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ABSTRACT The intertwining operators for non-
unitary principal series representations of a real semi-
simple Lie group are used to construct intertwining oper-
ators for all the series of unitiry representations appearing
in the Plancherel formula. The resulting machinery re-
duces computations with Harish-Chandra's c-functions
and the Plancherel measure to computations with those
c-functions and measures obtained from a minimal para-
bolic subgroup.

In earlier work (1, 2) we presented a theory of intertwining
operators that gives complete information about questions
of reducibility for representations of the principal series of a
connected semisimple Lie group of matrices. The representa-
tions in question are those induced from finite-dimensional
irreducible unitary representations of a minimal parabolic
subgroup.

In the present note we shall show how to use this theory to
reduce some questions about the other continuous series
representations contributing to the Plancherel formula of
such a group, to questions about the principal series. Detailed
proofs will' appear later. Immediate applications are the
following: (a) We obtain an extension of the theory of inter-
twining operators that deals with these other continuous
series. (b) Formulas connecting the c-functions of Harish-
Chandra (3) with intertwining operators allow one to com-
pute all c-functions in terms of c-functions relative to minimal
parabolic subgroups. (c) The contribution to the Plancherel
measure from the other continuous series can be computed in
terms of Plancherel factors for the principal series. Applica-
tions to irreducibility questions and existence of comple-
mentary series will be given in a subsequent announcement.

Let G be a connected semisimple Lie group of matrices with
maximal compact subgroup K and Cartan involution 6.
According to Harish-Chandra (3, 4), the unitary representa-
tions contributing to the Plancherel formula of G are con-
structed from the finitely many conjugacy classes of Cartan
subgroups of G. To each conjugacy class one can associate a
parabolic subgroup with Langlands decomposition P =
MAN such that M has a discrete series. The continuous series
representations associated to the Cartan subgroup are para-
metrized by (TX), where t is a discrete series representation of
31 and X is an imaginary-valued linear functional on the Lie
algebra a of A. The representation U(t,X,x), with x in G,
is given as indMAN t G(t 0 eX 0 1). We adopt the convention
that G acts on the left in the induced representation.
The idea for studying U(Q,X,-) is very simple. Suppose we

consider U(w,X,-) instead, where w is a principal series rep-
resentation of M. It is an observation of 1\Iackey's (5), by the

double induction theorem, that U(co,X, ) is unitarily equiv-
alent with a principal series representation of G. Next, sup-
pose that co is in the nonunitary principal series of M. (See
ref. 1 for the definition.) In the same way the induced rep-
resentation U(W, X,.) can be regarded as in the nonunitary
principal series of G. If the discrete series t can be imbedded
suitably in w, then we should expect that U(S,X,-) will be
imbedded in U(co,X, *) and the intertwining operators attached
to U(Q,X, *) will be restrictions of those for U(w,X,).

Actually the group M need not be connected or semisimple,
but it does have sufficient structure to allow one to define
nonunitary principal series for it. A maximal compact sub-
group is KM = K n M, and 31 has a minimal parabolic sub-
group MMAMNM. The group MpA N5 is a minimal parabolic
subgroup of G if M, = 3M, AP = AMA, and Np = NMN.
Induction from finite-dimensional irreducible representations
of MMAMNM gives the nonunitary principal series of M. The
theory of intertwining operators for these nonunitary principal
series representations will play no role here except in Theorem
1 below. Since the extension of the theory of ref. 2 to groups as
general asM presents no difficulties or surprises, we shall not
elaborate on it at this time.
Our arguments will apply to MAN whenever each discrete

series representation of AI can be imbedded infinitesimally
(with no continuity assumed) in the nonunitary principal
series of 31. (The imbedding is assumed equivariant with
respect to KM and the universal enveloping algebra of M.)
We are informed that W. Casselman has proved such a sub-
representation theorem for connected semisimple matrix
groups. With his result it is an easy matter to extend his
theorem to a class of groups rich enough to include all the
groups M under consideration.

THEOREM 1. Suppose that t and w are, respectively, discrete
series and nonunitary principal series representations of M1 in
the Hilbert spaces Ht and HW. If i is an infinitesimal imbedding
of t in w and if H'o denotes the Hilbert space closure of the image
of i, then i-1 extends to a continuous map of the C' vectors of
H'o into the C' vectors of Ht.

This theorem will play a key analytic role in questions later
about irreducibility. Its proof uses the intertwining operators
for M and the Cauchy Integral Formula.
The explanation of the construction of continuous series

intertwining operators will be clearer if we present only the
formalism. We are to think of t imbedded infinitesimally in

= indMMAMNM t M(G 0 exp XM 0 1),
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which acts on

H = {f:MM H'f(xmMaMnM)
= e-(M+pm)logam u(mm)-'f(X) }

by (w(m)f(m') = f(m-lm'). The norm squared in HI is

1 If(k) 12H dk.
KM

If X is a linear functional on a, then U(w,X,*) = indMANtG
(coC ex 0 1) acts on

HU = {F:G - H'IF(xman) = e-O(X+p)loga w(m)'-F(x)

by U(x)F(x') = F(x-lx'), and the norm squared is

IF(k)Il-'H dk.

The evaluation map F(.) -- F(.) (1) exhibits U(,w,X,-) as
equivalent via a unitaryoperator with the nonunitary principal
series representation

indMAN,t G( 0 exp X, 0 1),

where Xp is Xm on aM and X on a. (Here aM is the Lie algebra
of AM.)
Let P1 = MAN1 be another parabolic subgroup built from

MA and let V = ON. We can induce w 0) eX 0 1 from P or
from Pi, and we distinguish the induced representations by
writing Up(cw,X, - ) or Up,(,X, - ), respectively. The formal in-
tertwining operator from Up to Up, is

(A(Pi:P:w:X)F) (x) = F(x)d. [1]
VnNi

Now there exists a unique s in the Weyl group W(ap) such
that s(NNM)s-I = NNM. We write s also for a representative
of this element in K. Letting Np = NNM and VP = ONP, we
have

VP n s-'Nps= V nNl.

The set on the left is the set for the integration defining a non-
unitary principal series intertwining operator and suggests
defining

(A(Pi:P:cw:X\)F) (x)(m) = (A(s,a,Xp)F(*)(1))(xms-1) [2]
and taking the normalizing factor -y(P1:P: w: X) for the left
side to be the same as that for the right. The normalized
operators are given by d = y-'A.
The right side of [21 refers to an operator of the kind con-

sidered earlier (2) and thus admits an analytic continuation to
values of X for which the integral [1] does not converge. The
result is a definition, analytic continuation, and normalization
for A (P1:P w: X) acting on smooth functions.
To bring in i, let H'o be as in Theorem 1. Then A (P1:P:

w: X) has a sense when restricted to the smooth functions in

indMANtG(w(.)Io 0) ex 0 1). [3]

The K-finite functions for the continuous series representation
Up X, - ) are identified with the K-finite functions for [3], and
we define A (P1: P: t:X) on them to match A (P1: P:c:X). The
normalizing factor is taken unchanged. The result is a defini-
tion, analytic continuation, and normalization for A (P1:P:
t: X) acting on K-finite functions.

For w in the normalizer in K of a (and thus representing an
element of the Weyl group W(a)), let R(w) be right transla-
tion by w and let

Ap(w,t,X) = R(w)A(w-IPw:P: :X)

ap(w,t,X) = R(w)Zt(w-IPw:P: :X).

The machinery above enables one to prove painlessly that
the integral in [1] converges also in the sense of He-valued
integrals if ReX is sufficiently far out in the positive Weyl
chamber. Consequently the unnormalized operators depend
on t but not the parameters a and XM of the imbedding. The
normalizing factors do depend on the imbedding, however.
To simplify the remaining exposition, wve shall restrict atten-
tion to discrete series t that have an imbedding with the follow-
ing invariance property: Whenever w in K represents a mem-
ber of W(ap) that permutes the positive aM roots and is such
that wt is equivalent with t, then wo- is equivalent with a
and WXM = XM.
Making suitable conventions about Haar measures, normal-

izing factors, and compatibility of infinitesimal imbeddings,
we arrive at the following result.

THEOREM 2. (i) Let a be a finite set of irreducible representa-
tions of K, and let Er be the orthogonal projection according
to F. Then A (P1 P: E: X) commutes with Es and satisfies
EgUp,(Q,X, )ErA(Pi:P:t:X) = A(P1:P:t:X)ErUp(Q,,-)ESX.

(ii) a (P2: PO: t:X) = (a(P2:P: t X)a(Pi: Po: X: X). The same
identity holds for the unnormalized operators if N2 f No C
N1 f No.

(iii) If w in K represents a member of W(a), then
A(Pi:w-'Pw: t: X) = R(w-1)A (wPlw-':P:w: wX)R(w).

(iv) If w1 and W2 in K represent elements of W(a), then
(tP(w1w2,tX) = (aP(W1,W21, W2X)(tP(W2,t,X).

(v) EA(PI:P: t: X)E-1 = A(Pi:P: EtE-1:X) ifE is a unitary
operator on the discrete series space Ht.

(vi) A(Pi:P: :X)* = A(P:Pi: :-X) if the adjoint is de-
fined K-space by K-space. Moreover, in (i), (iii), and (v) the
same identities hold alsofor the normalized operators.
We now connect these intertwining operators with the

c-functions of Harish-Chandra (3). In view of the above
construction, one can then in principle reduce computations
with c-functions (and hence with the Plancherel measure) to
computations with minimal parabolic subgroups and ulti-
mately to computations in groups of real-rank-one.

Let F be a finite set of irreducible representations of K, and
let aF be the sum of the degrees times characters of the mem-
bers of F. Let VF be the space of complex-valued functions
f onK X K such that

aF*f( ,k2) = f(*,k2) and aF*f(kl, ) =fl
Define a double representation r ofK on VF by

T(ki)fT(k2)(k,k') = f(kv1'k, k2k').

Let OCj(M,TM) be the space of all functions ; from M to VF
such that

t(kimk2) = r(k>1/(m)r(k2) for m E M, k1 E KM, k2 E KM

and such that the entries of VI are linear combinations of
matrix entries of t. Finally let HF be the subspace of functions
f in the representation space of U(t,X,-), regarded as HC
valued functions on K, such that a!F*f = f. Then the linear
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map T -t'T of Hom(HF,HF) into 0eE(M,TM) given by

'T(fM1) (k1,k2) = djTr(e*t(m)eL(k2) TL(kl) -1),

where e is evaluation at 1 and dE is the formal degree of t and L
is the left regular representation, is an isomorphism onto.
Using notation that is off bly a factor of i from Harish-

Chandra's (3), we define Eisenstein integrals by

E(P:': X:x) = I {(xk)r(k)-e(X- p)H(x)(dk

under the convention 4,(kman) = r(k)4,(m). It is an observa-
tion of N. Wallach (6) that

E(P: T:X: x) (k1,k2) = dTr(EFUp%(X,,kl-'xk2)TEF). [4]

The c-functions are defined in terms of the asymptotic expan-
sions of the Eisenstein integrals for X regular and imaginary by

Ep,(P: ,: X:ma) = E (cpjjp(s:X),)(m)eaxlog a
sEW(a)

See ref. 3 for details.

THEOREM 3. cPIP,(1 : X) 'T = PT', where

T' = A(P:P:t:X)A(P:P1:t:X)TA(P:P,:1:x)-l
and P = OP. Conversely, iff and g are in HF, then

(A(P:P:t:X)f,g) = de-ljh (cpIP(1 :X) IT)(1)(kk)dk,

where Th = (h,g)f.
Other identities involving cp,1p(s:X) can be given too, but

their statements are more cumbersome. All the identities
involve the same technique of proof: Establish an intertwining
identity far out in the Weyl chamber, pass to Eisenstein
integrals via [4], continue analytically to X imaginary, and
pass to c-functions by taking asymptotics. The special case
P1 - P in Theorem 3 requires separate proof and follows by
comparing integral formulas for cplp(l: X) and A (P: P: t: X).
The identity in Theorem 3' below will be used in dealing with
irreducibility questions in a subsequent announcement.

Let w be a representative in K of an element s in the Weyl
group W(a). If wt is equivalent with E, then one can define
t(w) in such a way that t extends to a representation of the
smallest group containing M and w; the definition of t(w) is
unique up to a scalar factor equal to a root of unity.

THEOREM 3'. If T is in Hom(HF,HF), if w is a representative
in K of the element s of W(a), and if wt is equivalent with t,
then

CpIp(S(:X) AT = 4T',

where

T' = A (P: P: t: sX) (t(w)(Rp(w,E,X)) T(t(w)(tp(w,tX)) -1,

Identities related to the ones in Theorems 3 and 3' have been
obtained independently by J. Arthur.t

Iterated application of two c-functions leads to the Plan-
cherel measure (3). To obtain formulas for the Plancherel
measure, one approach is to apply Theorem 3 to get the mea-
sure as a product of normalizing factors and then use the
results of ref. 2 to convert these normalizing factors to prod-
ucts of Plancherel factors for real-rank-one groups; this ap-
proach gives concrete analytic formulas for the measure. An
alternate approach is to apply Theorem 3 to compute Harish-
Chandra's factor uti6(X) in ref. 3 in terms of normalizing
factors; this approach will be useful in handling irreducibility
questions subsequently. We give one example of each kind of
identity in the following two corollaries to Theorem S.

COROLLARY 1. Let w be an element of the normalizer of A p in
K such that w(VNM)w-1 = NNM, and let t be imbedded at
(caXM). Then there exists a constant cz depending on t and the
imbedding such that the Plancherel measure su(X) satisfies

t(x) = c4Jpqjmi((X + XM)Ia.),
where the product is over all positive ap-roots a such that wa
is negative and a/2 is not an ap-root. Here the factor for a on
the right is the Plancherel measure for the real-rank-one group
constructed from the ap-root ca.

COROLLARY 2. Let fl be a positive a-root such that t(o is not an
a-root for 0 < t < 1, and let t be imbedded at (o-,XM). Then there
exists a constant ct,fi depending on ,fl, and the imbedding such
that

This research was supported by National Science Foundation
Grants GP-42459 and GP-36318.

1. Knapp, A. W. & Stein, E. M. (1970) "Singular integrals and
the principal series, II," Proc. Nat. Acad. Sci. USA 66, 13-17.

2. Knapp, A. W. & Stein, E. M. (1971) "Intertwining operators
for semisimple groups," Ann. Math. 93, 489-578.

3. Harish-Chandra (1972) "On the theory of the Eisenstein
integral," in Conference on Harmonic Analysis, Lecture Notes
in Mathematics (Springer-Verlag, New York), Vol. 266, pp.
123-149.

4. Harish-Chandra (1970) "Harmonic analysis on semisimple
Lie groups," Bull. Amer. Math. Soc. 76, 529-551.

5. Mackey, G. W. (1952) "Induced representations of locally
compact groups I," Ann. Math. 55, 101-139, especially p. 109.

6. Wallach, N. R., "On Harish-Chandra's generalized C-func-
tions," to appear in Amer. J. Math.

t "Intertwining integrals for cuspidal parabolic subgroups,"
manuscript submitted.

Proc. Nat. Acad. Sci. USA 71 (1974)


