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ABSTRACT For a wide class of linear connected semisim-
pie Lie groups, one obtains formulas limiting the Langlands
parameters of irreducible unitary representations obtained
from maximal parabolic subgroups. The formulas relate uni-
tarity to the number of roots satisfying certain conditions.
Some evidence is presented that the formulas are sharp. The
resilts confirm aspects of conjectures that relate unitary pa-
rameters to cohomological induction.

For a linear connected semisimple Lie group G it is known
that the problem of classifying the irreducible unitary repre-
sentations comes down to deciding which ones of certain
standard representations in Hilbert spaces admit new inner
products with respect to which the representations become
unitary. These standard representations are obtained as the
unique irreducible quotients of representations of a particu-
lar kind induced from parabolic subgroups. As such, they are
parameterized, roughly speaking, by triples (S,u,v), where S
= MAN runs through finitely many parabolic subgroups of
G, ur runs through a discrete family of representations of M,
and v is a continuous parameter on A.
We shall assume in this paper that G has a compact Cartan

subgroup, that all noncompact roots are short, and that
MAN is a maximal parabolic subgroup. Under these condi-
tions we obtain some broad theorems limiting the values of v
that can correspond to unitary representations. Our theo-
rems tie in with conjectures of Zuckerman and Vogan (ref. 1,
p. 408, and ref. 2) concerning what parameters should lead to
unitary representations. The extent to which we expect our
theorems to be sharp is the subject of the last section. Some
additional results valid when MAN is not maximal will be the
subject of a separate paper. Proofs of all results will appear
elsewhere.
Our method is to study the Hermitian operator that relates

two Hermitian forms-the candidate for the new inner prod-
uct and the naturally given inner product. This operator is a
standard intertwining operator in the sense of ref. 3, and for
certain values of v we find finite-dimensional subspaces on
which this operator is indefinite. Our method for calculating
the operator is an old one and has been used extensively by
Klimyk (e.g., ref. 4) for particular classical groups.

1. Setting

Let G be a connected linear semisimple Lie group, and let K
be a maximal compact subgroup. We shall assume that a
maximal torus B in K is maximal abelian in G and that every
noncompact root is short. We use corresponding lowercase
German letters to denote the Lie algebras of the correspond-
ing Lie groups.
Let S = MAN be the Langlands decomposition of a para-

bolic subgroup of G relative to K. By a standard induced

representation we mean

U(S,a,v) = ind G(o 80 ev08 1),

where oa is a discrete series or limit of discrete series repre-
sentation ofM acting in a space V a, v is a complex-valued
linear functional on a, and the induction has G acting on the
left and is normalized so that imaginary v yields a unitary U.
[The existence of such a a implies rank M = rank (K n M);
cf. ref. 5.] When Re v is in the open positive Weyl chamber
relative to N (or when Re v is on the edge of the chamber and
an additional condition listed in ref. 6 is satisfied), U(S,o,,v)
has a unique irreducible quotient J(S,o(, v), the Langlands
quotient. The Langlands quotients are the standard repre-
sentations alluded to in the Introduction. It is known (6, 7)
that these representations J(S,or,v) exhaust the candidates
for unitary representations and that it is enough to decide
which of them with v real-valued can be made unitary.
Under our assumptions so far on G and S there exists an

element w in K normalizing A such that Ad(w) acts as -1 on
a. This element has wo-ao for all a and wv = - v for v real-
valued (8, 9). By ref. 10 the conditions wo- o, wv = -
and Ad(w2)1a = 1 imply there exists a nonzero invariant Her-
mitian form on the K-finite vectors of J(S,ar, v). Under the
additional condition on v that makes J exist uniquely, this
form is unique up to a scalar and can be lifted to U(S,a-, v).
Apart from one difficulty on the edge of the Weyl chamber,
this form is given on K-finite vectors by the integral operator
oa(w)As(w,oa,v) defined in equations 0.1-0.2 of ref. 3. The
difficulty is that this operator can have poles when Re v is on
the edge of the Weyl chamber, and the operator requires a
normalizing factor in order to be well defined. After it is so
normalized, it intertwines the representations U(S,cr,v) and
U(S,Oa,-v) and depends holomorphically on v. For a real-
valued v, the result is that J(S,oa,v) can be made unitary if
and only if this normalized operator is semidefinite.
We shall use the notion of minimal K-type ["lowest K-

type," in the sense of Vogan (11)] as a benchmark for nor-
malizing the operators. The members of the induced space
are determined by their restrictions to K, and we transfer the
action of U(S, o-, v') to the space of restrictions. In this realiza-
tion the space of U(S,or, v) is independent of v and K acts by
the left-regular representation.

Fix a positive system of roots for K and form highest
weights. Let 2PK be the sum of the positive roots. Decom-
posing U(S,o, ')IK into irreducible subspaces, write

U(S,o','V)IK = Y nA'TA',

where TA' is the representation of K with highest weight A'.
We say A (or really TA) is a minimal K-type of U(S,o(,v) if
IA' + 2pKI2 is minimized among A' with nA' # 0 by A' = A.
Minimal K-types exist, and the representations of K so de-
fined are independent of the choice of positive system. From
the work of Vogan (1, 11) one knows that

(i) TA has multiplicity one in U(S,a,,v)
(ii) TA occurs in J(S,oIv).
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Consequently, the intertwining operator from U(S,a,0) to
U(S,oc, - i) is nonvanishing and scalar on the TA space and
hence can be normalized to be 1 on the TA space; in this case
the normalized operator is pole-free for Re P in the closed
positive Weyl chamber. Fixing a minimal K-type A for
U(S,o-, 0, we normalize the interwining operator in this fash-
ion and call the result T(v). To disprove unitarity we seek a
single TA' so that T(P) is not positive semidefinite on the TA'
subspace. Then T(v) will be indefinite on the sum of the TA
and TA, subspaces.

Klimyk's approach to this problem is to use the intertwin-
ing property

T(v)U(S,a,,0) = U(S,a,-)T( ') [1]

to get recursion relations for T(v) on the various K-types. In
our case we shall use K-types that are suitably close to our
minimal K-type A, and we illustrate the style of argument by
the case of a K-type A' that is "one step away from A." Let f
be a member of the TA subspace with weight A, let PA be the
projection to the K-type TA', and let pB be the projection to
the weight w under right translation. For X a root vector in
gC, we apply Eq. 1 to PKU(S,oa,v,X)f. If TA' occurs in
U(S,o,V) with multiplicity one, then T(P) acts as a scalar c(v)
on the TA' space and Eq. 1 gives

C(V)PA U(So-, V,X)f = PA U(Sar,-V,X)f.
For any v' in V 'and any weight co, we therefore have

c)(AU(S,ao, PX)f)(k),(v'v, [2

W (( A Pa-,X)f(k),sV )ve [2]

For a particular choice of A' and X, we shall choose v' and co
so that

P ((PAf U(S,u, v,X)f)(k),v')ve, = a( )I(k) [3]

with a(v) and I(k) not identically 0. Under the assumption
that TA' has multiplicity one, Eq. 2 gives

c(P) = a(- l/a(0),
and it is a simple matter to read off values of v for which c( )
is negative and hence T(v) is indefinite.

In the remainder of this paper, we shall assume that S =
MAN is maximal parabolic-i.e., dim a = 1. In this context
let us pin down the orderings on roots that we shall use. Let
A = A(gc, bC) be the set of roots of G, AK = A(tc, bC) the
subset of compact roots, and A, = A - AK the set of non-
compact roots. If a is a root, we normalize H,, in bc and the
root vector X,, as in ref. 12: in particular, if a is noncompact,
the a Cayley transform a has CY(Xa, + X_-) = 2.
Under our assumption that MAN is maximal, we may as-

sume that a = R(X,. + X-a) for some noncompact root a.
Let b be the compact Cartan subalgebra of m defined by
the orthogonal decomposition b = b- (D RiH,. It is known
(13) that a is induced from a representation o, of the sub-
group M# = MOZM, the product of the identity component of
M and the center of M. Let A0 be the Harish-Chandra param-
eter (5) of oO on b-; this parameter determines a positive
system (A-)+ for the roots

A-= {yE Aly- a}

of M. Let A be the minimal (K n MO)-type of or# given on b_
by

A = Ao- P- + P-pn
(Here p_ and p ,, refer to half-sums of positive compact

and noncompact roots of M, and the formula for X is proved
in ref. 14.) Ref. 15 describes a procedure for introducing a
particular positive system A' containing (A-)' such that a is
simple for A'. With AK = Al n AK, the minimal K-types of
U(S,o(,V) are given by

A = A _ (2pKa) a + gJa12 a / [4]

according to ref. 15. Here A is ±1/2a or 0, depending on a
parity condition for a-. In the first instance (called the "cotan-
gent case") at least one of +1/2a and -1/2a gives a A+ domi-
nant A, and the minimal K-types are the dominant A's. In the
second instance (called the "tangent case") A = 0 gives the
unique minimal K-type. In every case Aib equals A, and a
highest weight for TA is highest of type A for K n Mi.

2. Formulas

Continuing with the notation of §1, we let a be the noncom-
pact A' simple root defining a. Let A be a minimal K-type of
U(S,o,v), and let u be the last term of A in Eq. 4. With (.)V
meaning "( ) made dominant relative to At," we define A' =
(A + a)V and Aj = (A - a)V. It follows from our assumption
on root lengths for G that Al+ = A + S+ and Aj = A + 8- for
noncompact roots 8+ and &- that are positive for A+ and
saA+, respectively. (Here s, is the reflection in a.)
By the S+ subgroup of G we mean the semisimple group

built from all simple roots of A+ needed for the expansion of
8+ in terms of A' simple roots. The 8- subgroup of G is
defined similarly in terms of &- and s5lAS+.

Let AK, be the subsystem of AK orthogonal to A, and let
WK, be its Weyl group.
THEOREM 1. (a) If Aj+ has multiplicity one in U(S,a, 0),

then J(S,ao, v) is not unitary for real-valued v satisfying

a < v(X, + X_),

where

a + 2(p,a)
lal2

+2#{p E A+1Ip- ae Aand ,a-iA}. [5]

The K-type A+ is ofmultiplicity one when the 8+ subgroup of
G has real rank one and (A,a) ' 0.

(b) IfAj has multiplicity one in U(S,o,v), then J(S,o,v) is
not unitary for real-valued v satisfying

a' < l(Xa + X_),

where

a' 2(,u,a)

+2#{p EA/+113 + a E-A and + a-i A}. [6]

The K-type Aj is ofmultiplicity one when the &- subgroup of
G has real rank one and (A,a) 2 0.

Further circumstances under which A' and A- have mul-
tiplicity one are given in §3.
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The second theorem gives extra information in the special
case that A' = A-. We write A1 for their common value and
let 8 be the common value of 8' and V.
THEOREM 2. Suppose a and -a are conjugate via WK,1. If

the three conditions

(i) (,a) < O,
(ii) the semisimple group built from all simple roots of A'

needed for the expansion of 8i + 8 has real rank one,
where 81 is the root in A' for which (A1 + a)' = A1 + 81,
and

(iii) A /- 1 for every / in An strongly orthogonal to a,
are satisfied, then the K-types A1 and (A1 + a)' have multi-
plicity one in U(S,cr,v), and J(S,ry) is not unitary for real-
valued v satisfying

a < i'(Xa + X_,)

or

b < V(Xa + X-a) < a,

MOAN. Therefore, Frobenius reciprocity gives

[U(S,o', OIK: TA'] = > nx'[TA'IKnM#: Tx']

for any K-type TA,.
THEOREM 3. If the 8+ subgroup of G has real rank one,

then [TA+IKnMo: Tx'] = Ofor all X' 7 X; in this case

[U(SOc,0)IK: TA+] = [TAIlKnM#: TJ].
Similarly, if the 8- subgroup of G has real rank one, then
[TA1-IKnMO: TX'] = O for all A # A; in this case

[U(SMoU,0IK: TA,-] = [TA-IIKnM#: T].
TREM 4. Suppose a and -a are not conjugate via WK,1.

Then

(a) [TA+: A + a] = 1

(b) 1 ' [TA+IKnM#: TO] ` 1 + > [TA+: A - (2n + 1)a]I ~~~~n-0 I

where

a = 1 + 2#{fE A+ p+ a E / and A-a-3} [7]

and

b=a- 2#{PEAI3 -'La,(3 not strongly -a- a, and A L /3}. [8]

Some remarks may be helpful in connection with Theorem
2. The conjugacy of a and -a implies that ,u = 0 and A - a.
Moreover, the constants a and a' in Eqs. 5 and 6 are equal
and their common value is that in Eq. 7. As long as (8,a) # 0,
condition i may be viewed as a normalization, since we can
replace A' by sa+A if necessary. Theorem 2 suggests that the
unitary parameters may have a gap with an isolated unitary
representation where v(Xa + X-a) = a. Eq. 8 gives a root-
theoretic interpretation for the width of the gap.
While Theorem I uses a "one-step" formula like that in

Eq. 3, Theorem 2 is more complicated. It comes about by
examining the effect of moving two steps by a quadratic ele-
ment of the universal enveloping algebra of g, from A
through A1 to (A1 + a)'.
When G has real rank one, the hypotheses of one or the

other of Theorems I and 2 are always satisfied, and the com-
bined results are sharp (cf. ref. 16). In applying Theorem I
when A+ and A- both have multiplicity one, the correct
bound on unitarity is the smaller of a and a'. For further
commentary on the sharpness of the theorems, see §4.

3. Multiplicity Results

In this section we give more detailed information about the
multiplicities that enter the hypotheses of Theorem 1. We
use the notation [ITIH:T'] for the multiplicity of the repre-
sentation T,' in the restriction of T, to the subgroup H, and
we write [T,,:E] for the multiplicity of the weight E in the rep-
resentation T.

Let us write

IKnM. = I nX'TX'
A'

(C) [TA+I|KnM: TJ] = 1 if (A,a) ' 0
(d) the' nth term in the sum on the right side ofb is O for n

> 0 if the 8+ subgroup ofG is classical. If, in addition, 28+
is not a sum of members of A+, then the 0th term is 0.

(e) results analogous to a-d are valid for A1 .
THEOREM 5. Suppose a and -a are conjugate via WKE.

Then
(a) [TAI: A + a] = [TrA,: A - a] = 1

(b) 1 < [TAIKnMo: TA] S 2

(C) [TA1IKnM0: T] = 1 if the 8 subgroup ofG has real rank
one.

4. Cohomological Induction and Sharpness of Results

We conclude by addressing the extent to which our formulas
are sharp. We can attach to oa the tuple ({a},A+,otIzMq.L) with
definitions as in §1. Such a tuple is called aformat in ref. 2.
That paper examines all parameters Ao that can lead to a par-
ticular format when Gc is simply connected and shows there
is a unique smallest one XO,b, which is called the basic case
for the format. (A formula for XO,b is given in ref. 17.) The
difference XO - Xo,b is dominant for A', and ref. 2 defines a
reductive subgroup L of G depending on A0 and having root
system

AL = {1 E AI(X0 - XOb43) = 0°}

The system AL is spanned by A+ simple roots.
The relevance of L is its connection with the theory of

cohomological induction presented in ref. 1. One expects co-
homological induction to carry unitary representations to
unitary representations, and this L is thought to be large
enough so that a suitable converse is valid. However, coho-
mological induction plays no role in the statements of our
results, which simply deal with parameters. The starting
point for using L is the following lemma.
LEMMA. The set AK,1 is contained in AL. Therefore, the

8 and 8- subgroups of G are contained in L, and all the
roots ,B in Eqs. 5 and 6 or 7 and 8 lie in AL.

as the decomposition into (K n M#)-types. By the double
induction formula, U(S,o-, P) is induced from o-O 09 e 1 on

If L has real rank one and a is conjugate to -a via WK1
and condition i holds in Theorem 2, then the subgroup in
condition ii of that theorem (built from 8 + 81) also is con-
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tained in L. Bringing in the Speh-Vogan theory (18), we ob-
tain the following result.
THEOREM 6. Suppose G is classical, o- is a genuine dis-

crete series representation of M, and L is of real rank one.

(a) Ifa and -a are not conjugate via WK,1 or if (6,a) = 0,

then J(S,a,v) is unitary for

0 < v(Xc, + X-a) -- min{a,a'},

with a and a' as in Eqs. 5 and 6, and is not unitary for

min{a,a'} < v(Xa + X-a).

(b) Ifa and -a are conjugate via WK,1 and if conditions i
and iii hold in Theorem 2, then J(S,o-,v) is unitary for

0 < v(X, + X-a) s b,

not unitary for

b < v(Xa + X-a) < a,

and not unitary for

a < 4(Xa + X-a).

Here a and b are as in Eqs. 7 and 8.

When G is exceptional (satisfying our conditions) and L is
of real rank one, there are finitely many discrete series of M
that we cannot handle as in Theorem 6.
For the group SU(p,q), a is never conjugate to -a, and

A+ and A- have multiplicity one if the respective 8 sub-
groups have real rank one. If o, is a discrete series represen-
tation and L is not of real rank one, then L is of a very special
form that is easily handled. As a consequence, Theorem 6
yields the following result.
THEOREM 7. If G = SU(p,q) and o is a discrete series

representation of M, then J(S,ac,v) is unitary for

0 < v(X, + Xa) s min{a,a'},

with a and a' as in Eqs. 5 and 6, and is not unitary for

min{a,a'} < v(Xa + X-a).
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