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Theoretical Aspects of the Trace Formula for GL(2)

A. W. Knapp

The Selberg-Arthur trace formula is one of the tools available for approaching the
conjecture of global functoriality in the Langlands program. Global functoriality
is described within this volume in [Kn2]. We start with reductive groups G and
H, say over the rationals Q for simplicity. We assume that G is quasisplit, and
we suppose that we are given an L homomorphism ψ : LH → LG. From an
automorphic representation of the adeles of H, we use ψ to construct, place-by-
place from the Local Langlands Conjecture (or at almost every place without the
conjecture), an irreducible representation of the adeles of G. The question of global
functoriality is whether the latter representation is automorphic (or, in the case
that it is defined only at almost every place, whether it can be completed to an
automorphic representation). If it is automorphic, then we want to know also what
conditions ensure that a cuspidal representation of the adeles of H yields a cuspidal
representation of the adeles of G under this process. It is known that these questions
capture various deep conjectures in classical algebraic number theory, arithmetic
algebraic geometry, and representation theory and that they unify and generalize
such conjectures significantly.

The trace formula for the reductive group G gives information about the multi-
plicity of the occurrence of an irreducible representation of the adeles of G in the
cuspidal spectrum. If Z denotes the center of G, the quotient Z(A)G(Q)\G(A)
is almost compact in the sense that it has finite volume.1 If Z(A)G(Q)\G(A)
is actually compact and if R denotes the right regular representation of G(A)
on L2(Z(A)G(Q)\G(A)), then the trace formula will assert the equality of two
expressions for Tr(R(ϕ)) on this L2 space, ϕ being a suitably regular function of
compact support on G(A). In the notation of [Ar4], the formula in the compact
case has the shape ∑

o∈O
Jo(ϕ) =

∑
χ∈X

Jχ(ϕ), (0.1)
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in which the left side, called the geometric side, consists of terms that are integrals
of ϕ over conjugacy classes, suitably normalized by volume factors. The right
side, called the spectral side, is a sum of expressions mπTrπ(ϕ), mπ being the
multiplicity of an irreducible representation π in R.

When the quotient Z(A)G(Q)\G(A) is noncompact, R(ϕ) is not of trace class
on all of L2(Z(A)G(Q)\G(A)) but is of trace class on the cuspidal part. The
computation of Tr(Rcusp(ϕ)) is done with a “truncation parameter” T , 0 < T < ∞,
in place, and the result has the shape

Tr(Rcusp(ϕ)) =
∑
o∈O

JT
o (ϕ) −

∑
χ∈X−X(G)

JT
χ (ϕ), (0.2)

with Tr(Rcusp(ϕ)) being regarded as the sum of the terms JT
χ (ϕ) with χ ∈ X(G),

each of which is constant in T . The ingredients in (0.2) are more complicated than
in (0.1): The set O now involves various kinds of conjugacy classes, and the terms
JT
χ involve Eisenstein series relative to proper parabolic subgroups of G. One can

pass to the limit in (0.2) as T → +∞, taking into account various cancellations,
and the result can be written in the qualitative form (0.1), but the interpretation
of each side as a trace is lost.

In any event the trace formula does carry in it the multiplicity of each irreducible
representation of the adeles of G in the cuspidal spectrum of the L2 space, and the
formula may therefore be expected to give some information toward answering the
above functoriality question. In practice it is normally a comparison of the trace
formulas for G and H that gives useful information, but this point will not concern
us at this time.

In this paper we shall discuss aspects of the background and derivation of the
trace formula forG = GL2 when the number field is Q, including a precise statement
of the result. We shall treat also the case that G is a quaternion division algebra.
Another article [Kn-Ro] in this volume gives some applications of the trace formula
for various groups.

Although our interest in the trace formula will ultimately be in an adelic setting,
it is helpful to keep in mind a certain classical setting, because the analysis there
is more transparent and suggests approaches to the analysis in the adelic setting.
Historically the trace formula was introduced by Selberg in [Se1] and [Se2]. Sel-
berg worked initially in the context of a transitive group action on a Riemannian
manifold in which the space of invariant differential operators is commutative, and
he considered the analysis of the space of functions transforming suitably under
a discrete subgroup that acts properly discontinuously. The case of the action of
SL2(R) on the upper half plane, with SL2(Z) as the discrete subgroup, was of
particular interest, and we may think in terms of an analysis of

L2(SL2(Z)\SL2(R)). (0.3)

Let G = SL2(R) and Γ = SL2(Z). It is an elementary fact, which we prove as
Theorem 1.3 below, that the right regular representation R of G on L2(Γ\G) splits
as an orthogonal direct sum

L2(Γ\G) = L2
cusp(Γ\G) ⊕ L2

cont(Γ\G) ⊕ C,

where the members of L2
cusp(Γ\G) are functions satisfying a cuspidal condition of

the kind discussed in [Kn2, §7] and where the members of L2
cont(Γ\G) are essentially
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generated by summing the left translates by Γ of nice functions on G that have
integral 0. The space C is the space of constant functions. The space L2

cont(Γ\G)
is the continuous part of the decomposition, and the known complete analysis of
this space will be given in Theorem 1.4 and §2 in terms of Eisenstein series. Our
analysis specializes the ones of Langlands ([Lgl1], [Lgl2], and [HC]); a different proof
appears in [Go1]. See also [Lan1].

The space L2
cusp(Γ\G) is the “cuspidal part” of the decomposition. It splits into

a discrete sum of irreducible representations with finite multiplicities, as is shown
in Theorem 1.5 and §3. Our proof specializes the one in [Go2].

Although the cuspidal part of the decomposition at first appears less complicated
than the continuous part, little is known about what specific irreducible represen-
tations occur and what multiplicities they have. That is where the trace formula
comes in. If ϕ is in C∞

com(G), then the operator

R(ϕ)f(x) =

∫
G

f(xy)ϕ(y) dy

is of trace class on L2
cusp(Γ\G). The trace formula implies the equality of two

expressions for the trace of R(ϕ) on L2
cusp(Γ\G). If

L2
cusp(Γ\G) =

⊕
mππ

is the decomposition into irreducible constituents with multiplicities, then one of the
expressions for the trace is simply

∑
mπTrπ(ϕ). The other expression comes from

realizing R(ϕ) on L2
cusp(Γ\G) as an integral operator on Γ\G and is the integral

of the kernel of this operator over the diagonal; the trace works out to be a sum
of terms encoding conjugacy class information about ϕ and spectral information
about the action of R(ϕ) on the noncuspidal part of L2(Γ\G). The equality of
the two expressions therefore gives information about multiplicities of irreducible
representations in L2

cusp(Γ\G) in terms of geometric information about G. We shall
indicate in §4 what computation has to be made for the trace formula, but we shall
omit an explicit statement of the formula in the context (0.3). See [He1], [He2],
and [Ef] for a statement of this kind. For our purposes the trace formula is better
understood in an adelic context, and we shall give in §7 a precise statement of that
kind.

The trace formula in the classical setting does not lend itself to the kind of
comparison of traces from different groups useful for global functoriality, but it
does have some direct applications. One such is that it gives a formula for the trace
of each Hecke operator on each space of classical cusp forms; the resulting theorem
is called the Eichler-Selberg trace formula and is discussed in [Lan1] and [Mi, Ch.
6]. A degenerate case of this argument yields a proof of the dimension formula for
spaces of classical cusp forms without appealing to the Riemann-Roch Theorem.

Let us now be more specific about the adelic context. The reductive group
under study will largely be GL2, and we regard it as defined over the rationals
Q. The places v of Q are ∞ and all the primes, and Qv is correspondingly the
field of reals R if v = ∞ and is the field of p-adics Qp if v is a prime p. If the
restricted direct product A =

∏
v Qv denotes the adeles of Q, the problem of global

functoriality typically leads one to representations of GL2(A) =
∏

v GL2(Qv) of
the form π =

∏
v πv with πv an irreducible admissible representation of GL2(Qv)

for each v. Roughly speaking, π is automorphic if π is involved in analysis of
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the quotient Z(A)GL2(Q)\GL2(A), where Z(A) denotes the subgroup of scalar
matrices. More particularly, the question is likely to be whether π occurs in the
cuspidal part of the discrete spectrum of

L2(Z(A)GL2(Q)\GL2(A)). (0.4)

The question is therefore answered by knowing whether the multiplicity of π in
the cuspidal spectrum is zero or is positive, and the trace formula gives subtle
information about this multiplicity.

As is noted in [Kn2, §6], the space (0.3) is a prototype for (0.4). The functions in
L2(Z(A)GL2(Q)\GL2(A)) that are invariant under the right action by

∏
pGL2(Zp)

may be regarded as functions in L2(SL2(Z)\SL2(R)). Thus (0.3) may be analyzed
by specializing results about (0.4) to results about (0.3). On the other hand, the
techniques that are used in studying (0.3) often suggest techniques for studying
(0.4).

The first people to consider the decomposition of the adelic setting (0.4) were
Gelfand, Graev, and Piatetski-Shapiro in 1964, and an exposition is in [Gf-Gr-P].
Later expositions are the ones by Jacquet-Langlands [Ja-Lgl], Duflo-Labesse [Du-
Lab], Gelbart [Gb1], Gelbart-Jacquet [Gb-Ja], Rogawski [Ro], and Gelbart [Gb2].
The treatment [Gb1] specializes work of Arthur [Ar1], and [Gb2] specializes later
work of Arthur.

In §5 we obtain the trace formula for L2(Z(A)G(Q)\G(A)) when G is the multi-
plicative group of a quaternion division algebra over Q. This space splits discretely
with finite multiplicities and is considerably easier to understand than (0.4).

In §6 we give aspects of the decomposition of (0.4) into a continuous part and
a discrete part, as well as aspects of the analysis of the continuous part using
adelic Eisenstein series. The same section shows how some of the concepts used in
studying (0.3) are adapted to yield an analysis of (0.4). For background material
on adeles and automorphic representations, see [Kn2].

Finally in §7 we discuss the trace formula in the adelic setting (0.4). We relate
aspects of Arthur’s proof using truncation operators [Ar3], and we state the final
formula and an important special case. The seven sections of this paper are thus
as follows.

1. Overview of Decomposition of L2(SL2(Z)\SL2(R))
2. Decomposition of the Continuous Part
3. Discrete Decomposition of the Cuspidal Part
4. Introduction to the Trace Formula
5. Digression on Quaternion Algebras
6. Adelic Eisenstein Series
7. Adelic Trace Formula

Arthur has extended the theory of the trace formula well beyond GL2. For the
theorem in “Q rank one,” see [Ar1], and for a theorem about general reductive G,
see [Ar2] and [Ar3]. Labesse [Lab] gives a status report as of 1990, and Gelbart
[Gb2] gives an exposition of Arthur’s work.

1. Overview of Decomposition of L2(SL2(Z)\SL2(R))

We use the following notation: G = SL(2,R), Γ = SL2(Z), N =
{(

1 ∗
0 1

)}
,

Γ∞ = Γ ∩ N , A =
{(

r 0

0 r−1

)}
, and K = SO(2). Let L2(Γ\G) be the space of
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functions on G, up to equality almost everywhere, that are left invariant under Γ
and are square integrable modulo Γ. We are interested in the decomposition of the
regular representation of G on L2(Γ\G). References are [Gb1], [Go1], [Go2], [HC],
[Lgl1], and [Lgl2].

If H is a closed subgroup of G, let D(H\G) be the space of complex-valued
smooth functions on G that are compactly supported modulo H.

Lemma 1.1. If φ is in D(N\G), then the function φ̂ defined by φ̂(g) =∑
γ∈Γ∞\Γ φ(γg) is in is in D(Γ\G).

Proof. Since Γ∞\N is compact, the support of φ is contained in Γ∞C for some
compact set C ⊂ G. Thus φ(γg) �= 0 only for γg ∈ Γ∞C. If g ranges through a
compact set, then the γ’s such that φ(γg) �= 0 are those in a set Γ∞C ′ with C ′

compact, and these form a finite subset of Γ∞\Γ. Hence only finitely many terms

in the sum defining φ̂ contribute on any compact set of g’s, and therefore φ̂ is
smooth. Finally the support of φ(γ · ) is contained in γ−1Γ∞C, and the support of

φ̂ is contained in ΓΓ∞C = ΓC. The latter set is compact modulo Γ.

If F is any locally square integrable function on G that is left invariant under
Γ∞, we define the constant term of F to be the function F0 on G given by

F0(g) =

∫
Γ∞\N

F (ng) d
·
n, (1.1)

where d
·
n has total mass 1. Since F is locally square integrable on G, Fubini’s

Theorem shows that F ( · g) is locally square integrable on N for almost every g.
Since Γ∞\N is compact, it follows for these g’s that F ( · g) is in L2(Γ∞\N) and
hence also is in L1(Γ∞\N). Thus F0 is defined almost everywhere.

The name “constant term” comes from the classical theory of modular forms.
If the analytic function f on the upper half plane is a classical modular form of
weight k relative to SL2(Z), then f has a Fourier expansion f(z) =

∑∞
n=0 cne

2πinz,
and the constant term c0 of this series is given by

c0 =

∫ 1/2

−1/2

f(x+ iy) dx.

When f is lifted as in [Kn2, §7] to an automorphic form φ on G relative to Γ by
means of the formula

φ(g) = f(g(i))j(g, i)−k, (1.2)

in which j(g, z) = cz+ d when g =
(

a b

c d

)
, we find that the constant term φ0 in the

sense of (1.1) is given by φ0(g) = c0j(g, i)
−k.

Lemma 1.2. Let φ be a measurable function on G left invariant under N ,

and let F be a measurable function on G left invariant under Γ. Define φ̂(g) =∑
γ∈Γ∞\Γ φ(γg). If |̂φ| and F are in L2(Γ\G), then

〈φ̂, F 〉L2(Γ\G) = 〈φ, F0〉L2(N\G), (1.3)

the indicated integrals converging.
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Proof. Formally we have

〈φ̂, F 〉L2(Γ\G) =

∫
Γ\G

∑
Γ∞\Γ

φ(γg)F (g) d
·
g =

∫
Γ∞\G

φ(x)F (x) d
·
x.

This computation is rigorous if φ and F are replaced by |φ| and |F |, and the
hypotheses say that the left side is finite in this case. Then the right side is finite,
and we see that the following continuation of the above computation is justified:

=

∫
N\G

∫
Γ∞\N

F (ng)φ(g) d
·
nd

·
g = 〈φ, F0〉L2(N\G).

This completes the proof.

Lemma 1.1 implies that φ̂ is in L2(Γ\G) if φ is in D(N\G). Using Lemma 1.2,

we obtain a characterization of the closure of the subspace of all such φ̂.

Theorem 1.3. The space L2(Γ\G) is the orthogonal direct sum of G invariant
subspaces

L2(Γ\G) = L2
cusp(Γ\G) ⊕ L2

cont(Γ\G) ⊕ C,

where L2
cusp(Γ\G) is the subspace of functions whose constant terms are 0 almost ev-

erywhere on G, L2
cont(Γ\G) is the closure of the subspace of all φ̂ with φ ∈ D(N\G)

of integral 0, and C is the space of constant functions.

Proof. If F is in L2(Γ\G) and φ is in D(N\G), we shall use the formula (1.3)
of Lemma 1.2. If F is in L2

cusp(Γ\G), then F0 = 0 almost everywhere, and (1.3)

shows that φ̂ is orthogonal to F . Conversely if φ̂ is orthogonal to F for all φ, then
(1.3) shows that F0 is orthogonal to D(N\G) and is 0 almost everywhere. Thus

L2
cusp(Γ\G) is the orthogonal complement of the closure of the subspace of all φ̂.

Taking F = 1 in (1.3), we see that L2
cont(Γ\G) is a closed invariant subspace of

codimension 1 in the closure of the subspace of all φ̂. Since G acts unitarily, the
orthogonal complement of L2

cont(Γ\G) is a G invariant one-dimensional subspace,
necessarily C. The theorem follows.

We shall now describe the representation of G on L2
cont(Γ\G). The group G acts

on the upper half plane by linear fractional transformations, with

g(z) =
az + b

cz + d
if g =

(
a b
c d

)
. (1.4)

Moreover,

Im g(z) =
Im z

|cz + d|2 . (1.5)

Let G = NAK be the usual Iwasawa decomposition of G. We write the K
component of g ∈ G as κ(g). If k is in K, then(

1 x
0 1

)(
y1/2 0
0 y−1/2

)
k(i) = x+ iy. (1.6)

Thus we can read off the N and A components of g from the real and imaginary
parts of g(i). We write y(g) = Im g(i) for the imaginary part. If y > 0, define
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a(y) =

(
y1/2 0
0 y−1/2

)
. Then a(y(g)) is the A component of g in the Iwasawa

decomposition.
We need to normalize Haar measures. We normalize dn on N to be compatible

with counting measure on Γ∞ and the measure of total mass 1 on Γ∞\N , we

normalize da on A to correspond to
dy

y
on (0,∞) when y = y(a) and a = a(y), and

we normalize dk onK to have total mass 1. If g = nak is the Iwasawa decomposition
of an element g ∈ G, we define

dg = dn dk y(a)−1 dy

y
. (1.7)

Then dg is a Haar measure on G.

A function F on G or K will be called even if F
(
x
(

−1 0

0 −1

))
= F (x), odd if

F
(
x
(

−1 0

0 −1

))
= −F (x). For s complex, let P+,s be the spherical principal series

representation of G defined as follows: P+,s acts initially in the space

{even F ∈ C∞(G) | F (nag) = y(a)
1
2 (1+s)F (g)} (1.8)

by the right regular representation with norm squared given by
∫
K
|F (k)|2 dk, and

then it is completed to a representation in a Hilbert space. The subspace of C∞

vectors is exactly (1.8), and the representation is unitary if Re s = 0. If f is a
smooth even function on K, then f extends to a member fs of (1.8) by the rule

fs(nak) = y(a)
1
2 (1+s)f(k).

For each t, P+,it is irreducible and is unitarily equivalent with P+,−it. Thus
there exists a unique-up-to-scalar bounded linear operator intertwining P+,it and
P+,−it. We denote a particular normalization of this operator by M(t); M(t) will
be defined explicitly in (2.13), and it will be unitary with M(−it) as inverse.

We shall describe a certain direct integral of the unitary representations P+,it.

The underlying Hilbert space, which is denoted L̂2(E), is the set of measurable
functions

F : iR → {even functions in L2(K)}
(modulo null functions) such that

M(it)F (it) = F (−it)

and such that the expression

‖F‖2
L̂2(E)

=
1

4π

∫ ∞

−∞
‖F (it)‖2

L2(K) dt

is finite. We make this into a representation space for G by having P+,it act on
F (it)it. More concretely, if U is to be the representation, we let

(U(g)F )(it) =
(
P+,it(g)(F (it)it)

)
|K .

The main theorem about L2
cont(Γ\G) is as follows.
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Theorem 1.4. There exists a G equivariant unitary mapping E of L2
cont(Γ\G)

onto L̂2(E).

This theorem will be proved in §2 by constructing the mapping E explicitly with
the aid of Eisenstein series.

We come to the representation of G on L2
cusp(Γ\G). Knowledge of how this

representation decomposes remains far from complete. But we can say the following.

Theorem 1.5. L2
cusp(Γ\G) is the orthogonal Hilbert-space direct sum of irre-

ducible representations, each occurring with finite multiplicity.

The tool for proving Theorem 1.5 is Theorem 1.6 below, which will be proved
in §3. Let ϕ be in D(G), and define a bounded operator R(ϕ) on L2(Γ\G) by
R(ϕ)f(x) =

∫
G
f(xy)ϕ(y) dy. This carries any closed G invariant subspace of

L2(Γ\G) into itself.

Theorem 1.6. For each ϕ in D(G), the operator

R(ϕ) : L2
cusp(Γ\G) → L2

cusp(Γ\G)

is Hilbert-Schmidt, hence compact.

Proof that Theorem 1.6 implies Theorem 1.5. In order to obtain the
discrete decomposition into irreducible closed invariant subspaces, it is enough, by
Zorn’s Lemma, to prove that any nonzero invariant closed subspace S of L2

cusp(Γ\G)
contains an irreducible invariant subspace. The operator R(ϕ) is self adjoint on

S if ϕ(x−1) = ϕ(x), and it is nonzero if ϕ is nonzero and ϕ is supported in a
sufficiently small neighborhood of the identity. By Theorem 1.6 it is compact.
Therefore it has a nonzero eigenvalue λ, and that eigenvalue has finite multiplicity.
Let f be a nonzero eigenvector belonging to λ, and let λ have multiplicity n.
Let T be the closed invariant subspace generated by f . If T is the orthogonal
sum of n + 1 closed invariant subspaces and if P1, . . . , Pn+1 are the orthogonal
projections, then R(ϕ) has eigenvalue λ on the independent vectors P1f, . . . , Pn+1f ,
contradiction. It follows that T decomposes fully into at most n irreducible closed
invariant subspaces. Any one of these subspaces is the required irreducible subspace
of S.

Thus we can write L2
cusp(Γ\G) as the orthogonal Hilbert-space direct sum of

irreducible subspaces. Let S be such a subspace. As in the previous paragraph,
we can choose ϕ with ϕ(x−1) = ϕ(x) so that R(ϕ) is nonzero on S. Since R(ϕ) is
compact self adjoint on S, R(ϕ) has a nonzero eigenvalue λ on a nonzero subspace
of S. On each irreducible summand of L2

cusp(Γ\G) that is equivalent with S, R(ϕ)
must act with λ as an eigenvalue on the corresponding subspace. If S occurs with
infinite multiplicity, then λ occurs with infinite multiplicity as an eigenvalue of
R(ϕ). But this contradicts the compactness of the self adjoint operator R(ϕ) on
L2

cusp(Γ\G).

2. Decomposition of the Continuous Part

In this section we shall prove Theorem 1.4, giving an explicit decomposition of
L2

cont(Γ\G) when G = SL2(R) and Γ = SL2(Z). We continue with notation as in
§1. We shall proceed somewhat along the lines of Appendix IV of [Lgl2] and then
[Gb1]. For a different argument leading to a conclusion that is stated differently,
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see [Go1]. The technique of proof will involve Eisenstein series, which we now
introduce.

If f is an even function in C∞(K), we recall that fs : G → C is defined for s ∈ C
by

fs(nak) = y(a)
1
2 (1+s)f(k) (2.1)

when n ∈ N , a ∈ A, and k ∈ K. This satisfies the functional equation

fs(nag) = y(a)
1
2 (1+s)fs(g)

and hence is a member of the representation space for the spherical principal series
P+,s.

Fix a finite-dimensional representation τ of K, and let W (τ) denote the space of
complex-valued even functions on K with the property that k �→ f(k0k), for each
k0 ∈ K, is a linear combination of matrix coefficients of the constituents of τ . If f
is in W (τ), the corresponding Eisenstein series E(g, f, s) is defined formally by

E(g, f, s) =
∑

γ∈Γ∞\Γ
fs(γg) =

∑
γ∈Γ∞\Γ

y(γg)
1
2 (1+s)f(κ(γg)) (2.2)

for g ∈ G and s ∈ C.
We can understand Γ∞\Γ with the help of the right action of G on row vectors.

In this action the orbit under Γ of the row vector ( 0 1 ) is all row vectors ( c d )
with c and d integers such that GCD(c, d) = 1. The isotropy subgroup at ( 0 1 ) is
Γ∞, and thus Γ∞\Γ may be identified with the set of relatively prime pairs (c, d).
Evidently if Γ∞γ corresponds to (c, d), then c and d form the bottom row of γ.

For an example let us take τ = 1 and f = 1. If we put g(i) = z = x + iy, then
(1.5) shows that (2.2) becomes

E(g, 1, s) =
∑

GCD(c,d)=1

y
1
2 (1+s)

|cz + d|1+s
. (2.3a)

Taking into account that every nonzero (m,n) in Z2 is uniquely the product of a
positive integer and a relatively prime pair, we obtain

ζ(1 + s)E(g, 1, s) =
∑

(m,n) 	=(0,0)

y
1
2 (1+s)

|mz + n|1+s
, (2.3b)

where ζ( · ) is the Riemann ζ function.
The original Eisenstein series historically were series of the form∑

(m,n) 	=(0,0)

1

(mz + n)k
, (2.4)

as well as certain variants. The series is absolutely convergent if k > 2. In order
to make sense out of the series (2.4) when k = 2, Hecke considered the analytic
continuation in s of expressions of the form∑

(m,n) 	=(0,0)

1

(mz + n)k|mz + n|2s . (2.5)

In [Mi] these are called “Eisenstein series with parameter s,” and (2.3b) is an
instance of (2.5). If we take τ to be a nontrivial character of K and reinterpret
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E(g, f, s) on the upper half plane by reversing the formula (1.2) for lifting modular
forms to G, we obtain the other instances of (2.5).

Lemma 2.1. E(g, f, s) is absolutely convergent for Re s > 1, and the conver-
gence is uniform for g and s in compact sets.

Proof. It is enough to estimate
∑

γ∈Γ∞\Γ y(γg)
1
2 (1+Re s). This is written ex-

plicitly in (2.3a), and the larger series in (2.3b) is known to converge for Re s > 1.

Lemma 2.2. For any ε > 0, there is a constant Cε such that

|E(g, f, s)| ≤ Cε(sup
K

|f |)y(g) 1
2 (1+Re s)

whenever y(g) ≥ 1
2 and 1 + ε ≤ Re s ≤ 1 + ε−1.

Proof. Without loss of generality, we may take f = 1 on K. Write z = x+iy =
g(i) and σ = Re s. Applying (2.3a), we see that we are to estimate

∑
GCD(c,d)=1

y
1
2 (1+σ)

((cx+ d)2 + c2y2)
1
2 (1+σ)

.

So it is enough to show that∑
(c,d) 	=(0,0)

((cx+ d)2 + c2y2)−
1
2 (1+σ) (2.6)

is bounded above for y ≥ 1
2 and 1 + ε ≤ σ ≤ 1 + ε−1.

Fix c �= 0. At most two d’s give |cx + d| < 1. The contribution to (2.6) from
such pairs (c, d) is therefore ≤

∑
c	=0 2c−(1+σ)y−(1+σ) ≤ C1,εy

−(1+σ).
For the remaining terms, we can replace cx+ d by the nonzero integer

sgn(cx+ d)[|cx+ d|].
Then the contribution to (2.6) from the remaining terms is

≤
∑
(c,n),
n 	=0

1

(n2 + c2y2)
1
2 (1+σ)

≤ 21+σ
∑
(c,n),
n 	=0

1

(4n2 + c2)
1
2 (1+σ)

,

and the result follows.

An automorphic form on G relative to Γ is a smooth function f with the
following properties:

(a) f(γg) = f(g) for all γ ∈ Γ
(b) f is right K finite
(c) f is Z(g) finite, where Z(g) is the center of the universal enveloping algebra

of the complexified Lie algebra of G
(d) f satisfies the slow growth condition |f(g)| ≤ Cy(g)N for some C and N

and all g with y(g) ≥ 1
2 .

(See [Kn2, §7] and [Gb1, p. 28].)

Proposition 2.3. For any f ∈ W (τ), E( · , f, s) is an automorphic form on G
relative to Γ if Re s > 1.
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Proof. Properties (a) and (b) are clear from the definitions, and (d) follows

from Lemma 2.2. For (c), we observe that the function g �→ f(κ(g))y(g)
1
2 (1+s) is in

the space of the principal series P+,s. The Casimir operator Ω acts in P+,s by a
scalar c(s) depending on s. Since Ω is central, it acts on every term of (2.2) by c(s),
and it acts on E( · , f, s) by c(s). The element Ω generates Z(g), and (c) follows.

Although E( · , f, s) is an automorphic form, it need not be in L2(Γ\G). In fact,
let us check that E( · , f, s) is not in L2(Γ\G) if f = 1 and s is real. In this case
we can see that E(g, 1, s) is bounded below, as well as above, by a multiple of

y(g)
1
2 (1+s). The invariant measure on Γ\G amounts to y−2 dx dy on the standard

fundamental domain

S =
{
z
∣∣ Im z > 0, |z| ≥ 1, |Re z| ≤ 1

2

}
for Γ, and the integral of |E(g, 1, s)|2 is of the order of

∫∞
y=1

∫ 1/2

x=−1/2
ys−1 dx dy,

which is infinite for s > 1 (not to mention s > 0).
Although an individual E( · , f, s) is not in L2, it turns out that suitable averages

in the s variable are in L2. Here is the construction.
Let D(N\G, τ) be the subspace of all φ ∈ D(N\G) such that k �→ φ(gk) is in

W (τ) for each g ∈ G. For φ ∈ D(N\G, τ), define the Fourier-Laplace transform
of φ by

Φ(g, s) =

∫ ∞

0

φ(a(y)−1g)y
1
2 (1+s) dy

y
. (2.7)

This function satisfies

Φ(nag, s) = y(a)
1
2 (1+s)Φ(g, s). (2.8)

If we write s = σ + it and y = e2x, then we have

Φ(g, σ + it) =

∫ ∞

−∞
2φ(a(e2x)−1g)ex(1+σ+it) dx,

and Fourier inversion gives

2φ(a(e2x)−1g)ex(1+σ) =
1

2π

∫ ∞

−∞
Φ(g, σ + it)e−ixt dt.

Taking x = 0 thus shows that

φ(g) =
1

4π

∫
Re s=σ

Φ(g, s) d|s| =
1

4π

∫
Re s=σ

y(g)
1
2 (1+s)Φ(κ(g), s) d|s|. (2.9)

As a function of s, Φ(g, s) is a Schwartz function of Im s uniformly in any vertical
strip of s and any compact set of g. The restriction Φ|K×{s} is a member of W (τ)
for each s, and we shall usually abbreviate Φ|K×{s} as Φ(s).

Recall from Lemma 1.1 that the function

φ̂(g) =
∑

γ∈Γ∞\Γ
φ(γg)

is in D(Γ\G). Substituting from (2.9), we obtain

φ̂(g) =
1

4π

∑
γ∈Γ∞\Γ

(∫
Re s=σ

y(γg)
1
2 (1+s)Φ(κ(γg), s)

)
d|s|.
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By Lemma 2.2,
∑

γ |y(γg)
1
2 (1+s)| is bounded as a function of Im s, and Φ(κ(γg), s)

is a Schwartz function of Im s. Therefore the expression for φ̂(g) converges with
absolute values inserted, and the sum and integral may be interchanged. The result
is that

φ̂(g) =
1

4π

∫
Re s=σ

E(g,Φ(s), s) d|s|. (2.10)

It is in this sense that suitable averages of Eisenstein series are in L2(Γ\G).
Now we identify the constant term of an Eisenstein series. Recall from §1 that

constant terms are indicated by a subscript 0. Let w denote the matrix w =
(

0 −1

1 0

)
.

Lemma 2.4. For Re s > 0 and for even functions f ∈ C∞(K), the integral∫
N
fs(wng) dn is convergent, and the formula

A(s)f(g) =

∫
N

fs(wng) dn for g ∈ G (2.11)

defines a G intertwining operator A(s) : P+,s → P+,−s. As an operator from the
space of even functions in C∞(K) to itself, A(s) has the following properties:

(a) it varies analytically in s
(b) it is uniformly bounded for Re s ≥ 1 + ε
(c) its adjoint relative to L2(K) is A(s̄).

Reference. This result is elementary, and A(s) is known as a standard in-
tertwining operator. See Donley’s lecture [Do], Moeglin’s lecture [Mo], and also
[Kn1, Ch. VII].

Since A(s) is a G intertwining operator, it is in particular a K intertwining
operator and therefore carries W (τ) to itself.

Lemma 2.5. As an operator from W (τ) to itself, the operator A(s), initially
defined for Re s > 0, continues to a meromorphic function of s ∈ C. The continued
family of operators has the following properties:

(a) the only possible poles are at s = 0,−2,−4, . . . and are simple
(b) for f ∈ W (τ), A(s)f vanishes at s = 1 if τ does not contain the trivial

representation of K
(c) apart from the poles, A(s) is of at most polynomial growth in Im s in any

vertical strip
(d) the operator A(−s)A(s) is a meromorphic scalar depending on s.

Reference. This result is more subtle than Lemma 2.4 but is still not difficult.
See [Do], [Mo], and also [Kn1, Ch. VII].

Proposition 2.6. If Re s > 1 and if f is in W (τ), then the constant term of
the Eisenstein series for f is given by

E0( · , f, s) = 2fs + 2(M(s)f)−s, (2.12)

where M(s) is the operator

M(s) =
ζ(s)

ζ(1 + s)
A(s), (2.13)
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A(s) being the operator in Lemma 2.4 and ζ being the Riemann ζ function. Here

(a) M(s) is analytic for Re s ≥ 0 except at s = 1, where it has at most a simple
pole

(b) M(s) is analytic at s = 1 if τ does not contain the trivial representation of
K

(c) the residue of M(s) at s = 1 is 6/π if τ = 1
(d) the adjoint of M(s) relative to the L2(K) norm on W (τ) is M(s̄)
(e) apart from the possible pole at s = 1, M(s) is of at most polynomial growth

in Im s uniformly for 0 ≤ Re s ≤ σ
(f) M(−s)M(s) = 1 as an identity of meromorphic functions.

Remark. Lemma 101 of [HC] shows in (e) that M(s) is actually uniformly
bounded in this strip, apart from the pole.

Proof. Let H be the diagonal subgroup of G. We have seen that the coset of γ
in Γ∞\Γ is characterized by the relatively prime pair (c, d) of entries of its bottom

row. If c = 0, we obtain the cosets of ±1. When c �= 0, γ =
(

a b

c d

)
may be uniquely

decomposed according to NHwN as

γ =

(
1 a/c
0 1

)(
c−1 0
0 c

)(
0 −1
1 0

)(
1 d/c
0 1

)
.

Then

Γ∞γ =

(
1 a

c + Z
0 1

)(
c−1 0
0 c

)(
0 −1
1 0

)(
1 d/c
0 1

)
,

and the member ν =
(

1 x

0 1

)
of Γ∞ has

Γ∞γν =

(
1 a

c + Z
0 1

)(
c−1 0
0 c

)(
0 −1
1 0

)(
1 d

c + x
0 1

)
.

Thus we see that all the cosets Γ∞γν, as ν varies, are distinct and that the number
of double cosets Γ∞γΓ∞ corresponding to a given c is ϕ(|c|), where ϕ is Euler’s ϕ
function.

We compute

E0(g, f, s) =

∫
Γ∞\N

E(ng, f, s) d
·
n =

∑
Γ∞\Γ

∫
Γ∞\N

fs(γng) d
·
n

by separating the terms γ = ±1 from the terms with γ ∈ NHwN . If we write
γ = γ(c, d), this expression is

= 2

∫
Γ∞\N

fs(ng) d
·
n+

∑
γ(c,d)∈Γ∞\Γ,

c	=0

∫
Γ∞\N

fs(γ(c, d)ng) d
·
n

= 2fs(g) + II,
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where

II =
∑
c	=0,

GCD(c,d)=1

∫
Γ∞\N

fs(γ(c, d)ng) d
·
n

=
∑
c	=0

∑
dmodc,

GCD(c,d)=1

∞∑
k=−∞

∫
Γ∞\N

fs(γ(c, d+ ck)ng) d
·
n

=
∑
c	=0

∑
dmodc,

GCD(c,d)=1

∑
ν∈Γ∞

∫
Γ∞\N

fs(γ(c, d)νng) d
·
n

=
∑
c	=0

∑
dmodc,

GCD(c,d)=1

∫
N

fs(γ(c, d)ng) dn.

Write γ(c, d) ∈ NHwN as γ(c, d) = n′(c, d)h(c)wn′′(c, d), noting that h(c) =(
c−1 0

0 c

)
, independently of d. Then the above expression is

=
∑
c	=0

∑
dmodc,

GCD(c,d)=1

∫
N

fs(n
′(c, d)h(c)wn′′(c, d)ng) dn

=
∑
c	=0

∑
dmodc,

GCD(c,d)=1

∫
N

fs(h(c)wng) dn

by the change of variables n′′(c, d)n �→ n. In turn this is

= 2

∞∑
c=1

ϕ(c)c−(1+s)

∫
N

fs(wng) dn.

Easy computation using Euler products shows that
∑∞

c=1 ϕ(c)c−(1+s) =
ζ(s)

ζ(1 + s)
.

Therefore

II =
2ζ(s)

ζ(1 + s)

∫
N

fs(wng) dn =
2ζ(s)

ζ(1 + s)
(A(s)f)−s(g)

in the notation of Lemma 2.4, and we conclude that

1
2E0(g, f, s) = fs(g) +

ζ(s)

ζ(1 + s)
(A(s)f)−s(g).

This proves (2.12) with M(s) as in (2.13).
Conclusions (a) and (b) are immediate from Lemma 2.5, and (d) is immediate

from Lemma 2.4c, (2.13), and analytic continuation. Before proving (c), we need
an identity. The operator A(s) carries 1s to a multiple of 1−s since A(s) carries
W (1) = C to itself. To compute the multiple, we calculate

(A(s)1)−s(1) =

∫
N

1s(wn) dn =

∫
N

y(wn)
1
2 (1+s) dn.



   

THEORETICAL ASPECTS OF THE TRACE FORMULA FOR GL(2) 369

The measure dn is to be normalized consistently with the measure of total mass

1 on Γ∞\N and the counting measure on Γ∞. Thus if n =
(

1 x

0 1

)
, then dn is

Lebesgue measure dx. Since

wn(i) =

(
0 −1
1 0

)(
1 x
0 1

)
i =

−1

i+ x
=

−x+ i

x2 + 1
,

we have y(wn) = Imwn(i) = (x2 + 1)−1. Thus

(A(s)1)−s(1) =

∫ ∞

−∞
(x2 + 1)−

1
2 (1+s) dx.

Consequently a trick of Euler’s yields

Γ( 1
2 (1 + s))(x2 + 1)−

1
2 (1+s) =

∫ ∞

0

(x2 + 1)−
1
2 (1+s)t

1
2 (1+s)e−t dt

t

=

∫ ∞

0

t
1
2 (1+s)e−t(x2+1) dt

t
=

∫ ∞

0

t
1
2 (1+s)e−te−tx2 dt

t

and then

Γ( 1
2 (1 + s))

∫ ∞

−∞
(x2 + 1)−

1
2 (1+s) dx =

∫ ∞

0

t
1
2 (1+s)e−t

(∫ ∞

−∞
e−tx2

dx
)dt
t

=

∫ ∞

0

t
1
2 (1+s)e−t

(∫ ∞

−∞
e−πr2

√
π

t
dr
)dt
t

=
√
π

∫ ∞

0

ts/2e−t dt

t

=
√
π Γ( s2 ).

Hence

(A(s)1)−s(1) =

∫ ∞

−∞
(x2 + 1)−

1
2 (1+s) dx =

√
π Γ( s2 )

Γ( 1
2 (1 + s))

. (2.14)

To prove (c), we use (2.13) and (2.14) to write

(M(s)1)−s =
ζ(s)

ζ(1 + s)
(A(s)1)−s =

Λ(s)

Λ(1 + s)
1−s, (2.15)

where Λ(s) = π−s/2Γ( s2 )ζ(s). Therefore

Ress=1

{
(M(s)1)−s} =

Ress=1

{
Λ(s)

}
Λ(2)

=
π−1/2Γ( 1

2 )Ress=1

{
ζ(s)

}
π/6

=
6

π
.

For (f), we combine Lemma 2.5d, (2.13), and (2.15) to obtain

M(−s)M(s) =
Λ(s)

Λ(1 − s)

Λ(−s)
Λ(1 + s)

,

and (f) follows from the functional equation Λ(1 − s) = Λ(s) of the ζ function.
Finally to prove (e), we use (2.13). Lemma 2.5c tells us that A(s) is of at most

polynomial growth in Im s, apart from the pole at s = 0, for 0 ≤ Re s ≤ σ. Also
ζ(s) is bounded in any vertical strip, apart from its pole. And |ζ(1+s)|−1 is known
to be at most polynomial growth in Im s uniformly for 0 ≤ Re s ≤ σ; see [Ti, p. 44].
Thus (e) follows.
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Corollary 2.7. Let φ and ψ be members of D(N\G, τ), and let Φ and Ψ be the
Fourier-Laplace transforms of φ and ψ. Then

〈φ̂, ψ̂〉L2(Γ\G) =
1

2π

∫
Re s=σ

(
〈Φ(s),Ψ(−s̄)〉L2(K) + 〈M(s)Φ(s),Ψ(s̄)〉L2(K)

)
d|s|

for any σ > 1.

Proof. By (2.10), we have

φ̂(g) =
1

4π

∫
Re s=σ

E(g,Φ(s), s) d|s|.

Taking the constant term of both sides and applying Proposition 2.6, we obtain

φ̂0(g) =
1

4π

∫
Re s=σ

E0(g,Φ(s), s) d|s|

=
1

2π

∫
Re s=σ

(
Φ(s)s(g) + (M(s)Φ(s))−s(g)

)
d|s|.

If we write g = na(y)k, then Haar measure dg decomposes as y−1 dn dk
dy

y
,

according to (1.7). Thus the invariant measure on N\G is y−1 dk
dy

y
. Lemma

1.2 therefore gives

〈φ̂, ψ̂〉L2(Γ\G)

= 〈φ̂0, ψ〉L2(N\G)

=
1

2π

∫
N\G

∫
Re s=σ

(
Φ(s)s(g) + (M(s)Φ(s))−s(g)

)
ψ(g) d|s| d ·

g

=
1

2π

∫
N\G

∫
Re s=σ

(
y(g)

1
2 (1+s)Φ(κ(g), s) + y(g)

1
2 (1−s)(M(s)Φ(s))(κ(g))

)
× ψ(g) d|s| d ·

g

=
1

2π

∫
Re s=σ

∫
K

∫ ∞

0

(
y

1
2 (1+s)Φ(k, s) + y

1
2 (1−s)(M(s)Φ(s))(k)

)
× ψ(a(y)k)y−1 dy

y
dk d|s|

=
1

2π

∫
Re s=σ

(
〈Φ(s),Ψ(−s̄)〉L2(K) + 〈M(s)Φ(s),Ψ(s̄)〉L2(K)

)
d|s|.

This completes the proof.

Now we move the line of integration in Corollary 2.7 to Re s = 0. The integrand is
meromorphic, the functions Φ(s) and Ψ(s) are Schwartz functions of Im z uniformly
in vertical strips, and the growth of M(s) is controlled by Proposition 2.6e. Thus
we can move the line of integration by the Cauchy Integral Formula, picking up a
residue term from s = 1. The result is

〈φ̂, ψ̂〉L2(Γ\G) =
1

2π

∫ ∞

−∞

(
〈Φ(it),Ψ(it)〉L2(K) + 〈M(it)Φ(it),Ψ(−it)〉L2(K)

)
dt

+ Ress=1

{
〈M(s)Φ(s),Ψ(s̄)〉L2(K)

}
. (2.16)
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By Proposition 2.6, parts (b) and (e), the second term is

Ress=1

{
〈M(s)Φ(s),Ψ(s̄)〉L2(K)

}
=

{ 6
π 〈Φ(1),Ψ(1)〉L2(K) if τ = 1

0 if 1 is not in τ.

We can simplify the right side of the residue term since

Φ(k, 1) =

∫ ∞

0

φ(a(y)−1k) dy =

∫
A

φ(ak)y(a)−1 da.

When τ = 1, this expression is constant in k and yields
∫
N\G φ(g) d

·
g. When 1 is

not in τ , the integral of this expression over k ∈ K is 0. We conclude that

Ress=1

{
〈M(s)Φ(s),Ψ(s̄)〉L2(K)

}
=

6

π

(∫
N\G

φ(g) d
·
g
)(∫

N\G
ψ(g) d

·
g
)

(2.17)

for all τ .

Corollary 2.8. Let φ and ψ be members of D(N\G, τ), and let Φ and Ψ be the
Fourier-Laplace transforms of φ and ψ. Then

〈φ̂, ψ̂〉L2(Γ\G) =
1

4π

∫ ∞

−∞
〈Φ(it) +M(−it)Φ(−it),Ψ(it) +M(−it)Ψ(−it)〉L2(K) dt

+
6

π

(∫
N\G

φ(g) d
·
g
)(∫

N\G
ψ(g) d

·
g
)
.

Proof. Averaging the effect of leaving alone the first term on the right side of
(2.16) and replacing t by −t, we obtain

〈φ̂, ψ̂〉L2(Γ\G) =
1

4π

∫ ∞

−∞

(
〈Φ(it),Ψ(it)〉L2(K) + 〈M(it)Φ(it),Ψ(−it)〉L2(K)

+〈Φ(−it),Ψ(−it)〉L2(K)+〈M(−it)Φ(−it),Ψ(it)〉L2(K)

)
dt

+ (residue term). (2.18)

It follows from Proposition 2.6, parts (d) and (f), that M(it) is unitary with inverse
M(−it). Therefore

〈M(it)Φ(it),Ψ(−it)〉L2(K) = 〈Φ(it),M(−it)Ψ(−it)〉L2(K)

〈Φ(−it),Ψ(−it)〉L2(K) = 〈M(−it)Φ(−it),M(−it)Ψ(−it)〉L2(K).and

Substituting in (2.18) for the second and third terms of the integrand, we obtain
the t integral of the corollary. The residue term has been evaluated in (2.17).

Corollary 2.9. Let φ be in D(N\G, τ), and let Φ be its Fourier-Laplace trans-

form. Then φ̂ = 0 if and only if
∫
N\G φ(g) d

·
g = 0 and Φ(it) = −M(−it)Φ(−it) for

−∞ < t < ∞.
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Proof. This is immediate from Corollary 2.8 with ψ = φ.

From these results we obtain the analysis of L2
cont(Γ\G). In fact, let PW(τ) be

the space of Fourier transforms of the space C∞
com(iR,W (τ)) of compactly supported

smooth functions on iR with values in W (τ). The Fourier-Laplace transform φ �→ Φ
is a one-one map of D(N\G, τ) onto PW(τ). For Φ ∈ PW(τ), define

Φ1(it) = Φ(it) +M(−it)Φ(−it).

The map Φ �→ Φ1 is a linear map of PW(τ) into the subspace L̂2(E, τ) of functions
h in L2(iR,W (τ)) such that M(it)h(it) = h(−it), and Corollary 2.9 says that the

composition φ �→ Φ �→ Φ1 descends to a map φ̂ �→ Φ1. Let us call this descended

map Ẽτ , writing it as

Ẽτ : {φ̂ | φ ∈ D(N\G, τ)} → L̂2(E, τ).

By Lemma 1.2 with F = 1, φ̂ has integral 0 over Γ\G if and only if φ has integral

0 over N\G. Let us restrict Ẽτ to a map

Eτ : {φ̂ | φ ∈ D(N\G, τ) and

∫
N\G

φ(g) d
·
g = 0} → L̂2(E, τ). (2.19a)

Corollary 2.9 shows that Eτ is one-one, and Corollary 2.8 shows that Eτ is actually
isometric apart from a factor 1/4π. Let L2

cont(Γ\G, τ) be the subspace of functions
h ∈ L2

cont(Γ\G) such that k �→ h(Γgk) is in W (τ) for all g ∈ G. Theorem 1.3 shows
that Eτ extends to an isometric map

Eτ : L2
cont(Γ\G, τ) → L̂2(E, τ). (2.19b)

Meanwhile, consideration of Fourier transforms shows that PW(τ) is dense in
L2(iR,W (τ)), and so is the subspace where Φ(1) = 0 (corresponding to φ of integral
0). Hence the image under φ �→ Φ �→ Φ1 of functions of integral 0 is dense in

L̂2(E, τ). Thus the map (2.19a) has dense image. Since (2.19a) is isometric, (2.19b)
is onto. We may summarize as follows.

Theorem 2.10. Let φ ∈ D(N\G, τ) have integral 0, let Φ be its Fourier-Laplace
transform, and define

Φ1(it) = Φ(it) +M(−it)Φ(−it).

The composition of the linear maps φ �→ Φ �→ Φ1 descends to a well defined linear

map φ̂ → Φ1, which extends to a bounded linear map Eτ of L2
cont(Γ\G, τ) onto

L̂2(E, τ) such that

‖φ̂‖2
L2(Γ\G) =

1

4π

∫ ∞

−∞
‖Φ1(it)‖2

L2(K) dt.

The map Eτ has an equivariance property. Since D(N\G, τ) is not closed under
translation by G, we cannot hope for G equivariance. But we can hope for as much
equivariance as τ permits. Thus let R be the right regular representation of G on
D(N\G), and define

R(f)φ(x) =

∫
G

φ(xg)f(g) dg
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for all f ∈ C∞
com(G) such that k �→ f(k−1g) is in W (τ) for all g ∈ G. If φ

is in D(N\G, τ), then a change of variables shows that R(f)φ is in D(N\G, τ).
Let Φφ(g, s) be the Fourier-Laplace transform of φ. Remembering from (2.8) that
Φφ( · , s) is in the space for P+,s, we readily check that

P+,s(f)Φφ(x, s) = ΦR(f)φ(x, s).

Passing from Φ to Φ1 and using the intertwining property of M(−it) implicit in
Lemma 2.4 and analytic continuation, we obtain, in obvious notation,

P+,it(f)(Φ1)φ(x, it) = (Φ1)R(f)φ(x, it).

Consequently Eτ is equivariant with respect to the operation of all members f of
C∞

com(G) such that k �→ f(k−1x) is in W (τ) for all x ∈ G.

Now we pass to the limit, in effect taking the union over all τ . Let L̂2(E) be
the set of all square integrable functions h from iR into the even functions on
K such that M(it)h(it) = h(−it). The union E of the Eτ gives us an isometric
map (apart from the factor 1/4π) of a dense subspace of L2

cont(Γ\G) onto a dense

subspace of L̂2(E), and this is equivariant with respect to all members f of C∞
com(G)

such that k �→ f(k−1x) is in a common W (τ) for all x ∈ G. Such f ’s form an
approximate identity, and therefore E extends to an isometry of L2

cont(Γ\G) onto

L̂2(E) equivariant with respect to G. This proves Theorem 1.4.

3. Discrete Decomposition of the Cuspidal Part

In this section we shall prove Theorem 1.6, giving Godement’s variation [Go2] of
a proof of Langlands [Lgl2]. We continue to let G = SL2(R) and Γ = SL2(Z), and
we use other notation as in §1. Fix ϕ in D(G). Our objective is to show that the
operator R(ϕ)f(x) =

∫
G
f(xy)ϕ(y) dy is Hilbert-Schmidt (hence compact) on the

subspace L2
cusp(Γ\G) of L2(Γ\G). The main step is to prove the following lemma.

Lemma 3.1. For any integer M ≥ 0, there exists a constant C(ϕ,M) such that

|R(ϕ)f(g)| ≤ C(ϕ,M)y(g)−M‖f‖L2(Γ\G)

for all f ∈ L2
cusp(Γ\G) and for all g ∈ G such that g(i) is in the standard funda-

mental domain
S =

{
z
∣∣ Im z > 0, |z| ≥ 1, |Re z| ≤ 1

2

}
for Γ.

Remark. We need this estimate only for M = 0, but the estimate for general
M is no harder.

Proof. Writing

R(ϕ)f(x) =

∫
G

f(xy)ϕ(y) dy =

∫
G

f(y)ϕ(x−1y) dy =

∫
Γ∞\G

∑
γ∈Γ∞

f(y)ϕ(x−1γy) dy

R(ϕ)f(x) =

∫
Γ∞\G

Kϕ(x, y)f(y) dy,shows that

Kϕ(x, y) =
∑

γ∈Γ∞

ϕ(x−1γy).where
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Define functions n : R → N and t : N → R by n(t) =
(

1 t

0 1

)
and t

(
1 x

0 1

)
= x. The

function ϕx,y(t) = ϕ(x−1n(t)y) is in C∞
com(R), and the Poisson summation formula

gives
∞∑

m=−∞
ϕx,y(m) =

∞∑
m=−∞

ϕ̂x,y(m),

where

ϕ̂x,y(s) =

∫
R

ϕx,y(t)e
−2πits dt.

Thus the kernel defining R(ϕ) on L2(Γ\G) is given by

Kϕ(x, y) =

∞∑
m=−∞

ϕ̂x,y(m).

The contribution to R(ϕ)f from m = 0 is the main term in the sense that we
shall use the hypothesis that f is in L2

cusp(Γ\G) to handle it. The contribution
from the other terms will be treated as an error term. The term for m = 0 gives∫

Γ∞\G
ϕ̂x,y(0)f(y) dy =

∫
Γ∞\G

∫
N

ϕ(x−1ty)f(y) dt dy

=

∫
N\G

∫
s∈Γ∞\N

∫
t∈N

ϕ(x−1tsy)f(sy) dt ds dy

=

∫
N\G

∫
t∈N

∫
s∈Γ∞\N

ϕ(x−1ty)f(sy) ds dt dy

after a change of variables, and the right side is 0 since f is in L2
cusp(Γ\G).

Now we consider the contribution to R(ϕ)f from m �= 0. Let C be the support
of ϕ, and write the Iwasawa decomposition of x ∈ G relative to G = NAK as
x = nxaxkx. Since K and C are compact, we have KC ⊂ NΩAK for some compact
subset ΩA of A. If ϕ(x−1n(t)y) �= 0, then x−1n(t)y is in C. Hence k−1

x a−1
x n−1

x n(t)y
is in C, and y is in n(−t)nxaxkxC ⊂ NaxNΩAK ⊂ NaxΩAK. In other words,
ay = axωA for some ωA ∈ ΩA. If ϕ̂x,y(m) �= 0, we therefore have

ϕ̂x,y(m) =

∫
R

ϕ(x−1n(t)y)e−2πitm dt

=

∫
R

ϕ(k−1
x a−1

x n−1
x n(t)nyayky)e

−2πitm dt

= e2πit(n
−1
x ny)m

∫
R

ϕ(k−1
x a−1

x n(t)axωAky)e
−2πitm dt

= e2πit(n
−1
x ny)m

∫
R

ϕ(k−1
x n(y(x)−1t)ωAky)e

−2πitm dt

= e2πit(n
−1
x ny)m

∫
R

ϕ(k−1
x n(t)ωAky)e

−2πiy(x)tmy(x) dt.

As k and k′ vary through K and a varies through ΩA, the functions t �→ ϕ(kn(t)ak′)
vary in a compact family in D(R) and therefore satisfy uniform estimates. Thus
we obtain

|ϕ̂x,y(m)| ≤ CM,ϕy(x)|y(x)m|−M = CM,ϕy(x)1−M |m|−M

for every positive integer M and all x and y in G.
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Since we have seen that the m = 0 term gives 0, we obtain

|R(ϕ)f(x)| ≤
∫
y∈Γ∞\G, y∈NaxΩAK

∑
m	=0

|ϕ̂x,y(m)||f(y)| dy

≤
∫
y∈n[− 1

2 ,
1
2 ]axΩAK

∑
m	=0

|ϕ̂x,y(m)||f(y)| dy

≤
∫
y∈n[− 1

2 ,
1
2 ]axΩAK

∑
m	=0

CM,ϕy(x)1−M |m|−M |f(y)| dy

≤ Cϕy(x)1−M

∫
y∈n[− 1

2 ,
1
2 ]axΩAK

|f(y)| dy,

with the last inequality valid for M ≥ 2. By the Schwarz inequality this is

≤ Cϕy(x)1−M
(∫

y∈n[− 1
2 ,

1
2 ]axΩAK

dy
)1/2(∫

y∈n[− 1
2 ,

1
2 ]axΩAK

|f(y)|2 dy
)1/2

.

Since n[− 1
2 ,

1
2 ] has N measure 1 and K has total measure 1, we see that∫

y∈n[− 1
2 ,

1
2 ]axΩAK

dy =

∫
a∈axΩA

y(a)−1 da = y(x)

∫
a∈ΩA

y(a)−1 da.

Also if y(x) ≥ 1
2 , then the set n[− 1

2 ,
1
2 ]axΩAK is covered by finitely many Γ

translates of the fundamental domain S. If the number of such translates is q,
then ∫

y∈n[− 1
2 ,

1
2 ]axΩAK

|f(y)|2 dy ≤ q

∫
y(i)∈S

|f(y)|2 dy = q‖f‖2
L2(Γ\G).

Putting these facts together, we find that

|R(ϕ)f(x)| ≤ C ′
ϕy(x)

3
2−M‖f‖L2(Γ\G) (3.1)

if y(x) ≥ 1
2 and M ≥ 2. Here C ′

ϕ is Cϕ

(
q
∫
ΩA

y(a)−1 da
)1/2

. If x(i) is in S, then

y(x) ≥ 1
2 . When y(x) ≥ 1

2 , the inequality (3.1) for all exponents 3
2 −M with M ≥ 2

implies the inequality for all integer exponents and a constant depending on the
exponent. This proves the lemma.

Proof of Theorem 1.6. We take M = 0 in Lemma 3.1. The lemma says that,
for each g ∈ Γ\G, f �→ R(ϕ)f(g) is a bounded linear functional on L2

cusp(Γ\G).

Hence there exists a function Kg in L2
cusp(Γ\G) such that

R(ϕ)f(g) =

∫
Γ\G

Kg(x)f(x) dx

for all f ∈ L2
cusp(Γ\G). Moreover, ‖Kg‖L2(Γ\G) ≤ C(ϕ, 0) for all g ∈ Γ\G. Put

K(g, x) = Kg(x). If K( · , · ) is jointly measurable, then∫
Γ\G×Γ\G

|K(g, x)|2 dx dg ≤
∫

Γ\G
C(ϕ, 0)2 dg < ∞

since Γ\G has finite volume, and R(ϕ) is exhibited as the restriction to L2
cusp(Γ\G)

of a Hilbert-Schmidt operator on L2(Γ\G) that leaves L2
cusp(Γ\G) stable. Hence

R(ϕ) is Hilbert-Schmidt on L2
cusp(Γ\G).
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To complete the proof, we need to address the joint measurability of the kernel.
If X is a left invariant first-order derivative, then X(R(ϕ)f) = −R(Xϕ)f . Applying
the lemma to Xϕ, we conclude that sup |X(R(ϕ)f)| ≤ C‖f‖L2(Γ\G). If ε and Γg are

given, it follows that |R(ϕ)f(g′)−R(ϕ)f(g)| ≤ ε‖f‖L2(Γ\G) for all f ∈ L2
cusp(Γ\G)

and for all g′ sufficiently close to g. Therefore g �→ Kg is continuous as a map
of Γ\G into L2

cusp(Γ\G), and we saw above that it is bounded. It is a general

fact that if M is in L2(Γ\G × Γ\G) and Mg(x) = M(g, x), then g �→ Mg is in
L2(Γ\G,L2(Γ\G)). Thus we can use {Kg} to define a continuous linear functional
on L2(Γ\G× Γ\G) by

M �→
∫
g∈Γ\G

(Mg,Kg)L2(Γ\G) d
·
g.

This linear functional must be given by the complex conjugate of a (jointly measur-
able) member K ′ of L2(Γ\G × Γ\G). We can replace K( · , · ) by K ′( · , · ) above,
have the required joint measurability, and still have R(ϕ)f =

∫
Γ\GK

′( · , x)f(x) dx

almost everywhere for each f ∈ L2
cusp(Γ\G).

4. Introduction to the Trace Formula

A first insight into what to look for in a trace formula comes from the compact
quotient case. Let G be a unimodular Lie group, let Γ be a discrete subgroup
such that Γ\G is compact, and let R be the right regular representation of G on
L2(Γ\G).

Let ϕ be in C∞
com(G), and define R(ϕ)f(x) =

∫
G
f(xy)ϕ(y) dy. The computation

R(ϕ)f(x) =

∫
G

f(xy)ϕ(y) dy =

∫
G

f(y)ϕ(x−1y) dy =

∫
Γ\G

∑
γ∈Γ

f(y)ϕ(x−1γy) dy

shows that

R(ϕ)f(x) =

∫
Γ\G

K(x, y)f(y) dy,

where K(x, y) =
∑

γ∈Γ ϕ(x−1γy). This sum is locally finite, and it follows that K

is in C∞(Γ\G× Γ\G). Thus we can apply the following lemma.

Lemma 4.1. Let X be a compact C∞ manifold, and let dx be a measure on X
that is a smooth function times Lebesgue measure in each coordinate neighborhood.
Let K be in C∞(X×X), and define a bounded operator B on L2(X, dx) by Bf(x) =∫
X
K(x, y)f(y) dy. Then B is of trace class, and its trace is

TrB =

∫
X

K(x, x) dx.

Reference. [Kn1, p. 341].

By the lemma, R(ϕ) is of trace class. Referring to the proof in §1 that Theorem
1.6 implies Theorem 1.5, we see that L2(Γ\G) decomposes into the direct sum of
irreducible representations of G, each occurring with finite multiplicity. Let us write

L2(Γ\G) =
⊕
π∈Ĝ

mππ. (4.1)
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The lemma also gives us a formula for the trace of R(ϕ), namely

TrR(ϕ) =

∫
Γ\G

K(x, x) dx =

∫
Γ\G

∑
γ∈Γ

ϕ(x−1γx) dx. (4.2)

We can refine the right side of (4.2) by lumping terms whose elements γ are
conjugate in G. For a group U , let Uγ be the centralizer of γ in U . From each
conjugacy class o of elements in Γ, we select a representative. Say that γ is a
representative of oγ . Then oγ consists of all δ−1γδ, where δ varies through Γγ\Γ.
Thus ∫

Γ\G

∑
γ∈Γ

ϕ(x−1γx) dx =
∑
oγ

∑
δ∈Γγ\Γ

∫
Γ\G

ϕ(x−1δ−1γδx) dx

=
∑
oγ

∫
Γγ\G

ϕ(x−1γx) dx

=
∑
oγ

∫
Gγ\G

∫
Γγ\Gγ

ϕ(x−1y−1γyx) dy dx

=
∑
oγ

vol(Γγ\Gγ)

∫
Gγ\G

ϕ(x−1γx) dx. (4.3)

We arrive at the following result.

Theorem 4.2. Let G be a unimodular Lie group, let Γ be a discrete subgroup
such that Γ\G is compact, let R be the right regular representation of G on L2(Γ\G),
and let ϕ be in C∞

com(G). Then R(ϕ) is of trace class, and

TrR(ϕ) =
∑
oγ

vol(Γγ\Gγ)

∫
Gγ\G

ϕ(x−1γx) dx. (4.4a)

Consequently if the decomposition of L2(Γ\G) into irreducible representations of G
is as in (4.1), then∑

π∈Ĝ

mπTrπ(ϕ) =
∑
oγ

vol(Γγ\Gγ)

∫
Gγ\G

ϕ(x−1γx) dx. (4.4b)

Let us consider two examples. The first example is the case that G is compact
and Γ = {1}. If dx is normalized to have total mass 1, then (4.4b) gives

ϕ(1) =
∑
π∈Ĝ

mπTrπ(ϕ), (4.5)

which is the Fourier inversion formula for G. It is typical of the trace formula that
we can get information about the multiplicities mπ by specializing ϕ. Indeed, if
in (4.5) we take ϕ to be the complex conjugate of the character of π, the Schur
orthogonality relations tell us that mπ equals the degree of π.

The second example with compact quotient is the case that G = R and Γ = Z.
Assuming that the measure on Z\R has total mass one, we find that the right
side of (4.4b) is just

∑∞
n=−∞ ϕ(n), while the left side is

∑∞
n=−∞ ϕ̂(n) if ϕ̂(n) =∫

Z\R ϕ(x)e−2πinx dx. Formula (4.4b) is therefore the Poisson summation formula

for smooth functions ϕ of compact support.
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The example that we have been studying in this paper has G = SL2(R) and
Γ = SL2(Z). For this case, Γ\G is noncompact and (4.4b) is not directly applicable.
Indeed, we saw in §3 that L2(Γ\G) has a continuous part to its decomposition, and
R(ϕ) cannot always be of trace class. What we know from Theorem 1.5 is that
R(ϕ) is Hilbert-Schmidt on L2

cusp(Γ\G) if ϕ is in C∞
com(G). Since the composition of

two Hilbert-Schmidt operators is of trace class, R(ϕ) is of trace class on L2
cusp(Γ\G)

if ϕ is a finite sum of convolutions of pairs of members of C∞
com(G). A theorem of

Dixmier and Malliavin [Di-Ma] says that this is always the case on a Lie group, and
we arrive at the following theorem.

Theorem 4.3. For G = SL2(R) and Γ = SL2(Z), R(ϕ) is of trace class on
L2

cusp(Γ\G) if ϕ is in C∞
com(G).

Following the line of argument in the compact quotient case, we want to obtain a
formula for TrR(ϕ) on L2

cusp(Γ\G) by integrating a kernel on its diagonal. Although
the computation at the beginning of this section shows that R(ϕ) is given by the
kernel

K(x, y) =
∑
γ∈Γ

ϕ(x−1γy),

this kernel reflects the action of R(ϕ) on all of L2(Γ\G). It is necessary to subtract
terms to account for the contributions of L2

cont(Γ\G) and the constant functions.
On the constant functions, R(ϕ) acts as the scalar

∫
G
ϕ(x) dx, and this scalar is

the trace. Thus we need to know the kernel Kcont(x, y) for the action of R(ϕ) on
L2

cont(Γ\G).
The derivation of a formula for Kcont(x, y) is a little complicated, and we shall

carry out only the formal argument, omitting the justification for some interchanges
of limits. Also we shall assume that ϕ is two-sided K finite. See [Gb-Ja] for more
details. The argument requires knowing that there is a meromorphic continuation
for an Eisenstein series E(g, f, s) itself (with f in some W (τ), say), not just for
its constant term. Moreover, the only poles for the continued Eisenstein series
are simple and coincide with the poles of the constant term, and the continued
Eisenstein series satisfies growth estimates in Im s in any strip 0 ≤ Re s ≤ σ. For a
proof of these facts, see [Go1] or Appendix IV of [Lgl2]. These facts have an analog
in the adelic setting (0.4), and the paper [Ja] in this volume discusses this analog.

Lemma 4.4. Let φ be a K finite even function in D(N\G), and let Φ be
its Fourier-Laplace transform. Then the analytically continued Eisenstein series
satisfies

E(g,M(s)Φ(s),−s) = E(g,Φ(s), s). (4.6)

Proof. The constant term of the right side is 2Φ(s)s + 2(M(s)Φ(s))−s when
Re s > 1, and it is this at all points where there is no pole, by analytic continuation.
Similarly the constant term of the left side is 2(M(s)Φ(s))−s+2(M(−s)M(s)Φ(s))s
when Re s < −1, and it is this at all points where there is no pole. Since
M(−s)M(s) = 1 by Proposition 2.6f, the two sides of (4.6) have equal constant
terms.

For fixed s = s0, let b(g) be the difference of the two sides of (4.6). Then
b(g) has constant term 0, and Lemma 1.2 shows that b(g) is orthogonal to any

L2 function of the form φ̂. Thus b(g) is orthogonal to E(g,Φ(s), s) in the region
of convergence Re s > 1 and then, by analytic continuation, for all s where there
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is no pole. Similarly b(g) is orthogonal to E(g,M(s)Φ(s),−s) in the region of
convergence Re s < −1 and then for all s where there is no pole. Therefore b(g) is
orthogonal to itself, and b(g) = 0.

Let H be the space of even functions in L2(K). As in §2, we introduce

L̂2(E) = {F ∈ L2(iR, H) | M(it)F (it) = F (−it)}.

Recall that the construction in §2 started from an even K finite φ ∈ D(N\G) of

integral 0 and gave a map φ → Φ → Φ1 with Φ1 ∈ L̂2(E), and this map descended

to be a well defined linear map S carrying φ̂ to Φ1. Theorem 2.10 shows that S
preserves norms, in the sense that

〈φ̂, ψ̂〉L2(Γ\G) =
1

4π

∫ ∞

−∞
〈Φ1(it),Ψ1(it)〉L2(K) dt, (4.7)

and S has dense image in L̂2(E). Hence S completes to a unitary mapping of

L2
cont(Γ\G) onto L̂2(E).

Lemma 4.5. Let φ ∈ D(N\G) be K finite of integral 0, and let h be a K finite
member of the space H of even functions in L2(K). Then

〈h, Sφ̂(it)〉L2(K) =
1

2

∫
Γ\G

E(g, h, it)φ̂(g) dg.

Proof. Since φ has integral 0 over N\G, Φ(1) has integral 0 over K. Thus
M(s)Φ(s) has no pole at s = 1, and E(g,Φ(s), s) has no pole at s = 1. For σ > 1,
it follows that

〈φ̂,ψ̂〉L2(Γ\G)

=
1

4π

∫
Γ\G

[ ∫
Re s=σ

E(g,Φ(s), s)ψ̂(g) d|s|
]
dg by (2.10)

=
1

4π

∫
Re s=σ

[ ∫
Γ\G

E(g,Φ(s), s)ψ̂(g) dg
]
d|s| by interchange

=
1

4π

∫ ∞

t=−∞

[ ∫
Γ\G

E(g,Φ(it), it)ψ̂(g) dg
]
dt by moving the

line of integration
(4.8)

since there is no pole at s = 1.
In (4.8), Lemma 4.4 and the change of variables t → −t allow us to replace Φ(it)

by M(−it)Φ(−it). Averaging the two results yields

〈φ̂, ψ̂〉L2(Γ\G) =
1

8π

∫ ∞

t=−∞

[ ∫
Γ\G

E(g,Φ1(it), it)ψ̂(g) dg
]
dt. (4.9)

Comparing (4.7) and (4.9), we see that∫ ∞

−∞
〈Φ1(it),Ψ1(it)〉L2(K) dt = 1

2

∫ ∞

t=−∞

[ ∫
Γ\G

E(g,Φ1(it), it)ψ̂(g) dg
]
dt. (4.10)

On each side of (4.10), we write the integral as a sum of integrals over (0,∞)
and (−∞, 0) and in the (−∞, 0) integral replace t by −t and then Φ1(−it) by
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M(it)Φ1(it). Finally on the left side we replace Ψ1(−it) by M(it)Ψ1(it), and on
the right side we substitute from Lemma 4.4. The result is that∫ ∞

0

〈Φ1(it),Ψ1(it)〉L2(K) dt = 1
2

∫ ∞

t=0

[ ∫
Γ\G

E(g,Φ1(it), it)ψ̂(g) dg
]
dt. (4.11)

The functions t → Φ1(it) are dense in L2((0,∞), H), and we can pass to the
limit in the Eisenstein series if we stick to a K finite function in L2((0,∞), H).
Thus (4.11) persists if Φ1(it) is replace by any K finite function in L2((0,∞), H).
Let us use a function of the form c(t)h, where h is a K finite member of H and
c( · ) is in L2((0,∞),C). Then we obtain∫ ∞

0

c(t)〈h,Ψ1(it)〉L2(K) dt = 1
2

∫ ∞

t=0

c(t)
[ ∫

Γ\G
E(g, h, it)ψ̂(g) dg

]
dt.

Since c(t) is arbitrary, the integrands are equal at every point of continuity, i.e.,
everywhere. This proves the lemma.

Proposition 4.6. Let {fα} be an orthonormal basis of K finite functions in H,
and let ϕ be two-sided K finite in C∞

com(G). Then R(ϕ) is given on L2
cont(Γ\G) by

the kernel

Kcont(x, y) =
1

16π

∑
α,β

∫ ∞

−∞
〈P+,it(ϕ)fβ , fα〉E(x, fα, it)E(y, fβ , it) dt,

Proof. Extend the linear map S to all of L2(Γ\G) by setting S equal to 0 on
L2

cusp(Γ\G) and C. For φ and ψ of integral 0, we have

〈φ̂, ψ̂〉L2(Γ\G) = 〈Sφ̂, Sψ̂〉L̂2(E),

and it follows that S∗S is the orthogonal projection of L2(Γ\G) on L2
cont(Γ\G).

Since S is an intertwining operator, we have

S∗SR(ϕ)S∗S = S∗P+, ·(ϕ)S,

where P+, · is the representation on L̂2(E). Consequently

〈S∗SR(ϕ)S∗Sφ̂, ψ̂〉L2(Γ\G)

= 〈S∗P+, ·(ϕ)Sφ̂, ψ̂〉L2(Γ\G)

= 〈P+, ·(ϕ)Sφ̂, Sψ̂〉L̂2(E)

=
1

4π

∫ ∞

−∞
〈P+,it(ϕ)Sφ̂(it), Sψ̂(it)〉L2(K) dt

=
1

4π

∫ ∞

−∞

∑
α

〈P+,it(ϕ)Sφ̂(it), fα〉L2(K)〈fα, Sψ̂(it)〉L2(K) dt

=
1

4π

∫ ∞

−∞

∑
α

〈P+,it(ϕ)∗fα, Sφ̂(it)〉L2(K)〈fα, Sψ̂(it)〉L2(K) dt

=
1

16π

∫ ∞

−∞

∑
α

[ ∫
Γ\G

E(g, P+,it(ϕ)∗fα, it)φ̂(g) dg
][ ∫

Γ\G
E(g′, fα, it)ψ̂(g′) dg′

]
dt

by Lemma 4.5
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=

∫
Γ\G×Γ\G

[ 1

16π

∫ ∞

−∞

∑
α

E(g, P+,it(ϕ)∗fα, it)E(g′, fα, it) dt
]
φ̂(g)ψ̂(g′) dg dg′.

Therefore S∗SR(ϕ)S∗S is given by the kernel

Kcont(g
′, g) =

1

16π

∫ ∞

−∞

∑
α

E(g, P+,it(ϕ)∗fα, it)E(g′, fα, it) dt.

If we expand P+,it(ϕ)∗fα =
∑

β〈P+,it(ϕ)∗fα, fβ〉fβ , then we get the result of the
proposition.

As a consequence of Proposition 4.6, the kernel of R(ϕ) on L2
cusp(Γ\G)⊕C along

the diagonal is K(x, x) − Kcont(x, x). This difference is integrable over Γ\G, but
the separate terms are not. Some process of truncation needs to be used to avoid
∞ − ∞ as integral, and we shall not pursue the details in this setting. See [He2]
and [Ef] for further information about the classical trace formula. Actually the
mechanism of the trace formula is more understandable in the adelic setting, where
the interplay between characters and conjugacy classes is fairly clear, than in the
setting of SL2(Z)\SL2(R), where the complicated nature of SL2(Z)’s conjugacy
classes obscures matters. In addition, significant applications require having the
formula for two different algebraic groups, and it is therefore appropriate to have
a derivation that can be generalized to groups other than SL2 or GL2. We shall
therefore proceed directly to the adelic setting.

5. Digression on Quaternion Algebras

This section is the first of three sections in which we discuss the trace formula
in the setting of adeles. The base number field will be Q, and the adeles of Q will
be denoted A. For background on adeles and reductive algebraic groups, see the
exposition [Kn2].

Before treating G = GL2, we consider the case that G′ is the multiplicative
group of a quaternion algebra over Q. By definition a quaternion algebra over
a field F is a central simple algebra over F that has dimension 4 and is not equal
to the full matrix algebra M2(F ). Since any central simple algebra over F is a full
matrix algebra over a division algebra over F , it follows that a quaternion algebra
over F is a division algebra.

Let us see how to make G′ into a linear algebraic group. Thus let D be a
quaternion algebra over Q. It is known that there exist integers m and n such that
m, n, and mn are not squares in Q and such that D has a Q basis {1, u, v, w} with
w = uv and

u2 = m, v2 = n, w2 = −mn.
Furthermore

uv = −vu, uw = −wu, vw = −wv.
We may associate 2-by-2 matrices to the members of this Q basis by

1 ↔
(

1 0

0 1

)
, u ↔

(√
m 0

0 −√
m

)
, v ↔

(
0

√
n√

n 0

)
, w ↔

(
0

√
mn

−√
mn 0

)
.

These matrices may also be chosen to be defined over a quadratic extension of Q
rather than a quartic extension, for example by taking

1 ↔
(

1 0

0 1

)
, u ↔

(√
m 0

0 −√
m

)
, v ↔

(
0 1

n 0

)
, w ↔

(
0

√
m

−n
√
m 0

)
.
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In either case if we identify D with its effect under left multiplication on this basis,
then G′ is realized as an algebraic subgroup of GL4 defined over Q.

The determinant of the 2-by-2 matrix corresponding to

x = a1 + bu+ cv + dw

is a2 − b2m − c2n + d2mn, and the determinant of the 4-by-4 matrix describing
left multiplication by x is the square of this expression. For v ∈ {∞,primes}, we
see that D ⊗Q Qv

∼= M2(Qv) if and only if a2 − b2m− c2n+ d2mn = 0 is solvable
nontrivially in Qv. Exactly in this case, G′(Qv) ∼= GL2(Qv) and we say that G′ is
unramified or split at v. If v is an odd prime p, this always happens if p � m and
p � n, according to Corollaries 1 and 2 of [Bv-Sh, p. 50].

Let A be the adeles of Q. The center Z ′ of G′, namely the subgroup of scalar
multiples of 1, has positive dimension, and consequently the quotient space
G′(Q)\G′(A) has infinite volume. Thus instead of studying the right regular rep-
resentation of G′(A) on L2(G′(Q)\G′(A)), we begin by studying the right regular
representation on L2(Z ′(A)G′(Q)\G′(A)). The quotient space Z ′(A)G′(Q)\G′(A)
is compact as a consequence of the general theorem quoted as Theorem 6.2 in
[Kn2] or a direct calculation that may be found in [Gf-Gr-P, pp. 115–119] or [We,
pp. 74–75]. Despite the fact that this quotient is not a manifold, we shall see that
Theorem 4.2 is still valid for it with suitable interpretations.

We study functions on Z ′(A)G′(Q)\G′(A) by studying functions on G′(A)
that are left invariant under Z ′(A) and G′(Q). But we can investigate more of
G′(Q)\G′(A) if we consider further functions on G′(A). Thus for each (unitary)
character ω of Z ′(Q)\Z ′(A), we define L2(Z ′(A)G′(Q)\G′(A), ω) to be the set of f
on G′(A) such that

f(zγg) = ω(z)f(g) for z ∈ Z ′(A), γ ∈ G′(Q), g ∈ G′(A) (5.1)

and such that |f | is square integrable on Z ′(A)G′(Q)\G′(A). We denote by Rω the

right regular representation of G′(A) on this space. We put G
′
= Z ′\G′, so that

we can identify Z ′(A)G′(Q)\G′(A) with G
′
(Q)\G′

(A).
Let us write G′(A) = G′

∞ × G′(Af ) for the decomposition of G′(A) according
to the infinite and finite places. Recall from §7 of [Kn2] that a complex-valued
function f on G′(A) is smooth if it is continuous and, when viewed as a function
of two arguments (x, y) ∈ G′

∞ × G′(Af ), it is smooth in x for each fixed y and is
locally constant of compact support in y for each fixed x.

We define C∞
com(G′(A), ω−1) to be the space of smooth functions on G′(A) such

that

ϕ(zg) = ω(z)−1ϕ(g) for z ∈ Z ′(A), g ∈ G′(A). (5.2)

If f is in L2(Z ′(A)G′(Q)\G′(A), ω) and ϕ is in C∞
com(G′(A), ω−1), then the function

f(xy)ϕ(y) on G′(A)×G′(A) descends to a function on G′(A)×G
′
(A), and it makes

sense to consider

Rω(ϕ)f(x) =

∫
G

′
(Q)\G′

(A)

f(xy)ϕ(y) dy (5.3)

as a member of L2(Z ′(A)G′(Q)\G′(A), ω). Since ω(Z ′(Q)) = 1, the function γ �→
ϕ(x−1γy) on G′(Q) descends to a well defined function on G

′
(Q). Thus we can
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imitate the computation at the beginning of §4 and write

Rω(ϕ)f(x) =

∫
G

′
(A)

f(xy)ϕ(y) dy

=

∫
G

′
(A)

f(y)ϕ(x−1y) dy

=

∫
G

′
(Q)\G′

(A)

∑
γ∈G′

(Q)

f(y)ϕ(x−1γy) dy.

Therefore

Rω(ϕ)f(x) =

∫
G

′
(Q)\G′

(A)

K(x, y)f(y) dy, (5.4)

where K(x, y) =
∑

γ∈G′
(Q) ϕ(x−1γy). The function K(x, y) is defined on

G′(A) ×G′(A), is left invariant under G′(Q) in each variable, and satisfies

K(z1x, z2y) = ω(z1)ω(z2)
−1K(x, y) for z1 and z2 in Z ′(A).

Let K1 be the open compact subgroup
∏

pG
′(Op) of G′(Af ). The function ϕ is

left and right invariant under some open compact subgroup K2 of K1, and conse-
quently the function K(x, y) is right invariant under K2 in each variable. The right
invariance in y implies that Rω(ϕ)f(x) depends only on the function f#(yK2) =
vol(K2)

−1
∫
K2

f(yk2) dk2 defined on G′(Q)\G′(A)/K2. The right invariance in x

implies that Rω(ϕ)f(x) = (Rω(ϕ)f)#(xK2). Thus we can regard Rω(ϕ) as an
operator from functions on G′(Q)\G′(A)/K2 transforming under ω to functions on
the same space. By (6.3) of [Kn2], the compact space Z ′(A)G′(Q)\G′(A)/K2 is
a (possibly disconnected) manifold. If ω = 1, Lemma 4.1 is directly applicable.
If ω �= 1, then Lemma 4.1 is indirectly applicable with the aid of a compactly
supported function h on G′(Q)\G′(A)/K2 such that

∫
Z′(A)

h(zx) dz = 1 for all

x ∈ G′(A). The result for any ω is as follows.

Lemma 5.1. If ϕ is in C∞
com(G′(A), ω−1), then the operator Rω(ϕ) defined by

(5.3) is of trace class on L2(Z ′(A)G′(Q)\G′(A), ω), and its trace is

TrRω(ϕ) =

∫
G

′
(Q)\G′

(A)

K(x, x) dx,

where K(x, x) =
∑

γ∈G′
(Q) ϕ(x−1γx).

The proof that Lemma 4.1 implies Theorem 4.2 may be adjusted to show that
Lemma 5.1 implies the following result, which gives the trace formula for the
multiplicative group of a quaternion algebra over Q.

Theorem 5.2. Let G′ be the multiplicative group of a quaternion algebra over

Q, let Z ′ be the center, let G
′
= Z ′\G′

, let Rω be the right regular representation
of G′(A) on L2(Z ′(A)G′(Q)\G′(A), ω), and let ϕ be in C∞

com(G′(A), ω−1). Then
Rω(ϕ) is of trace class, and

TrRω(ϕ) =
∑
oγ

vol(G
′
(Q)γ\G′

(A)γ)

∫
G

′
(A)γ\G′

(A)

ϕ(x−1γx) dx,



     

384 A. W. KNAPP

the sum being taken over conjugacy classes in G
′
(Q). Consequently if the decom-

position of L2(Z ′(A)G′(Q)\G′(A), ω−1) into irreducible representations of G′(A) is
as in (4.1), then

∑
π∈Ĝ′(A)

mπTrπ(ϕ) =
∑
oγ

vol(G
′
(Q)γ\G′

(A)γ)

∫
G

′
(A)γ\G′

(A)

ϕ(x−1γx) dx.

6. Adelic Eisenstein Series

Now we turn our attention to the group G = GL2. For this group we seek
an understanding of functions on G(Q)\G(A), where A denotes the adeles of Q.
References are [Gf-Gr-P], [Ja-Lgl], [Du-La], [Ar1], [Gb1], [Gb-Ja], and [Ar4]. This
quotient space does not have finite volume, and some adjustment has to be made.
The same difficulty arose in §5 with the multiplicative group G′ of a quaternion
algebra: The quotient G′(Q)\G′(A) has infinite volume, and we in effect chose to
study only functions that could be related to Z ′(A)G′(Q)\G′(A), where Z ′ is the
center. For G′, we took advantage of the fact that Z ′(A)G′(Q)\G′(A) is compact.

In the literature an adjustment for G is made in either of two equivalent ways.
One possible adjustment, analogous to what we did forG′ in §5, is to study functions
that can be related to Z(A)G(Q)\G(A), where Z is the center consisting of scalar
matrices. This quotient space is not compact, but it does have finite volume, as we
shall see in a moment. Specifically for each character ω of Z(Q)\Z(A), we define
L2(Z(A)G(Q)\G(A), ω) to be the set of f on G(A) such that

f(zγg) = ω(z)f(g) for z ∈ Z(A), γ ∈ G(Q), g ∈ G(A) (6.1a)

and such that |f | is square integrable on Z(A)G(Q)\G(A). We shall be interested
in the right regular representation Rω of G(A) on this space. We put G = Z\G, so
that we can identify Z(A)G(Q)\G(A) with G(Q)\G(A).

The other possible adjustment uses the subgroup G1 = G(A)1 of elements
g ∈ G(A) such that |det g|A = 1. The discrete subgroup G(Q) of G(A) lies in G1 by
the Artin product formula (Theorem 3.3 of [Kn2]), and the quotient space G(Q)\G1

is noncompact of finite volume, by the theorem of Borel and Harish-Chandra quoted
as Theorem 6.2 of [Kn2]. In this approach the objective is to understand the
decomposition of the right regular representation of G1 on L2(G(Q)\G1). The
group G1 has center Z1 = G1∩Z(A). If (A×)1 denotes the group of ideles of module
1, then the members of Z1 have both diagonal entries equal to the same member
of (A×)1. From Theorem 3.5 of [Kn2], we know that the abelian group Q×\(A×)1

is compact. Its characters are in one-one correspondence with the characters of Z1

that are trivial on Z1∩G(Q), hence with the irreducible representations of Z1G(Q)
that are trivial on G(Q). The formalism

L2(G(Q)\G1) ∼= indG1

G(Q)1
∼= indG1

Z1G(Q)ind
Z1G(Q)
G(Q) 1

therefore leads to the conclusion that L2(G(Q)\G1) decomposes as a Hilbert space
orthogonal sum

L2(G(Q)\G1) =
∑

ω0∈(Q×\(A×)1 )̂

L2(Z1G(Q)\G1, ω0),
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where ω0 is regarded as a character of Z1G(Q) that is trivial on G(Q). Here
L2(Z1G(Q))\G1, ω0) is the set of f on G1 such that

f(zγg) = ω0(z)f(g) for z ∈ Z1, γ ∈ G(Q), g ∈ G1 (6.1b)

and such that |f | is square integrable on Z1G(Q)\G1. Invariant integration on
Z1G(Q)\G1 can be achieved by pulling functions back to G(Q)\G1 and integrating
there, and hence Z1G(Q)\G1 has finite volume.

The inclusion of G1 into G(A) yields a map of G1 into the quotient space
Z(A)G(Q)\G(A), and this is onto since every member of G(A) is the product
of a member of G1 and a positive scalar matrix at the infinite place. The map
descends to a map of Z1G(Q)\G1 onto Z(A)G(Q)\G(A), and the result is one-one
since G1 ∩ Z(A) = Z1. Thus we may identify

Z(A)G(Q)\G(A) ∼= Z1G(Q)\G1.

When a character is taken into account, matters are a little more complicated.
Let ω be a character of Z(A) trivial on Z(Q), and let L2(Z(A)G(Q)\G(A), ω) be
as in (6.1a). By the second isomorphism theorem, Z(Q)\Z(A) is isomorphic to
G(Q)\Z(A)G(Q), and thus ω can be regarded as a character of Z(A)G(Q) trivial
on G(Q). We can restrict ω to a character ω0 of Z1G(Q) that is trivial on G(Q),
and then we obtain an identification of the function spaces

L2(Z(A)G(Q)\G(A), ω) ∼= L2(Z1G(Q)\G1, ω0). (6.2)

Conversely when a character ω0 of Z1G(Q) that is trivial on G(Q) is given, we can
extend ω to a unitary character ω of Z(A)G(Q) that is trivial on G(Q), and we
again obtain (6.2). The complication is that the extension of ω0 to ω is not unique.

By imposing a further condition on ω, we can get around this nonuniqueness.
Let Q+

∞ be the group of ideles that are trivial at all finite places and are positive at
the infinite place, and let Z∞ be the subgroup of Z(A) whose diagonal entries are
in Q+

∞. Then Z(A) = Z1×Z∞ and Z(A)G(Q) = Z1G(Q)×Z∞. Hence a character
ω0 of Z1G(Q) trivial on G(Q) extends uniquely to a character of Z(A)G(Q) trivial
on G(Q) if we impose the condition that ω is trivial on Z∞.

We choose to study the left side of (6.2) rather than the right side. Working with
the right side would make the proof of the trace formula considerably more elegant.
But as we shall see in [Kn-Ro], working with the left side makes it much easier to
use the trace formula in applications. It will not simplify matters to assume that
ω is trivial on Z∞, and thus we do not assume this triviality.

Henceforth we therefore fix ω as a character of Z(A) that is trivial on Z(Q); by
extracting the upper left entry of a scalar matrix, we may regard ω alternatively
as a character of Q×\A×. We consider the space L2(Z(A)G(Q)\G(A), ω) and the
right regular representation Rω of G(A) on this space.

Let N =
(

1 ∗
0 1

)
and M =

(
∗ 0

0 ∗

)
as algebraic subgroups of G, and put P = MN .

If f is in L2(Z(A)G(Q)\G(A), ω), we define the constant term of f (along P ) to
be

fP (g) =

∫
Q\A

f
((

1 x

0 1

)
g
)
dx,

where dx has total mass one. This function is left invariant under N(A) and P (Q),
the latter because the Artin product formula shows that conjugation by a member
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of P (Q) does not change dx. Let L2
cusp(ω) be the closed subspace of functions f

such that fP (g) is 0 almost everywhere. This subspace is invariant under Rω(G(A)).

Theorem 6.1. If ϕ is in C∞
com(G(A), ω−1), then Rω(ϕ) is Hilbert-Schmidt,

hence compact, on L2
cusp(ω).

Reference for sketch. [Gb-Ja, pp. 217–218].

Corollary 6.2. L2
cusp(ω) decomposes discretely into irreducible representations

having finite multiplicity.

Proof. The argument is the same as the proof that Theorem 1.6 implies
Theorem 1.5.

Corollary 6.3. If ϕ is in C∞
com(G(A), ω−1), then Rω(ϕ) is of trace class on

L2
cusp(ω).

Proof. We can write ϕ(x) =
∫
Z(A ψ(zx)ω(z) dz for some smooth function ψ of

compact support on G(A). Then ψ is a finite sum of functions ψ∞×ψfin, where ψ∞
is smooth of compact support at the place ∞ and ψfin is locally constant of compact
support at the finite places. Form ϕ∞ and ϕfin from ψ∞ and ψfin by integrating
over the appropriate components of Z(A), so that ϕ∞×ϕfin is in C∞

com(G(A), ω−1).
A theorem of Dixmier and Malliavin [Di-Ma] shows that each ψ∞ is a sum of terms
that are each the convolution of two compactly supported smooth functions. Also
each ψfin is the convolution of ψfin with the characteristic function of some open
compact subgroup. Consequently ϕ∞×ϕfin is the finite sum of convolutions of pairs
of members of C∞

com(G(A), ω−1). Then it follows from Theorem 6.1 that Rω(ϕ) is a
finite sum of products of two Hilbert-Schmidt operators and hence is of trace class.

The next step is to identify the orthogonal complement of the subspace L2
cusp(ω)

of L2(Z(A)G(Q)\G(A), ω) in a fashion analogous to Theorem 1.3. The dictionary
for comparing subgroups of SL2(R) and G(A) is that Γ ↔ G(Q), N ↔ N(A), and
Γ∞ ↔ P (Q). The condition in §§1–4 that functions be even is analogous to the
condition now that functions transform under ω. The proof of Lemma 1.1 used
that Γ∞ ⊂ N and that Γ∞\N is compact, but it would have worked as well under
the condition that Γ∞\NΓ∞ is compact. We therefore obtain an adelic analog of
that lemma: If φ is a continuous function on G(A) satisfying

φ(znγg) = ω(z)φ(g) (6.3)

for z ∈ Z(A), n ∈ N(A), and γ ∈ P (Q) and having compact support modulo
N(A)P (Q), then

φ̂(g) =
∑

γ∈P (Q)\G(Q)

φ(γg) (6.4)

is a locally finite sum and defines a continuous function on G(A) satisfying (6.1b)
and having compact support modulo Z(A)G(Q).

Lemma 6.4. Let φ be a measurable function on G(A) left invariant under
N(A)P (Q) and transforming under ω, and let F be a measurable function on G(A)

as in (6.1b). If |̂φ| is square integrable modulo Z(A)G(Q)\G(A) and if F is in
L2(Z(A)G(Q)\G(A), ω), then

〈φ̂, F 〉L2(Z(A)G(Q)\G(A)) = 〈φ, FP 〉L2(Z(A)N(A)P (Q)\G(A)), (6.5)
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the indicated integrals converging.

Remarks. This is proved in the same way as Lemma 1.2. When an integral over
Z(A)P (Q)\G(A) is written as an iterated integral over (Z(A)N(A)P (Q))\G(A) and
(Z(A)P (Q))\(Z(A)N(A)P (Q)), the inner integral is rewritten over N(Q)\N(A) by
the second isomorphism theorem. The equality (6.5) depends on normalizations of
Haar measures, but we postpone this detail until after the proof of Lemma 6.7
below.

Theorem 6.5. Within L2(Z(A)G(Q)\G(A), ω), the orthogonal complement of

L2
cusp(ω) is the closure of the space of all φ̂ with φ continuous on G(A), left invariant

under N(A)P (Q), transforming under Z(A) by ω, and having compact support
modulo Z(A)N(A)P (Q).

Proof. Same as for Theorem 1.3.

Eisenstein series are used in the analysis of this orthocomplement. Let K be the
maximal compact subgroup O2(R) ×

∏
pG(Zp) of G(A), so that G(A) = P (A)K.

If an element g is decomposed as g =
( a x

0 b

)
k with k ∈ K, we define

h(g) =
∣∣a
b

∣∣1/2
A

. (6.6)

This is well defined since h(g) = 1 for any element g of P (A) ∩K. To be able to
compute with the function h( · ), we identify A2 with row vectors and introduce
a kind of norm on A2. If vp = (xp yp ) is a row vector over Qp, we define
‖vp‖p = max{|xp|p, |yp|p}. A little computation shows that ‖vpkp‖p = ‖vp‖p for
kp in GL2(Zp). If v∞ = (x∞ y∞ ) is a row vector over R, we define ‖v∞‖∞ =√
x2
∞ + y2

∞. Then of course, ‖v∞k∞‖∞ = ‖v∞‖∞ for k∞ in O2(R). If v ∈ A2 is
decomposed as v = v∞ ×

∏
vp, we let ‖v‖A = ‖v∞‖∞ ×

∏
p ‖vp‖p, and this norm is

preserved under right multiplication by K.

Lemma 6.6. The function h( · ) defined in (6.6) is given on G(A) by

h(g)−1 =
‖ ( 0 1 ) g‖A

|det g|1/2A

.

Proof. Since K preserves norms, it is sufficient to consider g ∈ P (A). If g =( a x

0 b

)
, then

‖ ( 0 1 ) g‖A

|det g|1/2A

=
‖ ( 0 b ) ‖A

|ab|1/2A

=
|b|1/2A

|a|1/2A

,

and the result follows.

The square h( · )2 is an adelic analog of the function y( · ) in §§1–4. For example,
Haar measure on G(A) may be expressed in terms of h in analogy with (1.7). If
g = pk is a decomposition of an element relative to G(A) = P (A)K, then we have

dg = dlp dk = h(p)−2 drp dk, (6.7)

where dlp and drp are left and right Haar measures on P (A). Normalizations of
Haar measures will be discussed in more detail after the proof of Lemma 6.7 below.
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The analog of summing over Γ∞\Γ will be summing over P (Q)\G(Q). By the
Bruhat decomposition we can take as representatives γ of the cosets P (Q)γ the

elements 1 and w
(

1 ξ

0 1

)
with ξ in Q, where w =

(
0 1

1 0

)
.

The next lemma will reduce several estimates about h( · ) to estimates in the
setting of §§1–4.

Lemma 6.7. Let g =
( yu xu

0 u

)
vary through a compact subset X of P (A), and

let γ vary through matrices of the form γ = w
(

1 ξ

0 1

)
with ξ ∈ Q. Write ξ = d/c

with GCD(c, d) = 1, and write also x = x∞
∏

p xp and y = y∞
∏

p yp. Then there
exists a constant B such that

h(γg) ≤ B

|cz∞ + d|

for all g ∈ X and all ξ ∈ Q, where z∞ = x∞ + iy∞ as a member of C.

Proof. We have

h(γg)−1 = ‖ ( 0 1 ) γg‖A = ‖ ( 0 1 )

(
0 1
1 ξ

)(
yu xu
0 u

)
‖A

= ‖ ( yu u(x+ ξ) ) ‖A = |u|A ‖ ( y x+ ξ ) ‖A

= |u|A ‖ ( cy cx+ d ) ‖A = |u|A |cz∞ + d|
∏
p

‖ ( cyp cxp + d ) ‖p.

Thus it is enough to bound∏
p

‖ ( cyp cxp + d ) ‖p =
∏
p

max(|cyp|p, |cxp + d|p)

below. We do so by making repeated use of the inequality

max(a1b1, a2b2) ≥ max(a1, a2) min(b1, b2)

valid for positive reals. There are three cases. First suppose that |d|p < |c|p|xp|p.
Then

max(|cyp|p, |cxp + d|p) = |c|p max(|yp|p, |xp|p) ≥ |d|p
max(|yp|p, |xp|p)

|xp|p
,

and hence

max(|cyp|p, |cxp + d|p) ≥ max
(
|c|p max(|yp|p, |xp|p), |d|p

max(|yp|p, |xp|p)
|xp|p

)
≥ max(|c|p, |d|p) min

(
max(|yp|p, |xp|p),

max(|yp|p, |xp|p)
|xp|p

)
= min

(
max(|yp|p, |xp|p),

max(|yp|p, |xp|p)
|xp|p

)
since max(|c|p, |d|p) = 1. Second suppose that |d|p > |c|p|xp|p. Then

max(|cyp|p, |cxp + d|p) = max(|c|p|yp|p, |d|p)
≥ max(|c|p, |d|p) min(|yp|p, 1) = min(|yp|p, 1).
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Third suppose that |d|p = |c|p|xp|p. Then

max(|cyp|p, |cxp + d|p) ≥ |c|p|yp|p = |d|p
|yp|p
|xp|p

,

and hence

max(|cyp|p, |cxp + d|p) ≥ max
(
|c|p|yp|p, |d|p

|yp|p
|xp|p

)
≥ max(|c|p, |d|p) min

(
|yp|p,

|yp|p
|xp|p

)
= min

(
|yp|p,

|yp|p
|xp|p

)
.

Combining the three cases, we see that

max(|cyp|p, |cxp + d|p) ≥ min
(
|yp|p, 1,

|yp|p
|xp|p

)
. (6.8)

We claim that the product over p of (6.8) is bounded below for g ∈ X. For a single
g, this is obvious since |xp|p ≤ 1 and |yp|p = 1 for all but finitely many p, so that the

right side of (6.8) is 1 for all but finitely many p. If a sequence g(n) ↔ (x(n), y(n))
has the product tending to 0, we can choose a convergent subsequence, say with
limit g(0) ↔ (x(0), y(0)). The convergence has to take place in one of the product
spaces of which G(A) is a union, and therefore there are only finitely many p for

which we do not have |x(n)
p |p ≤ 1 and |y(n)

p |p = 1 for all n. For all but finitely many
p, (6.8) is therefore 1 for all n, and we have convergence for the remaining p. Thus
(6.8) cannot be tending to 0, and the proof is complete.

Now let us discuss normalizations of Haar measures. Discrete groups get the
counting measure, and the compact group Q\A gets the measure of total mass one.
However, it will not be convenient to assume that Q×\(A×)1 has total mass one.
Instead we proceed as follows: We fix any Haar measure on A× and give Q×\A×

the quotient measure. The group Q+
∞ of ideles that are trivial at all finite places

and are positive at the infinite place is isomorphic to the group R×
+ of positive reals

by t → |t|A, and we transport dx/x on R×
+ to a Haar measure on Q+

∞. Then we can
use the isomorphism Q×\A× ∼= Q+

∞ × Q×\(A×)1 to determine a Haar measure on
Q×\(A×)1.

For the parabolic P (A), we have P (A) = N(A)M(A) with

M(A) =
{(

u 0

0 v

) ∣∣∣u, v ∈ A×
}
. (6.9a)

We identify N(A) with A and define Haar measure on N(A) accordingly. Next

we identify Z(A) with A× by
(

u 0

0 u

)
↔ u, and then Haar measure is determined

on Z(A). The equality M(A) =
{(

a 0

0 1

)}
Z(A) follows from the decomposition(

u 0

0 v

)
=

(
uv−1 0

0 1

)(
v 0

0 v

)
, and thus we have an isomorphism M(A) ∼= A×Z(A).

This isomorphism allows us to fix Haar measure on M(A). In the notation of (6.9a),
Haar measure on M(A) is nothing more than du dv, where du and dv indicate Haar
measure on A×.
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Next the decomposition P (A) = N(A)M(A) allows us to use the measures dn
on N(A) and dm on M(A) to determine left and right Haar measures dlp and drp
on P (A) by

drp = dn dm and dl(p) = dr(p
−1). (6.9b)

We pick any Haar measure on K, not insisting that it have total mass one, and
then we use (6.7) to determine Haar measure on G(A). Finally we require that
invariant measures on closed subgroups and quotients are to be compatible with
the measure on the whole group. In particular this requirement fixes the measures
on the quotients of G(A) in (6.5). It also fixes Haar measure on Z(A)G(Q) since

Z(A)\Z(A)G(Q) ∼= Z(Q)\G(Q).

For the remainder of this section we largely follow [Gb-Ja]. For each s ∈ C, we
introduce a Hilbert space H(s) of functions F : G(A) → C with

F

((
q1au x

0 q2bv

)
g

)
= h

((
a 0
0 b

))1+s

ω(bv)F

((
uv−1 0

0 1

)
g

)
(6.10)

for q1 and q2 in Q×, a and b in Q+
∞, u and v in (A×)1, x in A, and g in G(A). Such

functions depend on u and v only as members of Q×\(A×)1, and the norm squared
is taken to be ∫

(Q×\(A×)1)×K

∣∣∣F ((
u 0
0 1

)
k

) ∣∣∣2 du dk. (6.11)

If F satisfies (6.10), then F is completely determined by its values on elements(
u 0
0 1

)
k with u ∈ (A×)1 and k ∈ K since G(A) = P (A)K and since the part(

au x
0 bv

)
of the matrix in (6.10) is the most general member of P (A).

Conversely let H be the Hilbert space of all f on (A×)1 ×K such that

(i) f is left invariant under Q× in the first variable

(ii) f(uv, k) = f
(
u,

(
v 0

0 1

)
k
)

whenever
(

v 0

0 1

)
is in (A×)1 ∩K

(iii) f is square integrable on (Q×\(A×)1) ×K.

If f is in H, then we can extend f uniquely to a function F = fs in H(s) by

fs

((
au 0
0 bv

)(
1 x
0 1

)
k

)
= h

((
a 0
0 b

))1+s

ω(bv)f(uv−1, k). (6.12)

The group G(A) operates on H(s) via the right regular representation, which we
denote Pω,s. This representation is unitary if s is imaginary.

To postpone technical difficulties until the end, fix a finite-dimensional rep-
resentation η of the compact abelian group Q×\(A×)1 and a finite-dimensional
representation τ of the compact group K. Both η and τ are to be thought of as
large (and therefore reducible). Let W (η, τ) be the subspace of f ∈ H such that
u �→ f(uu0, k0), for each (u0, k0), is a linear combination of matrix coefficients of
the constituents of η and such that k �→ f(u0, k0k), for each (u0, k0), is a linear
combination of matrix coefficients of the constituents of τ . Let η̃ = ωηc, where ηc

denotes the contragredient of η; η̃ will play the role of a Weyl group transform of η.
Possibly by replacing η by η⊕ η̃, we may assume that η̃ = η, i.e., that η = ωηc. We
make this assumption in what follows. It will cause us no loss of generality since
our interest is in what happens as η gets large.
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If f is in W (η, τ), the Eisenstein series E(g, f, s) corresponding to f is defined
formally by

E(g, f, s) =
∑

γ∈P (Q)\G(Q)

fs(γg) (6.13)

for g ∈ G(A) and s ∈ C. If a member g of G(A) is decomposed according to
G(A) = P (A)K as

g = pk =

(
au 0
0 bv

)(
1 x
0 1

)
k

with a and b in Q+
∞ and with u and v in (A×)1, let us write b(g), u(g), v(g), and

κ(g) for b, u, v, and k. Then we can rewrite (6.13) as

E(g, f, s) =
∑

γ∈P (Q)\G(Q)

h(γg)1+sω(b(γg)v(γg))f(u(γg)v(γg)−1, κ(γg)).

The functions ω and f are bounded. By Lemma 6.7 and the convergence of the
series

∑
|cz+d|−(1+s) for Re s > 1, the series for E(g, f, s) is absolutely convergent

if Re s > 1, and the convergence is uniform for g and s in compact sets. By Lemmas
6.7 and 2.2, there is a constant C(ε, b) such that

|E(g, f, s)| ≤ C(ε, b)(sup
K

|f |)h(g)1+Re s

whenever h(g) ≥ b and 1+ε ≤ Re s ≤ 1+ε−1. As a function of g ∈ G(A), E(g, f, s)
is an automorphic form on G(A) is the sense of the definition before Theorem 7.1
of [Kn2].

Let Cω((Z(A)N(A)P (Q))\G(A), (η, τ)) be the set of continuous functions on
G(A) transforming as in (6.3), having compact support modulo Z(A)N(A)P (Q),

and satisfying the condition that φ
((

r 0

0 1

)(
u 0

0 1

)
k
)

is in W (η, τ) for fixed r ∈ Q+
∞

and is smooth for r ∈ Q+
∞ when u and k are fixed, with uniform estimates on the

smoothness as u and k vary. We define the Fourier-Laplace transform of such
a function φ by

Φ(g, s) =

∫ ∞

0

φ(a(y)−1g)y
1
2 (1+s) dy

y
. (6.14)

The function Φ( · , s) on G(A) is in H(s) for each s, and the restriction to the
subgroup (Q×\(A×)1) ×K is in H. We write Φ(s) for the restriction. Just as in
(2.9), Fourier inversion gives

φ(g) =
1

4π

∫
Re s=σ

Φ(g, s) d|s|

=
1

4π

∫
Re s=σ

h(g)1+sω(v(g))Φ

((
u(g)v(g)−1 0

0 1

)
κ(g), s

)
d|s|

(6.15)

for any real σ. With φ̂ defined as in (6.4), we obtain, as in (2.10),

φ̂(g) =
1

4π

∫
Re s=σ

E(g,Φ(s), s) d|s| (6.16)

for σ > 1.
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Proposition 6.8. If Re s > 1 and if f is in W (η, τ), then the constant term of
the Eisenstein series for f is given by

EP ( · , f, s) = fs + (M(s)f)−s (6.17)

for an operator M(s) : W (η, τ) → W (η, τ) given by

(M(s)f)−s(g) =

∫
N(A)

fs(wng) dn.

Proof. We start from

E(g, f, s) = fs(g) +
∑
ξ∈Q

fs

(
w
(

1 ξ

0 1

)
g
)
.

Replacing g by ng and integrating for n ∈ N(Q)\N(A) gives

EP (f, g, s) = fs(g) +

∫
N(Q)\N(A)

∑
ξ∈Q

fs
(
w
(

1 ξ
0 1

)
ng

)
dn

= fs(g) +

∫
N(A)

fs(wng) dn,

as required. An easy change of variables shows that M(s) carries W (η, τ) to itself
because η = η̃, i.e., η = ωηc.

Corollary 6.9. Let φ and ψ be members of Cω((Z(A)N(A)P (Q))\G(A), (η, τ)),
and let Φ and Ψ be the Fourier-Laplace transforms of φ and ψ. Then

〈φ̂, ψ̂〉L2(Z(A)G(Q)\G(A))

=
1

4π

∫
Re s=σ

(
〈Φ(s),Ψ(−s̄)〉L2((Q×\(A×)1)×K)

+ 〈M(s)Φ(s),Ψ(s̄)〉L2((Q×\(A×)1)×K)

)
d|s|

for any σ > 1.

The proof of Corollary 6.9 is almost the same as for Corollary 2.7. Two comments
are in order. One is that the constant 1/2π in Corollary 2.7 has become 1/4π here
because the formula for the constant term of an Eisenstein series no longer involves a
factor of 2. The other comment concerns normalizations of Haar measure. Suppose
that x, y, r1, and r2 are positive reals viewed as ideles at the infinite place such
that (

x 0
0 x

)(
y1/2 0
0 y−1/2

)
=

(
r1 0
0 r2

)
.

A little computation with Jacobian determinants shows that
dx dy

xy
=
dr1 dr2
r1r2

. The

right side of this identity is what was defined as Haar measure for the infinite
place of M(A), and therefore dy/y is Haar measure for the subgroup of all a(y) =(
y1/2 0
0 y−1/2

)
. Representatives of the cosets of Z(A)\G(A) are the matrices(

1 x
0 1

)
a(y)

(
u 0
0 1

)
k with y > 0, u ∈ (A×)1, x ∈ A, and k ∈ K, and it follows
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that Haar measure on Z(A)\G(A) is y−1 dx du dk
dy

y
. The invariant measure to use

on Z(A)N(A)\G(A) is therefore y−1 du dk
dy

y
.

Theorem 6.10. The family of operators M(s), initially given as an analytic
family M(s) : W (η, τ) → W (η, τ), extends to be meromorphic for s ∈ C. The only
possible pole for Re s ≥ 0 is at s = 1 and is at most simple. As a function of
Im s, M(s) is uniformly at most of polynomial growth, apart from the pole, in any
vertical strip 0 ≤ Re s < σ. The continued operators satisfy M(−s)M(s) = 1 as a
meromorphic function of s.

Reference. See [Gb-Ja] and also Jacquet’s article [Ja] in this volume.

Now we move the line of integration in Corollary 6.9 to Re s = 0, just as in §2.
The integrand is meromorphic, the functions Φ(s) and Ψ(s) are Schwartz functions
of Im z uniformly in vertical strips, and the growth ofM(z) is controlled by Theorem
6.10. We can move the line of integration by the Cauchy Integral Formula and an
easy passage to the limit, picking up a residue term from s = 1. The result is

〈φ̂, ψ̂〉L2(Z(A)G(Q)\G(A))

=
1

4π

∫ ∞

−∞

(
〈Φ(it),Ψ(it)〉L2((Q×\(A×)1)×K)

+ 〈M(it)Φ(it),Ψ(−it)〉L2((Q×\(A×)1)×K)

)
dt

+
1

2
lim
s→1

〈(s− 1)M(s)Φ(1),Ψ(1)〉L2((Q×\(A×)1)×K) (6.18)

for φ and ψ as in Corollary 6.9.
Next we simplify this expression, using that η̃ = η. The residue term, to which

we return shortly, may be shown to be

c
∑
χ2=ω

〈Φ(1), χ ◦ det〉L2((Q×\(A×)1)×K)〈Ψ(1), χ ◦ det〉L2((Q×\(A×)1)×K),

where c is a known positive constant. (See [Gb-Ja, p. 227].) For the integral term
on the right side of (6.18), the first step is to check from the definitions that η̃ = η
implies M(s)∗ = M(s̄) for Re s > 1. Then this relation persists for all s by analytic
continuation. Since M(−s)M(s) = 1 by Theorem 6.10, it follows that M(it) is
unitary with inverse M(−it). Then (6.18) may be rewritten by the techniques of
Corollary 2.8 as

〈φ̂,ψ̂〉L2(Z(A)G(Q)\G(A))

=
1

8π

∫ ∞

−∞
〈Φ(it) +M(−it)Φ(−it),Ψ(it) +M(−it)Ψ(−it)〉L2((Q×\(A×)1)×K) dt

+ c
∑
χ2=ω

〈Φ(1), χ ◦ det〉L2((Q×\(A×)1)×K)〈Ψ(1), χ ◦ det〉L2((Q×\(A×)1)×K).
(6.19)

With this formula in place, the kind of analysis in §2, in view of Theorem 6.5,
shows that L2

cusp(ω)⊥ is the sum of a direct integral of the representations H(s),
together with a discrete contribution from the residues at s = 1. This is the
adelic analog of Theorem 1.4. For details, see [Gb-Ja, §4]. We denote the direct
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integral term by L2
cont(ω) and the term for the various residues by L2

res(ω). The
decomposition may be summarized as

L2(Z(A)G(Q)\G(A), ω) = L2
cusp(ω) ⊕ L2

cont(ω) ⊕ L2
res(ω). (6.20)

The residues come from one-dimensional representations of G(A), necessarily of
the form g �→ χ(det g). The corresponding members of L2

res(ω) are the functions
f(g) = χ(det g). Since f is to be left invariant under G(Q), χ is a character of
Q×\A×. Since f is to transform by ω under Z(A), χ2 = ω. Thus the decomposition
of L2

res(ω) is a Hilbert space direct sum

L2
res(ω) =

⊕
χ2=ω

Cχ◦det. (6.21)

7. Adelic Trace Formula

We continue with notation as in §6. In the decomposition (6.20) the difficult
term to understand is L2

cusp(ω). The operator Rω(ϕ)f(x) =
∫
G(A)

f(xy)ϕ(y) dy, for

ϕ ∈ C∞
com(G(A), ω−1), acts on L2(Z(A)G(Q)\G(A), ω) and leaves L2

cusp(ω) stable.
It is of trace class on this subspace, by Corollary 6.3. The adelic trace formula gives
an explicit expression for the trace of this operator on the subspace L2

cusp(ω). The
final formula is stated in [Gf-Gr-P], [Ja-Lgl], [Du-La], [Ar1], [Gb1], [Gb-Ja], and
[Ar4], and we shall follow [Gb-Ja].

The idea is that Rω(ϕ) is given by manageable integral operators on the whole
space and on the subspaces L2

cont(ω) and L2
res(ω). Let kernels for these integral

operators be K(x, y), Kcont(x, y), and Kres(x, y). Then the operator on L2
cusp(ω)

must be given by the kernel

Kcusp(x, y) = K(x, y) −Kcont(x, y) −Kres(x, y), (7.1)

and the trace in question ought to be the integral of Kcusp(x, x) over the quotient
Z(A)G(Q)\G(A).

These kernels are not uniquely defined as functions on G(A) × G(A) without
some further restriction. In the case of K(x, y), the same derivation as for (5.4)
leads to the formula

K(x, y) =
∑

γ∈G(Q)

ϕ(x−1γy). (7.2)

Then K(x, y) is left invariant in each variable under G(Q) and satisfies

K(z1x, z2y) = ω(z1)ω(z2)
−1K(x, y) for z1, z2 ∈ Z(A). (7.3)

It is this condition that determines K(x, y) uniquely.
Similarly to determine the kernels Kcont(x, y) and Kres(x, y) uniquely, we insist

that they satisfy the same invariance properties as K(x, y). Then Kcont(x, y) and
Kres(x, y) can be written down fairly explicitly. The techniques for Kcont(x, y)
are the same as for Proposition 4.6. To get at Kcont(x, y), we need to know that
the Eisenstein series themselves, not just their constant terms, admit meromorphic
continuations.

Theorem 7.1. If f is in a subspace W (η, τ) of H, then the function s �→
E(g, f, s), initially given as an analytic function for Re s > 1, extends to be mero-
morphic in C. Its constant term is given by the analytic continuation of EP (g, f, s),
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and E(g, f, s) has the same poles as EP (g, f, s). Also E(g, f, s) is at most of
polynomial growth in Im s in any vertical strip 0 ≤ Re s ≤ σ.

Reference. For a discussion of this theorem, see [Ja] in this volume.

To obtain an expression for Kcont(x, y), we proceed as in Proposition 4.6. We can
choose an orthonormal basis {fα} of H such that each fα is in some W (η, τ). Theo-
rem 7.1 shows that E(x, fα, it) is meaningful. If Pω,it is the unitary representation
of G(A) on H(it), then calculations in [Gb-Ja, pp. 232–234] show that2

Kcont(x, y) =
1

8π

∑
α,β

∫ ∞

−∞
〈Pω,it(ϕ)fβ , fα〉E(x, fα, it)E(y, fβ , it) dt. (7.4)

Moreover, an easy computation with (6.21) shows that

Kres(x, y) = (vol(Z(A)G(Q)\G(A)))−1
∑
χ2=ω

χ(detx)χ(det y)

∫
G(A)

ϕ(g)χ(det g) dg.
(7.5)

A direct attempt to integrate Kcusp(x, x) with the aid of formulas (7.1) through
(7.5) leads to ∞−∞, and a more subtle approach is needed. Selberg [Se1] already
saw the need for truncation in the classical setting (0.3), but his method was
adapted to a fundamental domain for SL2(Z) in the upper half plane. We shall
use the truncation operator of Arthur [Ar3], which does not require a fundamental
domain for its definition. Expositions of this operator appear in [Gb-Ja] and [Mo-
Wa].

Recall that w =
(

0 1

1 0

)
. When w is embedded in A×, we regard it as embedded

diagonally.

Lemma 7.2. For any n ∈ N(A) and g ∈ G(A), h(wng) ≤ h(g)−1.

Proof. Let us write g = n′ak with n′ ∈ N(A), a diagonal, and k ∈ K. Then

wng = wnn′ak = (waw−1)(wn′′w−1)k. It follows from Lemma 6.6 that h
(

1 0

x 1

)
≤

1, and therefore

h(wng) = h(waw−1)h(wn′′w−1) = h(g)−1h(wn′′w−1) ≤ h(g)−1.

Corollary 7.3. If h(γ0g) > 1 for some γ0 ∈ P (Q)\G(Q), then h(γg) < 1 for
all other γ ∈ P (Q)\G(Q).

Remark. Since h(p) = 1 for p ∈ P (Q) by Artin’s product formula, h(γg) is well
defined as a function of γ in P (Q)\G(Q).

Proof. We may assume that γ0 = 1. By the Bruhat decomposition, γ =

w
(

1 ξ

0 1

)
for some ξ ∈ Q. Then γ = wn for some n ∈ N(A), and Lemma 7.2 gives

h(γg) = h(wng) ≤ h(g)−1 < 1.

Fix T ∈ R with T > 0, and let IT be the characteristic function of the set
[eT ,+∞). For T > 0, the Arthur truncation operator ΛT is defined on all

2The formula (5.20) in [Gb-Ja] for Kcont has a coefficient 1/4π. The reason for this apparent

discrepancy is that dy = 1
2
dt.
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locally integrable complex-valued functions f on G(A) that are left invariant under
G(Q) by

ΛT f(g) = f(g) −
∑

γ∈P (Q)\G(Q)

fP (γg)IT (h(γg)). (7.6)

The sum3 in (7.6) has at most one nonzero term, by Corollary 7.3, and fP (γg)
depends only on the coset of γ in P (Q)\G(Q). Thus ΛT f(g) is well defined. It is
clearly left invariant under G(Q). If f is cuspidal in the sense that fP = 0, then
ΛT f = f .

Corollary 7.4. If T > 0, then (ΛT f)P (g) = 0 unless IT (h(g)) = 0.

Proof. Assume that IT (h(g)) = 1. Lemma 7.2 shows that IT (h(wng)) = 0 for
all n ∈ N(A). Hence

ΛT f(ng) = f(ng) − fP (ng)IT (h(ng)) −
∑
ξ∈Q

fP
(
w
(

1 ξ
0 1

)
ng

)
IT

(
h
(
w
(

1 ξ
0 1

)
ng

))
= f(ng) − fP (g).

Integrating over n ∈ N(Q)\N(A) therefore gives

(ΛT f)P (g) = fP (g) − fP (g) = 0.

Corollary 7.5. If T > 0, then ΛT (ΛT f) = ΛT f .

Proof. We have

ΛT (ΛT f)(g) = (ΛT f)(g) −
∑
γ

(ΛT f)P (γg)IT (h(γg)).

If IT (h(γg)) �= 0, then Corollary 7.4 shows that (ΛT f)P (γg) = 0. Hence every term
in the sum is 0.

Proposition 7.6. If T > 0, then ΛT is a Hermitian operator on the space
L2(Z(A)G(Q)\G(A), ω).

Reference. [Gb-Ja, p. 230] or [Ar3, pp. 91–92].

Because of Corollary 7.5 and Proposition 7.6, ΛT is an orthogonal projection
on L2(Z(A)G(Q)\G(A), ω), and we know that its image contains L2

cusp(ω). Note,
however, that the truncation operator does not commute with the action of G(A),
and its image is not G(A) invariant.

In order to obtain more subtle properties of the truncation operator, it is helpful
to understand more of the geometry of the action of G(Q) on G(A). Recall that
products from N(A) ×M(A) ×K cover G(A). Let

M∞ = {m ∈ M(A) | diagonal entries of m are in Q+
∞}

M1 = {m ∈ M(A) | diagonal entries of m are in (A×)1}.
Here M∞ is the direct product of Z∞ = M∞ ∩ Z(A) and A∞ = {a(y) | y ∈ Q+

∞}.
Then M(A) = M∞M1, and hence products from N(A)×M∞×M1×K cover G(A).

3Instead of using IT , Arthur uses a function τ̂P and incorporates T into its argument. Arthur’s
notation is especially suited to higher rank groups.
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A Siegel set S is a subset of G(A) consisting of all nrmk with n in a compact
subset of N(A), r in M∞ with h(r) ≥ c > 0, m in a compact subset of M1, and k
in K. The set S is the product of Z∞ and the set S1 = S ∩ G1. The set S1 may
be viewed as an adelic analog of a rectangular set in the upper half plane that is
unbounded above but is bounded on the other three sides.

Lemma 7.7. Let c′ > 0. On any compact set of elements g ∈ G(A), there are
only finitely many γ ∈ P (Q)\G(Q) such that h(γg) ≥ c′ for some g in the compact
set.

Proof. By the Bruhat decomposition we can take as coset representatives γ

the elements 1 and w
(

1 ξ

0 1

)
with ξ ∈ Q. Thus it is enough to consider h(γg) for

γ = w
(

1 ξ

0 1

)
=

(
0 1

1 ξ

)
. Since right translation by K does not affect h(g), we may

assume that g is in P (A). Write g =
( yu xu

0 u

)
with x = x∞

∏
p xp and y = y∞

∏
p yp,

and put ξ = d/c with GCD(c, d) = 1. If h(γg) ≥ c′ for some g in the given compact
set, then Lemma 6.7 gives

B−1|cz∞ + d| ≤ h(γg)−1 ≤ c′−1,

where z∞ = x∞ + iy∞. This can happen for only finitely many pairs (c, d) if
(x∞, y∞) lies in a compact subset of the upper half plane, and the lemma follows.

Proposition 7.8. Let S be a Siegel set, and let c′ > 0. Then there are only
finitely many γ ∈ P (Q)\G(Q) such that h(γg) ≥ c′ for some g ∈ S.

Proof. Write S = Z∞S1 with S1 ⊂ G1. The subset of g ∈ S1 with c′ ≤ h(g) ≤
1 is compact and is handled by Lemma 7.7. For z ∈ Z∞, we have h(γz∞g) = h(γg),
and therefore there are only finitely many γ ∈ P (Q)\G(Q) have h(γg) ≥ c′ for some
g ∈ S. To complete the proof, consider the subset of g ∈ S with h(g) > 1. For such
g, Corollary 7.3 shows that h(γg) ≤ 1 whenever γ is nontrivial in P (Q)\G(Q).

Corollary 7.9. Let S be a Siegel set. Then there are only finitely many
γ ∈ G(Q) such that γS meets S.

Proof. Say that h(g) ≥ c′ for g ∈ S. According to Proposition 7.8, the elements
γ in G(Q) for which γS meets S lie in finitely many cosets of P (Q)\G(Q). If there
are infinitely many such elements γ, then there is some γ0 ∈ G(Q) such that εjγ0S
meets S for infinitely many εj in P (Q).

Suppose that the coset of γ0 is trivial. Then we may take γ0 = 1, so that εjS
meets S for infinitely many εj . Since εj is in G1, εjS1 meets S1 for infinitely many
εj . Since h(εjs) = h(s) and since S1 is compact in all other directions, we obtain
a contradiction to the discreteness of P (Q).

Thus we may suppose that the coset of γ0 in P (Q)\G(Q) is nontrivial. If εjγ0S
meets S, then εjγ0S1 meets S1. If s is in S1, then h(εjγ0s) = h(γ0s). When
h(s) > 1, Corollary 7.3 shows that h(γ0s) ≤ 1. And the part of S1 where h(s) ≤ 1
is compact. Hence h is bounded on εjγ0S1 uniformly in j. Since εjγ0S1 meets S1,
the points of intersection lie in a compact subset of S1, and we may assume that
these points of intersection εjγ0sj = s′j converge, say to s′0. Applying h shows that

h(γ0sj) → h(s′0). Let sj = njajkj with nj ∈ N(A), aj ∈ M(A) ∩G1, and kj ∈ K.
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Since γ0 is nontrivial, we may assume that γ0 = wn′ with n′ ∈ N(A). Then

h(γ0sj) = h(wn′njajkj) = h((wajw
−1)(wa−1

j n′njajw
−1)(wkj))

= h(wajw
−1)h(wa−1

j n′njajw
−1)

and hence

h(γ0sj)h(sj) = h(wa−1
j n′njajw

−1).

Since n′nj is bounded within N(A) while h(aj) is bounded below, wa−1
j n′njajw−1

lies in a compact subset of G1. Therefore h is bounded away from 0 and +∞ on it.
Consequently h(sj) is bounded away from 0 and +∞. We may therefore assume

that sj converges within G1, say to s0. Then lim ε−1
j s′0 = γ0s0 exists in G1, and εj

converges. This is a contradiction since P (Q) is discrete.

Proposition 7.10. If S is a sufficiently large Siegel set, then G(Q)S = G(A).

Remark. Corollary 7.9 and Proposition 7.10 together show that Siegel sets for
many purposes are adequate substitutes for fundamental domains for the action of
G(Q) on G(A). For a generalization to all reductive groups, see [Bo].

Proof. It is known [Lan2, p. 140] that D = [− 1
2 ,

1
2 ) ×

∏
p Zp is a fundamen-

tal domain for Q\A. Then D̃ =
{(

1 x

0 1

) ∣∣∣x ∈ D
}

is a fundamental domain for

N(Q)\N(A). Let C0 be the compact subset {1} ×
∏

p Z×
p of (A×)1; the set C0 has

the property that Q×C0 = (A×)1. Let C be the subset of M1 whose diagonal entries
are in C0, and define

S = D̃ × Z∞ × {a(y) ∈ A∞ | y ≥
√

3
2 } × C ×K.

Given g ∈ G(A), we are to left-translate g into S via G(Q). Lemma 7.7 shows
that we may assume that h(γg) ≤ h(g) for all γ ∈ G(Q). Write g = nak with
n ∈ N(A), a ∈ M(A), and k ∈ K. Left translating by a member of M(Q), we may
assume that a is in M∞C. Left translating further by N(Q), we may assume that

n is in D̃.
We have

h(wnak) = h((waw−1)(wa−1naw−1)wk) = h(waw−1)h(wa−1naw−1),

and therefore

h(wa−1naw−1) = h(wg)h(g) ≤ h(g)2. (7.7)

We can decompose n and a according to the infinite and finite places as n =(
1 x∞xfin

0 1

)
and a = a(y)afin. Taking into account the form of D̃ and C, we see that

wa−1naw−1 is
(

1 0

y−1x∞ 1

)
at the place ∞ and is

(
1 0

x′ 1

)
with x′ ∈

∏
Zp at the finite

places. By Lemma 6.6

h(wa−1naw−1) = (1 + y−2x−2
∞ )−1/2 =

y√
y2 + x2

∞
. (7.8)

Since h(g) = h(a) = h(a(y)) = y1/2, comparison of (7.7) and (7.8) shows that

y/
√
y2 + x2

∞ ≤ y, i.e., y2 + x2
∞ ≥ 1. Since |x∞| ≤ 1

2 , y2 ≥ 3
4 . Thus our particular

left translate of g via G(Q) is in S.
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Now let us return to ΛT . Suppose that T ≥ T0 > 0. If Ω is a compact subset
of G(A), then only finitely many terms in the sum for ΛT f(g) can be nonzero for
some g ∈ Ω, by Lemma 7.7. Taking T large enough, we can make IT (h(γg)) = 0
for each such term. Thus we obtain the following result.

Proposition 7.11. ΛT f converges to f uniformly on compact subsets of G(A).

Under some mild restrictions on f , ΛT f is small at infinity in a certain sense.
To make this idea precise, we shall use Siegel sets. If S is a Siegel set, again write
S = Z∞S1 with S1 ⊂ G1. Then the part of S1 where h(g) ≤ 1 is compact. For
h(g) > 1, Corollary 7.3 shows that

ΛT f(g) = f(g) − fP (g)IT (h(g)).

Thus if the S1 component of a member g of S is far enough out, we obtain

ΛT f(g) = f(g) − fP (g).

To get an idea why this difference is small in favorable circumstances, suppose that
f = F ∗ ψ with F bounded and left invariant under G(Q) and with ψ continuous
of compact support on G(A). Then

f(g) − fP (g) =

∫
G(A)

∫
N(Q)\N(A)

F (x)[ψ(x−1g) − ψ(x−1ng)] dn dx. (7.9)

It is easy to check that as g tends to ∞ through S, g−1ng tends uniformly to 1 for
n in any compact subset of N(A). Therefore∫

G(A)

|ψ(x−1g) − ψ(x−1ng)| dx =

∫
G(A)

|ψ−1(x−1) − ψ(x−1g−1ng)| dx

tends to 0 as the S1 component of g ∈ S tends to ∞, and (7.9) has limit 0.
Let us state a general result. A function f on G(A) that is left invariant under

G(Q) is said to be slowly increasing if, for each Siegel set S, there are constants
C and N such that

|f(g)| ≤ Ch(g)N for all g ∈ S. (7.10)

Because of Proposition 7.10, this condition controls the global growth of f at infinity
for G(A). The function f is said to be rapidly decreasing if, for each Siegel set
S and integer −N , there is a constant C such that

|f(g)| ≤ Ch(g)−N for all g ∈ S. (7.11)

Let G(Afin) be the part of G(A) corresponding to the finite places, and let K0

be an open compact subgroup of G(Afin). If the above function f is right invariant
under K0, then f may be viewed as a function on the space G(Q)\G(A)/K0, which
is a smooth manifold. Let us say that f is smooth if this descended function is
smooth.

Proposition 7.12. Let K0 be an open subgroup of G(Afin). Suppose that f is a
function on G(A) that is left invariant under G(Q), right invariant under K0, and
smooth. If f and all its left invariant derivatives are slowly increasing, then ΛT f
is rapidly decreasing.
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Reference. [Ar3, Lemma 1.4].

Finally we can return to the formula (7.1) for Kcusp(x, y). We follow [Gb-Ja]. Let
Pcusp be the orthogonal projection on L2

cusp(Ω). It is not hard to see that Kcusp(x, y)

is in L2
cusp(ω−1) as a function of the second variable. When we therefore apply the

truncation operator ΛT
2 in the second variable, we obtain

Kcusp(x, y) = ΛT
2 K(x, y) − ΛT

2 Kcont(x, y) − ΛT
2 Kres(x, y).

It turns out that each term on the right side is now integrable over the diagonal
and that

Tr(PcuspRω(ϕ)Pcusp) =

∫
ΛT

2 K(x, x) dx−
∫

ΛT
2 Kcont(x, x) dx−

∫
ΛT

2 Kres(x, x) dx
(7.12)

with the integrals extending over G(Q)\G(A).
In place of (7.2) we have the formula

ΛTK(x, x)

=
∑

γ∈G(Q)

ϕ(x−1γx) −
∑

ξ∈P (Q)\G(Q)

∫
N(Q)\N(A)

( ∑
γ∈G(Q)

ϕ(x−1γnξx)IT (h(ξx))
)
dn.

For T large enough, the right side may be shown to be

=
∑

γ∈G(Q)

ϕ(x−1γx) −
∑

ξ∈P (Q)\G(Q)

∫
N(A)

∑
µ∈M(Q)

ϕ(x−1ξ−1µnξx)IT (h(ξx)) dn.
(7.13)

We group these terms according to the type of γ or µ. We say that γ is elliptic
if its eigenvalues are not in Q, hyperbolic regular if its eigenvalues are distinct
rationals, singular if γ is the product of a scalar matrix and a unipotent matrix.
From γ elliptic we get ∑

γ elliptic
in G(Q)

ϕ(x−1γx).

From γ and µ hyperbolic regular, we get

∑
γ hyperbolic

regular in G(Q)

ϕ(x−1γx) −
∑

ξ∈P (Q)\G(Q)

∫
N(A)

∑
µ∈M(Q),

µ	=1

ϕ(x−1ξ−1µnξx)IT (h(ξx)) dn.

From γ and µ singular we get

∑
γ∈G(Q),
unipotent

ϕ(x−1γx) −
∑

ξ∈P (Q)\G(Q)

∫
N(A)

ϕ(x−1ξ−1nξx)IT (h(ξx)) dn.

The term with the elliptic elements is handled just as in (4.3): From each
conjugacy class o of elliptic elements in G(Q), we select a representative. Say
that γ is a representative of oγ . Then oγ consists of all δ−1γδ, where δ varies
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through G(Q)γ\G(Q). Upon integration over x ∈ G(Q)\G(A), the term with the
elliptic elements gives∫

G(Q)\G(A)

∑
γ elliptic

ϕ(x−1γx) dx =
∑

oγ elliptic

vol(G(Q)γ\G(A)γ)

∫
G(A)γ\G(A)

ϕ(x−1γx) dx.

A more complicated computation shows that the contribution to the x integral
from the hyperbolic regular elements is of the form

∑
oγ hyperbolic

regular

vol(G(Q)γ\G(A)γ)

∫
G(A)γ\G(A)

ϕ(x−1γx)(− log h(wx)) dx+ (T )(constant).

Without loss of generality, we can take γ =
(

q 0

0 1

)
with q ∈ Q×. Then G(A)γ =

M(A) and G(Q)γ = M(Q), so that M(Q)\M(A) ∼= Q×\(A×)1. Since
(

q 0

0 1

)
and(

1 0

0 q

)
lie in the same conjugacy class when projected to G(A), indexing the γ’s by

q counts each class twice. Thus the part of the above expression not involving T
simplifies to

= 1
2vol(Q×\(A×)1)

∑
q∈Q×,
q 	=1

∫
K×N

ϕ
(
k−1n−1

(
q 0

0 1

)
nk

)
(− log h(wnk)) dn dk.

The term with γ = 1 is just ϕ(1), and the integral is vol(G(Q)\G(A))ϕ(1). There
is also a contribution from the terms with γ unipotent but not the identity; this
result has a constant term and a T term, but we shall not write these terms out.

This much deals with the integral of ΛT
2 K(x, x). Next we consider the integral

of ΛT
2 Kcont(x, x). Referring to (7.4), we see that we should compute the inner

product of a truncated Eisenstein series with an untruncated Eisenstein series—or,
what comes to the same thing, of two truncated Eisenstein series.

Proposition 7.13. For f1 and f2 in W (η, τ),

〈ΛTE( · , f1, s),Λ
TE( · , f2,−s̄)〉 = 4〈f1, f2〉T + 2〈M(−s)M ′(s)f1, f2〉

+
1

s
{〈f1,M(−s̄)f2〉esT − 〈M(s)f1, f2〉e−sT }.

Remark. The proof will show the importance of the particular form of Arthur’s
truncation operator.

Sketch of proof. For Re s > 1, we start from the identities E(g, f, s) =∑
γ fs(γg) and EP ( · , f, s) = fs + (M(s)f)−s, the latter given by Proposition 6.8.

Then we have

ΛTE(g, f, s) = E(g, f, s) −
∑
γ

EP (γg, f, s)IT (h(γg))

=
∑
γ

fs(γg)(1 − IT (h(γg))) −
∑
γ

(M(s)f)−s(γg)IT (h(γg)).
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Let Re s1 > Re s2 > 1. Substituting from above and writing f and f ′ in place of
f1 and f2 to simplify the notation, we obtain

〈ΛTE( · , f, s1), E( · , f ′, s̄2)〉L2(G(Q)\G(A))

=

∫
G(Q)\G(A)

∑
γ∈P (Q)\G(Q)

(
fs1(γg)(1 − IT (h(γg)))(M(s1)f)−s1(γg)IT (h(γg))

)
× E(g, f ′, s̄2) dg

=

∫
P (Q)\G(A)

(
fs1(g)(1 − IT (h(g))) − (M(s1)f)−s1(g)IT (h(g))

)
E(g, f ′, s̄2) dg

=

∫
M(Q)N(A)\G(A)

(
fs1(g)(1−IT (h(g))) − (M(s1)f)−s1(g)IT (h(g))

)
EP (g, f ′, s̄2) dg

by Lemma 6.4

=

∫
M(Q)N(A)\G(A)

(
fs1(g)(1 − IT (h(g))) − (M(s1)f)−s1(g)IT (h(g))

)
×
(
f ′
s̄2(g) + (M(s̄2)f ′)−s̄2(g)

)
dg.

Now we substitute for g, reducing each function by its transformation rules to a
function on (A×)1 ×K. The set of integration reduces to A∞ × ((A×)1 ×K). The
A∞ integration can be done explicitly, and the (A×)1 ×K integration gives inner
products in the Hilbert space H. The result of this computation, initially valid for
Re s1 > Re s2 > 1, extends by analytic continuation to be valid for all s1 and s2
where there is no singularity. We then put s2 = s and s1 = s+ h. Taking the limit
as h tends to 0, we obtain the formula of the proposition.

We return to (7.4). Interchanging the order of integration yields∫
G(Q)\G(A)

ΛT
2 Kcont(x, x) dx

=
1

8π

∑
α,β

∫ ∞

−∞
〈Pω,it(ϕ)fβ , fα〉

[ ∫
G(Q)\G(A)

E(x, fα, it)ΛTE(x, fβ , it) dx
]
dt.

The Hermitian property of ΛT in Proposition 7.6 extends to this integral, and we
can substitute from Proposition 7.13. Easy computation gives∫

G(Q)\G(A)

ΛT
2 Kcont(x, x) dx

=
1

4π

∫ ∞

−∞
Tr(M(−it)M ′(it)Pω,it(ϕ)) dt− 1

4
Tr(M(0)π0(ϕ))

+ (T )(constant) + (term tending to 0 as T → ∞).

Finally the integral of ΛT
2 Kres(x, x) is just∫

G(Q)\G(A)

ΛT
2 Kres(x, x) dx →

∫
G(Q)\G(A)

Kres(x, x) dx =
∑
χ2=ω

∫
G(A)

ϕ(x)χ(detx) dx.

If we substitute all these results into (7.12), we obtain an equality for all T . Some
terms have a coefficient T , and these all cancel (but not in an obvious way). The
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other terms tend to a finite limit as T tends to ∞. In the limit as T tends to ∞,
we obtain the adelic form of the trace formula, as follows.

Theorem 7.14. If ϕ is in C∞
com(G(A), ω−1), then

Tr(PcuspRω(ϕ)Pcusp)

= vol(G(Q)\G(A))ϕ(1)(i)

+
∑

oγ elliptic

vol(G(Q)γ\G(A)γ)

∫
G(A)γ\G(A)

ϕ(x−1γx) dx(ii)

+ f.p.

∫
N(A)\G(A)

ϕ
(
x−1

(
1 1

0 1

)
x
)
dx(iii)

+ 1
2vol(Q×\(A×)1)

∑
q∈Q×,
q 	=1

∫
K×N(A)

ϕ
(
k−1n−1

(
q 0
0 1

)
nk

)
(− log h(wnk)) dn dk(iv)

+
1

4π

∫ ∞

−∞
Tr(M(−it)M ′(it)Pω,it(ϕ)) dt(v)

− 1
4Tr(M(0)Pω,0(ϕ))(vi)

−
∑
χ2=ω

∫
G(A)

ϕ(x)χ(detx) dx,(vii)

where the f.p. term is computed as the value at s = 1 of{∫
A××K

ϕ
(
k−1

(
1 a

0 1

)
k
)
|a|sA d×a dk − (principal part at s = 1)

}
when Haar measures are normalized as in (6.7) and the remarks following Lemma
6.7.

On the right side of the trace formula above, the terms arise as follows. The
first four come from K(x, x), the next two come from Kcont(x, x), and the last one
comes from Kres(x, x). The first four we may regard as geometric terms, and the
others are spectral terms. Of the first four, (i) is from γ = 1, (ii) is from elliptic
γ, (iii) is from nontrivial unipotent γ, and (iv) is from hyperbolic regular γ.

There is an important special case in which the formula simplifies considerably.

Corollary 7.15. Suppose that ϕ ∈ C∞
com(G(A), ω−1) decomposes into a product

ϕ(g) =
∏

v ϕv(gv). If there are two places v such that∫
M(Qv)\G(Qv)

ϕv

(
x−1

(
α 0

0 β

)
x
)
dx = 0

whenever α and β are distinct members of Qv, then terms (iii) through (vi) vanish
in the trace formula, so that

Tr(PcuspRω(ϕ)Pcusp) = vol(G(Q)\G(A))ϕ(1)

+
∑

oγ elliptic

vol(G(Q)γ\G(A)γ)

∫
G(A)γ\G(A)

ϕ(x−1γx) dx

−
∑
χ2=ω

∫
G(A)

ϕ(x)χ(detx) dx.
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Proof of vanishing of (iv). Without loss of generality, we may take Haar
measure on K and N(A) to be products of Haar measures from each place.

Let v1 and v2 be the places in question, let γ =
(

q 0

0 1

)
, and write k =

∏
v kv and

n =
∏

v nv. Lemma 6.6 shows that h(wnk) is a product
∏

v h(wnvkv). Then∫
K×N(A)

ϕ(k−1n−1γnk) log h(wnk) dn dk

=

∫
K×N(A)

∏
v

(
ϕv(k

−1
v n−1

v γnvkv)
)(∑

v

log h(wnvkv)
)∏

v

dnv dkv

=
∑
u

( ∏
v 	=u

∫
Kv×N(Qv)

ϕv(k
−1
v n−1

v γnvkv) dnv dkv

)

×
(∫

Ku×N(Qu)

ϕu(k−1
u n−1

u γnuku) log h(wnuku) dnu dku

)
.

Consider the uth term of the sum on the right side. In the product over v �= u,
either v1 or v2 must be one of the v’s, and then the corresponding factor is 0 because
of the hypothesis. Hence the uth term is 0, and this happens for each u.
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différentiables, Bull. des Sci. Math. 102 (1978), 305–330.
[Do] Donley, R. W., Irreducible representations of SL(2,R), these Proceedings, pp. 51–59.

[Du-La] Duflo, M., and J.-P. Labesse, Sur la formule des traces de Selberg, Annales Sci. École
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