Formula for minimal K-type, maximally compact case

Assumptions: \(G \) linear connected semisimple

\[t = \Theta \text{-stable Cartan subalgebra of } \mathfrak{g} = \mathfrak{t} \oplus \mathfrak{k}, \mathfrak{t} \subset \mathfrak{k}, \mathfrak{t} \subset \mathfrak{p}, \]
\[\Delta = \text{roots of } (\mathfrak{g}^c, \mathfrak{t}^c), \Delta^- = \text{roots of } (\mathfrak{g}^c, \mathfrak{t}^c) \text{ vanishing on } \mathfrak{t}. \]

Maximally compact assumption: No member of \(\Delta \) vanishes on \(\mathfrak{k} \).

\(M \) and \(M \) constructed in the usual way from \(\mathfrak{k} \), so that \(\mathfrak{k} \) is a compact Cartan subalgebra of \(M \).

We can speak of compact and noncompact roots - roots of \((\mathfrak{g}^c, \mathfrak{t}^c) \) that vanish on \(\mathfrak{t} \) and whose root vectors are in \(\mathfrak{k}^c \) or \(\mathfrak{p}^c \), respectively.

(They are also in \(M^c \).)

We work only with \(M^\# = M \times \mathbb{Z} \) since discrete series of \(M \) are induced from \(M^\# \). (Probably \(M^\# \) is connected under our assumptions.)

Let \(\sigma = \) discrete series of \(M^\# \)

\[\lambda_0 = \text{a Weyl-Chernikov parameter of } \sigma \text{ relative to } (\mathfrak{m}^c, \mathfrak{b}^c) \]

\[\lambda = \lambda_0 + \delta_m^- - \delta_e^- = \text{unique minimal } K_{N_\# M^\#} \text{-type of } \sigma, \text{ with positive } \operatorname{spin}(\Delta^-) \text{ close to make } \lambda_0 \text{ dominant for } \sigma. \]

Remark: \(\mathfrak{k} \) is a Cartan subalgebra of \(\mathfrak{g} \).

Proof. Otherwise extend \(\mathfrak{k} \) to a maximal abelian subalgebra of \(\mathfrak{k} \) and then to a Cartan subalgebra of \(\mathfrak{g} \), and end up with a more compact Cartan subalgebra of \(\mathfrak{g} \) than \(\mathfrak{k} \) is.

Theorem. \(\Lambda = \lambda \) is the unique minimal \(K \)-type of \(\operatorname{ind}_K^{K_{N_\# M^\#}} \sigma \).
Lemma. Restriction from t^c to b^c carries $\Delta - \Delta_-$ onto the set Δ_c of roots of (k^c, b^c).

Proof. Let β be in Δ with E_{β} in q^c, and write $\beta = \beta_n + \beta_0$. Then $E_{\beta} + \theta E_{\beta}$ is in P^c. If H is in b^c, then

$$[H, E_{\beta} + \theta E_{\beta}] = [H, E_{\beta}] + \theta [H, E_{\beta}] = \beta_n(H) E_{\beta} + \beta_0(H) \theta E_{\beta}$$

$$= \beta_n(H) (E_{\beta} + \theta E_{\beta})$$

Hence β_n is in Δ_c or $E_{\beta} + \theta E_{\beta} = 0$. (We know that $\beta_0 \neq 0$, since no member of Δ remains anyway on b^c.)

In the latter case, $-E_{\beta} = \theta E_{\beta}$ is a root vector for $\theta \beta = \beta_n - \beta_0$, and so $\beta = \theta \beta$, $\beta_0 = 0$. Then β is in Δ^-. Since E_{β} satisfies $\theta E_{\beta} = -E_{\beta}$, E_{β} is in p^c. Hence β is in Δ_c. We conclude.

Restriction carries $\Delta - \Delta_-$ into Δ_c.

We show the map is onto Δ_c. Thus let β be in Δ_c with $X_{\beta} \in k^c$ an associated root vector $\neq 0$. Write

$$X_{\beta} = \sum_{\beta \in \Delta} E_{\beta} + H_0$$

$H_0 \in h_c$.

Then H in b^c implies

$$\beta_1(H) X_{\beta_c} = \sum_{\beta \in \Delta} \beta_1(H) E_{\beta}$$
If \(H \) is in \(\Delta_0 \), then it follows that \(\beta(H) = 0 \) whenever \(\beta \neq 0 \). If \(H = \lambda \beta \), then it follows that
\[
\frac{\beta(H \beta)}{\lambda \beta^2} = 1
\]
whenever \(\beta \neq 0 \) and that
\[
\frac{H_0}{\lambda \beta^2} = 0.
\]
Consequently \(H_0 = 0 \) and \(\beta_1 \beta = \beta_1 \) for every \(\beta \) for which \(\beta \neq 0 \). Applying \(\Theta \) and averaging, we obtain
\[
X_\beta = \sum_{\beta \neq 0} (E_\beta + \Theta E_\beta).
\]
Choose \(\beta \) so that \(E_\beta + \Theta E_\beta \neq 0 \) in this expression; this is possible since \(X_\beta \neq 0 \).

Then \(\beta \) is met in \(\Delta_0 \) and \(\Theta \beta \neq 0 \), so that \(\beta_1 \beta = \beta_1 \). This proves the map is onto.

Remark. We can regard \(\Delta \) as \(\subseteq \Delta_0 \), via the restriction map of Lemma 1.

Positive system \(\Delta_+^c \):

Let
\[
\Delta_0^c = \{ \beta_1 \beta \mid \beta \in \Delta \text{ and } (\beta_0, \beta) = 0 \} \subseteq \Delta_c
\]
\[
\Delta_{1,0}^c = \{ \beta_1 \beta \mid \beta \in \Delta \text{ and } (\beta_0, \beta) > 0 \} \subseteq \Delta_c.
\]
These notions depend only on \(\beta_1 \beta \), not on all of \(\beta \), since \(\beta_0 \) vanishes on \(\Theta \beta \).

Choose a positive system \(\Delta_{0,0}^c \) for \(\Delta_0^c \), and define
\[
\Delta^c_+ = \Delta_{1,0}^c \cup \Delta_{0,0}^c.
\]
Then \(\Delta^c_+ \) is a positive system for \(\Delta_c \), and \((\Delta_0^-)^+ \subseteq \Delta^c_+ \).

Define \(\Delta \) in the obvious way.

Thereon. Relative to the positive system \(\Delta^c_+ \) of roots of \((k^c, b^c) \), \(\Lambda = \lambda \)
is the unique minimal \(K \)-type of \(\pi \).

\[K^{\text{adm}} = \sigma. \]
Lemma 2. \(\Lambda = \Delta \) is integral for \(K \), i.e., \(\exp \Lambda \) is a well-defined character of the torus \(B \) of \(K \).

Proof. \(\exp \Delta \) is a well-defined character of \(B \) as a taut in \(M \), since \(\Delta \) is the Bottcher weight of \(\sigma \).

Lemma 3. Suppose \(\beta_1 \) is a simple root for the system \(\Delta^+_c \) and is not the restriction of a member of \((\Delta^-_c)^+ \). Then

(a) \(s_{\beta_1} \beta \in \Delta^- \)
(b) \(s_{\beta_1} \Delta^-_c \in \Delta^-_c \)
(c) \(\langle \beta^- \beta_1 \rangle \geq 0 \)
(d) \(s_{\beta_1}(\Delta^-_c)^+ \in (\Delta^-_c)^+ \) and hence \(\langle \beta^-_c \beta_1 \rangle = 0 \).

Proof. (a) Let \(\beta = \beta_1 + \beta \) be an extension of \(\beta_1 \) to a member of \(\Delta - \Delta_m \), by Lemma 1. Since \(\beta \) is not in \((\Delta^-_c)^+ \), by assumption, \(\beta \) is not in \(\Delta^- \), thus \(\beta = 0 \). Thus

\[
\frac{2 \langle \beta, \theta \beta \rangle}{|\beta|^2} = \frac{2 \langle \beta_1 + \beta, \theta \beta_1 - \theta \beta \rangle}{|\beta_1 + \beta|^2} = -1, 0, \text{ or } 1. \tag{4}
\]

It cannot be 1, since otherwise \(\beta = 0 \) would be in \(\Delta \), and there are no members of \(\Delta \) that vanish on \(\beta \).

Suppose \(\langle \theta \beta_1 \rangle = 0 \). Then it follows that \(s_{\beta_1} s_{\beta_1} = s_{\beta_1} s_{\beta_1} \).

Since \(s_{\beta_1} \) fixes \(\Delta^-_c \), \(s_{\beta_1} \) acts on \(s_{\beta_1} s_{\beta_1} \) on \(\Delta^-_c \) and must carry \(\Delta^-_c \) into \(\Delta \), hence into \(\Delta^- \).
Suppose (a) is 1. Then it follows that \(s_{\beta_1} \) is in \(\Delta \). Thus \(s_{\beta_1} \) carries \(\Delta^- \) into \(\Delta \), hence into \(\Delta^- \).

(b) Suppose (b) is 0. Then \(\beta, \delta \beta \), and their negatives generate a subalgebra of \(\mathfrak{g} \) isomorphic to \(\mathfrak{sl}(2, \mathbb{C}) \), and it follows that \(s_{\beta} s_{\delta \beta} \) has a representative \(w \) in \(K \). Thus \(s_{\beta_1} \) acts on \(\mathfrak{g}_+ \) in the same way as an element \(Ad(w) \) with \(w \) in \(K \) that normalizes \(\mathfrak{g}_+ \). The element \(w \) must then normalize \(M \). Hence \(s_{\beta_1} \) leaves \(\Delta^-_c \) and \(\Delta^-_m \) stable.

Suppose (c) is 0. Here \(\beta \) is not a root of a split \(B_2 \) factor, and \(\delta \beta \) is not useful. Then "dessin group of a unipotent parabolic" and essentially, \(2\beta_1 \) is a root of \(\Delta^-_m \) such that \(\pm 2\beta_1 \) are orthogonal to all other roots of \(\Delta^- \). Then it is clear that \(s_{\beta_1}(\Delta^-_c) = \Delta^-_c \).

(c) In view of (a),

\[
\begin{align*}
 s_{\beta_1}(2\varphi^-) &= \sum_{\alpha \in \Delta^+} s_{\beta_1} \alpha + \sum_{\alpha \in \Delta^+} s_{\beta_1} \alpha \\
 &= \sum_{\beta \in \Delta^+} \beta - \sum_{\beta \in \Delta^+} \beta \\
 &= 2 \varphi^- - 2 \sum_{\beta \in \Delta^+} \beta
\end{align*}
\]

\[
\begin{align*}
 s_{\beta_1}(\varphi^-) &= \varphi^- - \sum_{\beta \in \Delta^+} \beta \\
 \beta_{\to 0} &< 0
\end{align*}
\]
So the sum on the right, we have \(\beta > 0 \) and \(\beta, \beta < 0 \). Since \(\beta \)

is nonsingular for \(\Delta - \),

\[
\langle \beta, \beta \rangle > 0 \quad \text{and} \quad \langle \beta, \beta \rangle < 0.
\]

Hence

\[
\frac{2 \langle \beta, \beta \rangle}{161^2} \langle \beta, \beta \rangle > 0.
\]

Since \(\beta \) is in \(\Delta^+ \), \(\langle \beta, \beta \rangle > 0 \). Thus \(\frac{2 \langle \beta, \beta \rangle}{161} > 0 \), and (c) follows.

(d) Regard \((\Delta^-)^+\) as in \(\Delta^+_c \). Since \(\beta_1 \) is simple for \(\Delta^+_c \) and is not in \(\Delta^-_c \), \(s_{\beta_1}(\Delta^-)^+ \subseteq \Delta^+_c \). Then (d) shows that

\(s_{\beta_1}(\Delta^-)^+ \subseteq (\Delta^-)^+ \), and it follows that \(\langle \beta^- c, \beta_1 \rangle = 0 \).
Lemma 5. \(\Lambda = 2 \) is dominant for \(\Delta_2^+ \).

Proof. Let \(\beta_1 \) be simple for \(\Delta_2^+ \). We have

\[
\frac{2 \langle \gamma, \beta_1 \rangle}{10,12} = \frac{2 \langle \gamma_0, \beta_1 \rangle}{10,12} + \frac{2 \langle \bar{g}^+, \beta_1 \rangle}{10,12} \cdot (\star)
\]

If \(\beta_1 \) is the restriction of a member of \((\Delta_2^+) \), then \(\beta_1 \) is simple for \((\Delta_2^+) \) since \((\Delta_2^+) \leq \Delta_2^+ \). Hence

\[
\frac{2 \langle \bar{g}^-, \beta_1 \rangle}{10,12} \geq 1 \quad \text{and} \quad \frac{2 \langle \bar{g}_0^-, \beta_1 \rangle}{10,12} = 2.
\]

Since \(\gamma_0 \) is \(\Delta^- \)-non-singular, we conclude \((\star) \) is \(> -1 \), \(\beta_1 \) being positive. Since the left side of \((\star) \) is an integer, by Lemma 2, and must therefore be \(\geq 0 \).

Now suppose \(\beta_1 \) is not the restriction of a member of \((\Delta_2^+) \). Then the first term on the right of \((\star) \) is \(\geq 0 \) since \(\beta_1 \geq 0 \), the second term is \(\geq 0 \) by Lemma 3c, and the third term is \(0 \) by Lemma 3d. Hence the left side of \((\star) \) is \(\geq 0 \).
Lemma 6. For $\Lambda = \lambda$, τ^λ occurs in $\text{Ind}^K_{K_0 K_K} \sigma$.

Remark. We shall use that M^* is connected here.

Proof. Let Φ^λ be a highest weight vector for τ^λ. Then we have

\[\tau^\lambda(H) \Phi^\lambda = \lambda(H) \Phi^\lambda \quad \text{for } H \in k^E \]

\[\tau^\lambda(E_{\beta}) \Phi^\lambda = \tau^\lambda(-\lambda_0 s_{\beta} \varepsilon_{\beta}) \Phi^\lambda = 0 \quad \text{for } \beta \in (\Delta^-)^+ \cap \Delta_c^+ . \]

Also M^* is connected. Thus $\text{span} \{\tau^\lambda(k \cdot \mu^*) \Phi^\lambda \}$ is an irreducible $K_0 K_K$ module of type λ. Since σ^λ occurs in σ and $\tau^\lambda|_{K_0 K_K}$ has been shown to contain σ^λ, we conclude τ^λ occurs in $\text{Ind}^K_{K_0 K_K} \sigma$. By Frobenius reciprocity.

Lemmas 7. \(\langle p_c - p_c^-, \gamma \rangle \geq 0 \) for $\gamma \in (\Delta^-)^+$.

Proof. First we observe s_γ leaves $\Delta_c - \Delta_c^-$ stable. In fact if β_1 is obtained by restriction to be from $\beta = \beta_1 + \beta_0$ with $\beta_0 < 0$ (cf. Lemma 1), then $s_\gamma \beta_1$ is obtained from $s_\gamma \beta = s_\gamma \beta_1 + s_\gamma \beta_0$.

Then we write

\[s_\gamma(p_c - p_c^-) = s_\gamma \left(\frac{1}{2} \sum \beta_1 \right) = \frac{1}{2} \sum s_\gamma \beta_1 + \frac{1}{2} \sum s_\gamma \beta_1 \]

\[= \frac{1}{2} \sum \beta_1 - \frac{1}{2} \sum \beta_1 = \frac{1}{2} \sum \beta_1 - \sum \beta_1 \]

\[= p_c - p_c^- - \sum \beta_1 \]

\[\beta_1 \varepsilon_{\Delta^+} \]

\[\beta_1 \varepsilon_{\Delta^-} \]

\[s_\gamma \beta_1 < 0 \]

\[s_\gamma \beta_1 < 0 \]
Expanding the left side, we obtain
\[
\frac{2 \langle p_c - p_c^-, \gamma \rangle}{|\gamma|^2} \gamma = \sum_{\beta_i \in \Delta_c^+} \beta_i \cdot \beta_i \neq \Delta_c^-
\]
\[\gamma \beta_i \leq 0
\]

Taking the inner product with \(\lambda_0 \) and using the inequality \(\langle \beta_i, \lambda_0 \rangle \geq 0 \), we find
\[
\frac{2 \langle p_c - p_c^-, \gamma \rangle}{|\gamma|^2} \langle \gamma, \lambda_0 \rangle = \sum \langle \beta_i, \lambda_0 \rangle \geq 0.
\]

Since \(\langle \gamma, \lambda_0 \rangle > 0 \) for \(\gamma \in (\Delta^-)^+ \), the lemma follows.

Proof of theorem: Let \(\tau_{\lambda_0} \) be a minimal \(K \)-type of \(\tau \). By

Inductive reciprocity, \(\tau_{\lambda_0} |_{K_{\check{H}_0}} \) contains some \(K_{\check{H}_0} \) type \(\tau_{\lambda'} \) of \(\tau \).

Then \(\lambda' \) is a weight of \(\tau_{\lambda_0} \), and we have
\[
|\lambda_0 + 2p_c|^2 \leq |\lambda + 2p_c|^2 \quad \text{by Lemma 6 and minimality}
\]
\[
|\lambda + 2p_c^-|^2 \leq |\lambda' + 2p_c^-|^2 \quad \text{by minimality}
\]
\[
|\lambda'|^2 \leq |\lambda_0|^2 \quad \text{since \(\lambda' \) is a weight of \(\tau_{\lambda_0} \)}
\]
\[
\lambda' = \lambda_0 - \sum m_i \beta_i \quad \text{since \(\lambda' \) is a weight of \(\tau_{\lambda_0} \)}
\]
\[
(\beta_i \in \Delta_c^+, m_i \geq 0)
\]

We write
\[1 \lambda^2 = 1 \lambda' + 2 \phi - 1^2 - 4 \langle\lambda', \phi_c^-\rangle - 4 \phi_c^-1^2\]
\[\leq 1 \lambda' + 2 \phi_c^-1^2 - 4 \langle\lambda', \phi_c^-\rangle - 4 \phi_c^-1^2\]
\[= 1 \lambda'1^2 + 4 \langle\lambda' - \lambda, \phi_c^-\rangle\]
\[\leq 1 \Lambda_01^2 + 4 \langle\lambda' - \lambda, \phi_c^-\rangle\]
\[= 1 \Lambda_0 + 2 \phi_c^-1^2 - 4 \langle\Lambda_0, \phi_c^-\rangle - 4 \phi_c^-1^2 + 4 \langle\lambda' - \lambda, \phi_c^-\rangle\]
\[\leq 1 \Lambda + 2 \phi_c^-1^2 - 4 \langle\Lambda_0, \phi_c^-\rangle - 4 \phi_c^-1^2 + 4 \langle\lambda' - \lambda, \phi_c^-\rangle\]
\[= 1 \Lambda1^2 + 4 \langle\Lambda - \Lambda_0, \phi_c^-\rangle + 4 \langle\lambda' - \lambda, \phi_c^-\rangle\]
\[= 1 \lambda^2 + 4 \langle\lambda - \lambda' - 2\epsilon, \phi_c^-\rangle + 4 \langle\lambda' - \lambda, \phi_c^-\rangle\]

Hence,
\[4 \langle\lambda' - \lambda, \phi_c^-\rangle \leq -4 \langle\Sigma i\beta, \phi_c^-\rangle \leq 0.\]

By Schmidt's theorem, \(\lambda' - \lambda\) is the sum of members of \((\Lambda^-)^+\). Then
\[4 \langle\lambda' - \lambda, \phi_c^-\rangle > 0\] by Lemma 7.

We conclude first that \(\langle\Sigma i\beta, \phi_c^-\rangle = 0\), from which it follows that \(\lambda' = \Lambda_0\), and second that \(1 \lambda + 2 \phi_c^-1^2 = 1 \lambda' + 2 \phi_c^-1^2\) in the chain of inequalities above, from which it follows that \(\lambda' = \lambda\). Then \(\Lambda_0 = \lambda' = \lambda = \Lambda\), and the theorem is proved.