book.

The Eichler–Shimura theory associates to each normalized newform f of
weight 2 for Γ0(N) an elliptic curve E such that L(s,E) = L(s, f). Some of the
background for this result appears in Chapter XI of the above book. A complete
treatment may be found in

Diamond, F., and J. Shurman, A First Course in Modular Forms, Springer-Verlag,
2005.

The Eichler-Shimura result therefore identifies which automorphic L-functions
associated to cusp forms of Γ0(N) are motivic. The converse, saying that the L-
function of any elliptic curve over Q is equal to the L-function of a normalized
newform for some Γ0(N), is known as the Shimura–Taniyama–Weil Conjecture.
Wiles proved part of this conjecture in the course of proving Fermat’s Last The-
orem, and the full conjecture has since been completely proved. The conjecture
thus says that the motivic L-functions obtained from elliptic curves are always au-
tomorphic, and it provides evidence for some of the conjectures of the Langlands
program. A relatively short exposition of all these matters appears in

Gelbart, S., Elliptic curves and automorphic representations, Advances in Math.
21 (1976), 235–292.

Infinite-dimensional representation theory
The two noncompact simple Lie groups of the lowest dimensions are SL(2, R)

and SL(2, C), and it is sensible to begin to learn representation theory by under-
standing what happens for these groups. For orientation and for some discussion
of these groups, see the first two chapters of

Knapp, A. W., Representation Theory of Semisimple Groups, An Overview Based
on Examples, Princeton University Press, 1986; reprinted in paperback, 2001.

For more detail, see

Gelfand, I. M., M. I. Graev, and I. I. Pyatetskii-Shapiro, Representation Theory
and Automorphic Forms, W. B. Saunders, Philadelphia, 1969.

The representation theory of SL(2, R) is discussed in Section 3 of Chapter 1 of
the latter book, and the representation theory of SL(2) with entries in any local
field is in Sections 3–4 of Chapter 2. For an alternative treatment see

Bump, D., Automorphic Forms and Representations, Cambridge University Press,
1997.

In Bump’s book, the group GL(2, R) is discussed in part of Chapter 2, and the
group GL(2) over a p-adic field is the subject matter of Chapter 4.

Let us turn to groups of higher dimension. The foreword of the Edinburgh
proceedings, mentioned in the section “Lie-group structure theory,” says that the
aim of the conference was “to provide an intensive treatment of representation
theory for two purposes: One was to help analysts to make systematic use of
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Lie groups in work on harmonic analysis, differential equations, and mathemat-
ical physics, and the other was to treat for number theorists the representation-
theoretic input to Wiles’s proof of Fermat’s Last Theorem.” This representation-
theoretic input is via the Langlands program, and these proceedings are a good
place to obtain some appropriate background in infinite-dimensional representa-
tion theory. The full table of contents can be downloaded from http://www.math.
sunysb.edu/∼aknapp/books/edinburgh/edinburgh-contents.pdf. The foun-
dational articles on representations of reductive Lie groups, which one can read in
order, are

Donley, R. W., Irreducible representations of SL(2,R), pp. 51–59,

Baldoni, W., General representation theory of real reductive Lie groups, pp. 61–72,

Delorme, P., Infinitesimal character and distribution character of representations
of reductive Lie groups, pp. 73–81,

Schmid, W., and V. Bolton, Discrete series, pp. 83–113,

Donley, R. W., The Borel–Weil Theorem for U(n), pp. 115–121,

Van den Ban, E. P., Induced representations and the Langlands classification, pp.
123–155,

Mœglin, C., Representations of GL(n) over the real field, pp. 157–166.

For more detail about many of these topics, one can consult the Knapp book
mentioned above.

A place to begin to study the representation theory of groups that are more
complicated than SL(2) and GL(2) and are defined over local fields other than R
and C is the article

Mœglin, C., Representations of GL(n) in the nonarchimedean case, Edinburgh
proceedings, pp. 303–319.

This latter Mœglin article assumes that the underlying nonarchimedean field has
characteristic 0. For groups other than GL(n), once one has some acquaintance
with the structure theory of linear algebraic groups, one can consult

Cartier, P., Representations of p-adic groups, Corvallis proceedings, Part 1, pp.
111–156.

The expression “Corvallis proceedings” refers to the two volumes

Borel, A., and W. Casselman, Automorphic Forms, Representations, and L-Func-
tions, Corvallis, 1977, Proceedings of Symposia in Pure Mathematics, vol. 33,
Parts 1 and 2, American Mathematical Society, 1979.

Finally a book-length treatment of the representation theory of reductive groups
defined over p-adic groups is

Silberger, A. J., Introduction to Harmonic Analysis on Reductive p-adic Groups,
Princeton University Press, 1979.


