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PREFACE TO THE SECOND EDITION

In the years since publication of the first edition of Basic Real Analysis, many read-
ers have reacted to the book by sending comments, suggestions, and corrections.
People appreciated the overall comprehensive nature of the book, associating this
feature in part with the large number of problems that develop so many sidelights
and applications of the theory. Some people wondered whether a way might
be found for a revision to include some minimal treatment of Stokes’s Theorem
and complex analysis, despite the reservations I expressed in the original preface
about including these topics.

Along with the general comments and specific suggestions were corrections,
well over a hundred in all, that needed to be addressed in any revision. Many of
the corrections were of minor matters, yet readers should not have to cope with
errors along with new material. Fortunately no results in the first edition needed
to be deleted or seriously modified, and additional results and problems could be
included without renumbering.

For the first edition, the author granted a publishing license to Birkhduser
Boston that was limited to print media, leaving the question of electronic publi-
cation unresolved. A major change with the second edition is that the question of
electronic publication has now been resolved, and a PDF file, called the “digital
second edition,” is being made freely available to everyone worldwide for personal
use. This file may be downloaded from the author’s own Web page and from
elsewhere.

The main changes to the first edition of Basic Real Analysis are as follows:

e A careful treatment of arc length, line integrals, and Green’s Theorem for
the plane has been added at the end of Chapter III. These aspects of Stokes’s
Theorem can be handled by the same kinds of techniques of real analysis
as in the first edition. Treatment of aspects of Stokes’s Theorem in higher
dimensions would require a great deal more geometry, for reasons given in
Section III.13, and that more general treatment has not been included.

e The core of a first course in complex analysis has been included as Appendix B.
Emphasis is on those aspects of elementary complex analysis that are useful
as tools in real analysis. The appendix includes more than 80 problems, and
some standard topics in complex analysis are developed in these problems. The
treatment assumes parts of Chapters I-I1I as a prerequisite. How the appendix
fits into the plan of the book is explained in the Guide for the Reader.

Xiii



Xiv Preface to the Second Edition

e A new section in Chapter IX proves and applies the Riesz—Thorin Convexity
Theorem, a fundamental result about L? spaces that takes advantage of ele-
mentary complex analysis.

e About 20 problems have been added at the ends of Chapters I-XII. Chiefly these
are of three kinds: some illustrate the new topics of arc length, line integrals,
and Green’s Theorem; some make use of elementary complex analysis as
in Appendix B to shed further light on results and problems in the various
chapters; and some relate to the topic of Banach spaces in Chapter XII .

e The corrections sent by readers and by reviewers have been made. The most
significant such correction was a revision to the proof of Zorn’s Lemma, the
earlier proof having had a gap.

The material in Appendix B is designed as the text of part of a first course in
complex analysis. I taught such a course myself on one occasion. A course in
complex analysis invariably begins with some preliminary material, and that can
be taken from Chapters I to I1I; details appear in the Guide to the Reader. Appendix
B forms the core of the course, dealing with results having an analytic flavor,
including the part of the theory due to Cauchy. The topic of conformal mapping,
which has a more geometric flavor, has been omitted, and some instructors might
feel obliged to include something on this topic in the course. Appendix B states
the Riemann Mapping Theorem at one point but does not prove it; all the tools
needed for its proof, however, are present in the appendix and its problems. Often
an instructor will end a first course in complex analysis with material on infinite
series and products of functions, or of aspects of the theory of special functions,
or on analytic continuation. Supplementary notes on any such topics would be
necessary.

It was Benjamin Levitt, Birkhduser mathematics editor in New York, who
encouraged the writing of this second edition, who made a number of suggestions
about pursuing it, and who passed along comments from several anonymous
referees about the strengths and weaknesses of the book. I am especially grateful
to those readers who have sent me comments over the years. Many of the
corrections that were made were kindly sent to me either by S. H. Kim of South
Korea or by Jacques Larochelle of Canada. The correction to the proof of Theorem
1.35 was kindly sent by Glenn Jia of China. The long correction to the proof of
Zorn’s Lemma resulted from a discussion with Qiu Ruyue. The typesetting was
done by the program Textures using ApsS-TEX, and the figures were drawn with
Mathematica.

Just as with the first edition, I invite corrections and other comments from
readers. For as long as I am able, I plan to point to a list of known corrections

from my own homepage, www.math.stonybrook.edu/~aknapp.
A. W. KNAPP

February 2016



PREFACE TO THE FIRST EDITION

This book and its companion volume, Advanced Real Analysis, systematically
develop concepts and tools in real analysis that are vital to every mathematician,
whether pure or applied, aspiring or established. The two books together contain
what the young mathematician needs to know about real analysis in order to
communicate well with colleagues in all branches of mathematics.

The books are written as textbooks, and their primary audience is students who
are learning the material for the first time and who are planning a career in which
they will use advanced mathematics professionally. Much of the material in the
books corresponds to normal course work. Nevertheless, it is often the case that
core mathematics curricula, time-limited as they are, do not include all the topics
that one might like. Thus the book includes important topics that may be skipped
in required courses but that the professional mathematician will ultimately want
to learn by self-study.

The content of the required courses at each university reflects expectations of
what students need before beginning specialized study and work on a thesis. These
expectations vary from country to country and from university to university. Even
so, there seems to be a rough consensus about what mathematics a plenary lecturer
at a broad international or national meeting may take as known by the audience.
The tables of contents of the two books represent my own understanding of what
that degree of knowledge is for real analysis today.

Key topics and features of Basic Real Analysis are as follows:

e Early chapters treat the fundamentals of real variables, sequences and series
of functions, the theory of Fourier series for the Riemann integral, metric
spaces, and the theoretical underpinnings of multivariable calculus and ordi-
nary differential equations.

e Subsequent chapters develop the Lebesgue theory in Euclidean and abstract
spaces, Fourier series and the Fourier transform for the Lebesgue integral,
point-set topology, measure theory in locally compact Hausdorff spaces, and
the basics of Hilbert and Banach spaces.

e The subjects of Fourier series and harmonic functions are used as recurring
motivation for a number of theoretical developments.

e The development proceeds from the particular to the general, often introducing
examples well before a theory that incorporates them.
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XVi Preface to the First Edition

e More than 300 problems at the ends of chapters illuminate aspects of the
text, develop related topics, and point to additional applications. A separate
55-page section “Hints for Solutions of Problems” at the end of the book gives
detailed hints for most of the problems, together with complete solutions for
many.

Beyond a standard calculus sequence in one and several variables, the most
important prerequisite for using Basic Real Analysis is that the reader already
know what a proof is, how to read a proof, and how to write a proof. This
knowledge typically is obtained from honors calculus courses, or from a course
in linear algebra, or from a first junior-senior course in real variables. In addition,
itis assumed that the reader is comfortable with a modest amount of linear algebra,
including row reduction of matrices, vector spaces and bases, and the associated
geometry. A passing acquaintance with the notions of group, subgroup, and
quotient is helpful as well.

Chapters I-IV are appropriate for a single rigorous real-variables course and
may be used in either of two ways. For students who have learned about proofs
from honors calculus or linear algebra, these chapters offer a full treatment of real
variables, leaving out only the more familiar parts near the beginning—such as
elementary manipulations with limits, convergence tests for infinite series with
positive scalar terms, and routine facts about continuity and differentiability. For
students who have learned about proofs from a first junior-senior course in real
variables, these chapters are appropriate for a second such course that begins with
Riemann integration and sequences and series of functions; in this case the first
section of Chapter I will be a review of some of the more difficult foundational
theorems, and the course can conclude with an introduction to the Lebesgue
integral from Chapter V if time permits.

Chapters V through XII treat Lebesgue integration in various settings, as well
as introductions to the Euclidean Fourier transform and to functional analysis.
Typically this material is taught at the graduate level in the United States, fre-
quently in one of three ways: The first way does Lebesgue integration in Euclidean
and abstract settings and goes on to consider the Euclidean Fourier transform in
some detail; this corresponds to Chapters V—VIII. A second way does Lebesgue
integration in Euclidean and abstract settings, treats L? spaces and integration on
locally compact Hausdorff spaces, and concludes with an introduction to Hilbert
and Banach spaces; this corresponds to Chapters V-VII, part of IX, and XI-XII.
A third way combines an introduction to the Lebesgue integral and the Euclidean
Fourier transform with some of the subject of partial differential equations; this
corresponds to some portion of Chapters V-VI and VIII, followed by chapters
from the companion volume, Advanced Real Analysis.

In my own teaching, I have most often built one course around Chapters [-1V
and another around Chapters V-VII, part of IX, and XI-XII. I have normally
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assigned the easier sections of Chapters II and X as outside reading, indicating
the date when the lectures would begin to use that material.

More detailed information about how the book may be used with courses may
be deduced from the chart “Dependence among Chapters” on page xiv and the
section “Guide to the Reader” on pages xv—xvii.

The problems at the ends of chapters are an important part of the book. Some
of them are really theorems, some are examples showing the degree to which
hypotheses can be stretched, and a few are just exercises. The reader gets no
indication which problems are of which type, nor of which ones are relatively
easy. Each problem can be solved with tools developed up to that point in the
book, plus any additional prerequisites that are noted.

Two omissions from the pair of books are of note. One is any treatment of
Stokes’s Theorem and differential forms. Although there is some advantage,
when studying these topics, in having the Lebesgue integral available and in
having developed an attitude that integration can be defined by means of suitable
linear functionals, the topic of Stokes’s Theorem seems to fit better in a book
about geometry and topology, rather than in a book about real analysis.

The other omission concerns the use of complex analysis. It is tempting to try
to combine real analysis and complex analysis into a single subject, but my own
experience is that this combination does not work well at the level of Basic Real
Analysis, only at the level of Advanced Real Analysis.

Almost all of the mathematics in the two books is at least forty years old, and I
make no claim that any result is new. The books are a distillation of lecture notes
from a 35-year period of my own learning and teaching. Sometimes a problem at
the end of a chapter or an approach to the exposition may not be a standard one,
but no attempt has been made to identify such problems and approaches. In the
reverse direction it is possible that my early lecture notes have directly quoted
some source without proper attribution. As an attempt to rectify any difficulties
of this kind, I have included a section of “Acknowledgments” on pages xix—xx
of this volume to identify the main sources, as far as I can reconstruct them, for
those original lecture notes.

I'am grateful to Ann Kostant and Steven Krantz for encouraging this project and
for making many suggestions about pursuing it, and to Susan Knapp and David
Kramer for helping with the readability. The typesetting was by ApsS-TEX, and
the figures were drawn with Mathematica.

I invite corrections and other comments from readers. I plan to maintain a list
of known corrections on my own Web page.

A. W. KNAPP
May 2005
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GUIDE FOR THE READER

This section is intended to help the reader find out what parts of each chapter are
most important and how the chapters are interrelated. Further information of this
kind is contained in the abstracts that begin each of the chapters.

The book pays attention to certain recurring themes in real analysis, allowing
a person to see how these themes arise in increasingly sophisticated ways. Ex-
amples are the role of interchanges of limits in theorems, the need for certain
explicit formulas in the foundations of subject areas, the role of compactness and
completeness in existence theorems, and the approach of handling nice functions
first and then passing to general functions.

All of these themes are introduced in Chapter I, and already at that stage they
interact in subtle ways. For example, a natural investigation of interchanges of
limits in Sections 2-3 leads to the discovery of Ascoli’s Theorem, which is a
fundamental compactness tool for proving existence results. Ascoli’s Theorem
is proved by the “Cantor diagonal process,” which has other applications to
compactness questions and does not get fully explained until Chapter X. The
consequence is that, no matter where in the book a reader plans to start, everyone
will be helped by at least leafing through Chapter 1.

The remainder of this section is an overview of individual chapters and groups
of chapters.

Chapter 1. Every section of this chapter plays a role in setting up matters
for later chapters. No knowledge of metric spaces is assumed anywhere in the
chapter. Section 1 will be areview for anyone who has already had a course in real-
variable theory; the section shows how compactness and completeness address
all the difficult theorems whose proofs are often skipped in calculus. Section 2
begins the development of real-variable theory at the point of sequences and series
of functions. It contains interchange results that turn out to be special cases of
the main theorems of Chapter V. Sections 8—9 introduce the approach of handling
nice functions before general functions, and Section 10 introduces Fourier series,
which provided a great deal of motivation historically for the development of real
analysis and are used in this book in that same way. Fourier series are somewhat
limited in the setting of Chapter I because one encounters no class of functions,
other than infinitely differentiable ones, that corresponds exactly to some class of
Fourier coefficients; as a result Fourier series, with Riemann integration in use,
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Xxii Guide for the Reader

are not particularly useful for constructing new functions from old ones. This
defect will be fixed with the aid of the Lebesgue integral in Chapter VI.

Chapter II. Now that continuity and convergence have been addressed on
the line, this chapter establishes a framework for these questions in higher-
dimensional Euclidean space and other settings. There is no point in ad hoc
definitions for each setting, and metric spaces handle many such settings at once.
Chapter X later will enlarge the framework from metric spaces to “topological
spaces.” Sections 1-6 of Chapter II are routine. Section 7, on compactness
and completeness, is the core. The Baire Category Theorem in Section 9 is not
used outside of Chapter II until Chapter XII, and it may therefore be skipped
temporarily. Section 10 contains the Stone—Weierstrass Theorem, which is a
fundamental approximation tool. Section 11 is used in some of the problems but
is not otherwise used in the book.

Chapter III. This chapter does for the several-variable theory what Chapter I
has done for the one-variable theory. The main results are the Inverse and Implicit
Function Theorems in Section 6 and the change-of-variables formula for multiple
integrals in Section 10. The change-of-variables formula has to be regarded as
only a preliminary version, since what it directly accomplishes for the change
to polar coordinates still needs supplementing; this difficulty will be repaired in
Chapter VI with the aid of the Lebesgue integral. Section 4, on exponentials of
matrices, may be skipped if linear systems of ordinary differential equations are
going to be skipped in Chapter IV. Sections 11-13 contain a careful treatment
of arc length, line integrals, and Green’s Theorem for the plane. These sections
emphasize properties of parametrized curves that are unchanged when the curve
is reparametrized; length is an example. An important point to bear in mind is
that two curves are always reparametrizations of each other if they have the same
image in the plane and they are both traced out in one-one fashion. This theory
is tidier if carried out in the context of Lebesgue integration, but its placement in
the text soon after Riemann integration is traditional. The difficulty with using
Riemann integrals arises already in the standard proof of Green’s Theorem for
a circle, which parametrizes each quarter of the circle twice, once with y in
terms of x and once with x in terms of y. The problem is that in each of these
parametrizations, the derivative of the one variable with respect to the other is
unbounded, and thus arc length is not given by a Riemann integral. Some of
the problems at the end of the chapter introduce harmonic functions; harmonic
functions will be combined with Fourier series in problems in later chapters to
motivate and illustrate some of the development.

Chapter IV provides theoretical underpinnings for the material in a traditional
undergraduate course in ordinary differential equations. Nothing later in the book
is logically dependent on Chapter I'V; however, Chapter XII includes a discussion
of orthogonal systems of functions, and the examples of these that arise in Chapter
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IV are helpful as motivation. Some people shy away from differential equations
and might wish to treat Chapter IV only lightly, or perhaps not at all. The subject
is nevertheless of great importance, and Chapter IV is the beginning of it. A
minimal treatment of Chapter IV might involve Sections 1-2 and Section 8, all
of which visibly continue the themes begun in Chapter I.

Chapters V-VI treat the core of measure theory —including the basic conver-
gence theorems for integrals, the development of Lebesgue measure in one and
several variables, Fubini’s Theorem, the metric spaces L' and L? and L, and
the use of maximal theorems for getting at differentiation of integrals and other
theorems concerning almost-everywhere convergence. In Chapter V Lebesgue
measure in one dimension is introduced right away, so that one immediately has
the most important example at hand. The fundamental Extension Theorem for
getting measures to be defined on o -rings and o -algebras is stated when needed but
is proved only after the basic convergence theorems for integrals have been proved;
the proof in Sections 5—6 may be skipped on first reading. Section 7, on Fubini’s
Theorem, is a powerful result about interchange of integrals. At the same time
that it justifies interchange, it also constructs a “double integral”; consequently
the section prepares the way for the construction in Chapter VI of n-dimensional
Lebesgue measure from 1-dimensional Lebesgue measure. Section 10 introduces
normed linear spaces along with the examples of L' and L? and L*°, and it goes
on to establish some properties of all normed linear spaces. Chapter VI fleshes
out measure theory as it applies to Euclidean space in more than one dimension.
Of special note is the Lebesgue-integration version in Section 5 of the change-
of-variables formula for multiple integrals and the Riesz—Fischer Theorem in
Section 7. The latter characterizes square-integrable periodic functions by their
Fourier coefficients and makes the subject of Fourier series useful in constructing
functions. Differentiation of integrals in approached in Section 6 of Chapter VI
as a problem of estimating finiteness of a quantity, rather than its smallness; the
device is the Hardy—Littlewood Maximal Theorem, and the approach becomes a
routine way of approaching almost-everywhere convergence theorems. Sections
8-10 are of somewhat less importance and may be omitted if time is short;
Section 10 is applied only in Section IX.6.

Chapters VII-IX are continuations of measure theory that are largely indepen-
dent of each other. Chapter VII contains the traditional proof of the differentiation
of integrals on the line via differentiation of monotone functions. No later chapter
is logically dependent on Chapter VII; the material is included only because of its
historical importance and its usefulness as motivation for the Radon—Nikodym
Theorem in Chapter IX. Chapter VIII is an introduction to the Fourier transform
in Euclidean space. Its core consists of the first four sections, and the rest may be
considered as optional if Section IX.6 is to be omitted. Chapter IX concerns L”
spaces for 1 < p < o0; only Section 6 makes use of material from Chapter VIIL
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Chapter X develops, at the latest possible time in the book, the necessary part
of point-set topology that goes beyond metric spaces. Emphasis is on product
and quotient spaces, and on Urysohn’s Lemma concerning the construction of
real-valued functions on normal spaces.

Chapter XI contains one more continuation of measure theory, namely special
features of measures on locally compact Hausdorff spaces. It provides an example
beyond L? spaces in which one can usefully identify the dual of a particular
normed linear space. These chapters depend on Chapter X and on the first five
sections of Chapter IX but do not depend on Chapters VII-VIIL.

Chapter X1l is a brief introduction to functional analysis, particularly to Hilbert
spaces, Banach spaces, and linear operators on them. The main topics are the
geometry of Hilbert space and the three main theorems about Banach spaces.

Appendix B is the core of a first course in complex analysis. The prerequisites
from real analysis for reading this appendix consist of Sections 1-7 of Chapter I,
Section 1-8 of Chapter II, and Sections 1-3, 5-6, and 11-12 of Chapter III;
Section 6 of Chapter III is used only lightly. According to the plan of the book,
it is possible to read the text of Chapters I-XII without using any of Appendix B,
but results of Appendix B are applied in problems at the end of Chapters IV,
VI, and VIII, as well as in one spot in Section IX.6, in order to illustrate the
interplay between real analysis and complex analysis. The problems at the end
of Appendix B are extensive and are of particular importance, since the topics of
linear fractional transformations, normal families, and the relationship between
harmonic functions and analytic functions are developed there and not otherwise
in the book.
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CHAPTERI

Theory of Calculus in One Real Variable

Abstract. This chapter, beginning with Section 2, develops the topic of sequences and series
of functions, especially of functions of one variable. An important part of the treatment is an
introduction to the problem of interchange of limits, both theoretically and practically. This problem
plays a role repeatedly in real analysis, but its visibility decreases as more and more results are
developed for handling it in various situations. Fourier series are introduced in this chapter and are
carried along throughout the book as a motivating example for a number of problems in real analysis.

Section 1 makes contact with the core of a first undergraduate course in real-variable theory.
Some material from such a course is repeated here in order to establish notation and a point of view.
Omitted material is summarized at the end of the section, and some of it is discussed in a little more
detail in Appendix A at the end of the book. The point of view being established is the use of defining
properties of the real number system to prove the Bolzano—Weierstrass Theorem, followed by the
use of that theorem to prove some of the difficult theorems that are usually assumed in a one-variable
calculus course. The treatment makes use of the extended real-number system, in order to allow sup
and inf to be defined for any nonempty set of reals and to allow lim sup and lim inf to be meaningful
for any sequence.

Sections 2-3 introduce the problem of interchange of limits. They show how certain concrete
problems can be viewed in this way, and they give a way of thinking about all such interchanges
in a common framework. A positive result affirms such an interchange under suitable hypotheses
of monotonicity. This positive result is by way of introduction to the topic in Section 3 of uniform
convergence and the role of uniform convergence in continuity and differentiation.

Section 4 gives a careful development of the Riemann integral for real-valued functions of one
variable, establishing existence of Riemann integrals for bounded functions that are discontinuous
at only finitely many points, basic properties of the integral, the Fundamental Theorem of Calculus
for continuous integrands, the change-of-variables formula, and other results. Section 5 examines
complex-valued functions, pointing out the extent to which the results for real-valued functions in
the first four sections extend to complex-valued functions.

Section 6 is a short treatment of the version of Taylor’s Theorem in which the remainder is given
by an integral. Section 7 takes up power series and uses them to define the elementary transcendental
functions and establish their properties. The power series expansion of (1+4x)? for arbitrary complex
p is studied carefully. Section 8 introduces Cesaro and Abel summability, which play a role in the
subject of Fourier series. A converse theorem to Abel’s theorem is used to exhibit the function |x| as
the uniform limit of polynomials on [—1, 1]. The Weierstrass Approximation Theorem of Section 9
generalizes this example and establishes that every continuous complex-valued function on a closed
bounded interval is the uniform limit of polynomials.

Section 10 introduces Fourier series in one variable in the context of the Riemann integral. The
main theorems of the section are a convergence result for continuously differentiable functions,
Bessel’s inequality, the Riemann—Lebesgue Lemma, Fejér’s Theorem, and Parseval’s Theorem.

1



2 1. Theory of Calculus in One Real Variable
1. Review of Real Numbers, Sequences, Continuity

This section reviews some material that is normally in an undergraduate course
in real analysis. The emphasis will be on a rigorous proof of the Bolzano—
Weierstrass Theorem and its use to prove some of the difficult theorems that are
usually assumed in a one-variable calculus course. We shall skip over some easier
aspects of an undergraduate course in real analysis that fit logically at the end of
this section. A list of such topics appears at the end of the section.

The system of real numbers R may be constructed out of the system of rational
numbers Q, and we take this construction as known. The formal definition is that
a real number is a cut of rational numbers, i.e., a subset of rational numbers that
is neither Q nor the empty set, has no largest element, and contains all rational
numbers less than any rational that it contains. The idea of the construction is
as follows: Each rational number ¢ determines a cut ¢*, namely the set of all
rationals less than g. Under the identification of Q with a subset of R, the cut
defining a real number consists of all rational numbers less than the given real
number.

The set of cuts gets a natural ordering, given by inclusion. In place of C, we
write <. For any two cuts 7 and s, we have r < s or s < r, and if both occur,
then r = s. We can then define <, >, and > in the expected way. The positive
cuts r are those with 0* < r, and the negative cuts are those with » < 0*.

Once cuts and their ordering are in place, one can go about defining the usual
operations of arithmetic and proving that R with these operations satisfies the
familiar associative, commutative, and distributive laws, and that these interact
with inequalities in the usual ways. The definitions of addition and subtraction
are easy: the sum or difference of two cuts is simply the set of sums or differences
of the rationals from the respective cuts. For multiplication and reciprocals one
has to take signs into account. For example, the product of two positive cuts
consists of all products of positive rationals from the two cuts, as well as 0 and all
negative rationals. After these definitions and the proofs of the usual arithmetic
operations are complete, it is customary to write 0 and 1 in place of 0* and 1*.

An upper bound for a nonempty subset E of R is a real number M such that
x < M for all x in E. If the nonempty set £ has an upper bound, we can take the
cuts that E consists of and form their union. This turns out to be a cut, it is an
upper bound for £, and it is < all upper bounds for E. We can summarize this
result as a theorem.

Theorem 1.1. Any nonempty subset E of R with an upper bound has a least
upper bound.

The least upper bound is necessarily unique, and the notation for it is sup, .z x
orsup {x | x € E}, “sup” being an abbreviation for the Latin word “supremum,”
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the largest. Of course, the least upper bound for a set £ with an upper bound
need not be in E; for example, the supremum of the negative rationals is 0, which
is not negative.

A lower bound for a nonempty set E of R is a real number m such that x > m
forall x € E. If m is a lower bound for E, then —m is an upper bound for the set
—E of negatives of members of E. Thus —E has an upper bound, and Theorem
1.1 shows that it has a least upper bound sup,._ x. Then —x is a greatest lower
bound for E. This greatest lower bound is denoted by infycg y orinf{y | y € E},
“inf” being an abbreviation for “infimum.” We can summarize as follows.

Corollary 1.2. Any nonempty subset E of R with a lower bound has a greatest
lower bound.

A subset of R is said to be bounded if it has an upper bound and a lower bound.
Let us introduce notation and terminology for intervals of R, first treating the
bounded ones.! Let a and b be real numbers with @ < b. The open interval
from a to b is the set (a,b) = {x € R | a < x < b}, the closed interval is
the set [a, b] = {x € R | a < x < b}, and the half-open intervals are the sets
[a,b) ={x e R|a <x < b}and (a,b] = {x € R | a < x < b}. Each of the
above intervals is indeed bounded, having a as a lower bound and b as an upper
bound. These intervals are nonempty when a < b or when the interval is [a, b]
with @ = b, and in these cases the least upper bound is b and the greatest lower
bound is a.

Open sets in R are defined to be arbitrary unions of open bounded intervals,
and a closed set is any set whose complement in R is open. A set E is open if and
only if for each x € E, there is an open interval (a, b) such that x € (a,b) C E.
In this case we of course have a < x < b. If we put € = min{x —a, b — x},
then we see that x lies in the subset (x — €, x + €) of (a, b). The open interval
(x — €, x + €) equals {y € R{ ly — x| < E}. Thus an open set in R is any set E
such that for each x € E, there is a number € > 0 such that {y € R ||y —x| < €}
lies in E. A limit point x of a subset F of R is a point of R such that any
open interval containing x meets F in a point other than x. For example, the set
[a, b) U {b + 1} has [a, b] as its set of limit points. A subset of R is closed if and
only if it contains all its limit points.

Now let us turn to unbounded intervals. To provide notation for these, we shall
make use of two symbols 400 and —oo that will shortly be defined to be “extended
real numbers.” If a is in R, then the subsets (a,+00) = {x € R | a < x},
(—o0,a) ={x eR|x <a}, (—00,+0) =R, [a,4+0) ={x e R|a < x},
and (—oo,a] = {x € R | x < a} are defined to be intervals, and they are all
unbounded. The first three are open sets of R and are considered to be open

Bounded intervals are called “finite intervals” by some authors.
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intervals, while the last three are closed sets and are considered to be closed
intervals. Specifically the middle set R is both open and closed.

One important consequence of Theorem 1.1 is the archimedean property of
R, as follows.

Corollary 1.3. If a and b are real numbers with a > 0, then there exists an
integer n with na > b.

PROOF. If, on the contrary, na < b for all integers n, then b is an upper bound
for the setofall na. Let M be the least upper bound of the set {na | n is an integer}.
Using that a is positive, we find that a ! M is a least upper bound for the integers.
Thus n < a~' M for all integers n, and there is no smaller upper bound. However,
the smaller number a~! M — 1 must be an upper bound, since sayingn < a~'M
for all integers is the same as sayingn — 1 < a~' M — 1 for all integers. We arrive
at a contradiction, and we conclude that there is some integer n with na > b. [J

The archimedean property enables one to see, for example, that any two
distinct real numbers have a rational number lying between them. We prove
this consequence as Corollary 1.5 after isolating one step as Corollary 1.4.

Corollary 1.4. If c is a real number, then there exists an integer n such that
n<c<n+l1.

PROOF. Corollary 1.3 with @ = 1 and b = ¢ shows that there is an integer M
with M > ¢, and Corollary 1.3 with @ = 1 and b = —c shows that there is an
integer m with m > —c. Then —m < ¢ < M, and it follows that there exists a
greatest integer n with n < c¢. This n must have the property that ¢ < n + 1, and
the corollary follows. (]

Corollary 1.5. If x and y are real numbers with x < y, then there exists a
rational number r withx <r < y.

PROOF. By Corollary 1.3 witha = y — x and b = 1, there is an integer N
such that N(y — x) > 1. This integer N has to be positive. Then ﬁ <y-—x.
By Corollary 1.4 with ¢ = Nx, there exists an integer n withn < Nx <n + 1,

hence with & < x < % Adding the inequalities §; < x and % < y — x yields
% < y Thus x < % < y, and the rational number r = % has the required
properties. H

A sequencein a set S is a function from a certain kind of subset of integers into
S. It will be assumed that the set of integers is nonempty, consists of consecutive
integers, and contains no largest integer. In particular the domain of any sequence
is infinite. Usually the set of integers is either all nonnegative integers or all
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positive integers. Sometimes the set of integers is all integers, and the sequence
in this case is often called “doubly infinite.” The value of a sequence f at the
integer n is normally written f;, rather than f(n), and the sequence itself may be
denoted by an expression like { f,},>1, in which the outer subscript indicates the
domain.

A subsequence of a sequence f with domain {m,m+1, ...} is a composition
f on, where f is a sequence and 7 is a sequence in the domain of f such that
ny < ng4 for all k. For example, if {a,},>1 is a sequence, then {a}r>1 is the
subsequence in which the function n is given by n; = 2k. The domain of a
subsequence, by our definition, is always infinite.

A sequence a, in R is convergent, or convergent in R, if there exists a real
number a such that for each € > 0, there is an integer N with |a, — a| < €
for all n > N. The number a is necessarily unique and is called the limit
of the sequence. Depending on how much information about the sequence is
unambiguous, we may write lim,_, @, = a or lim, a, = a or lima, = a or
a, — a. We also say a, tends to a as n tends to infinity or co.

A sequence in R is called monotone increasing if @, < a,; for all n in the
domain, monotone decreasing if a,, > a,; for all n in the domain, monotone
if it is monotone increasing or monotone decreasing.

Corollary 1.6. Any bounded monotone sequence in R converges. If the
sequence is monotone increasing, then the limit is the least upper bound of the
image in R of the sequence. If the sequence is monotone decreasing, the limit is
the greatest lower bound of the image.

REMARK. Often it is Corollary 1.6, rather than the existence of least upper
bounds, that is taken for granted in an elementary calculus course. The reason
is that the statement of Corollary 1.6 tends for calculus students to be easier to
understand than the statement of the least upper bound property. Problem 1 at the
end of the chapter asks for a derivation of the least-upper-bound property from
Corollary 1.6.

PROOF. Suppose that {a,} is monotone increasing and bounded. Let a =
sup,, a,, the existence of the supremum being ensured by Theorem 1.1, and let
€ > 0 be given. If there were no integer N with ay > a — €, then a — € would be
a smaller upper bound, contradiction. Thus such an N exists. For that N,n > N
impliesa —€ <ay <a, <a < a+e€. Thusn > N implies |a, — a| < €.
Since € is arbitrary, lim,_, a, = a. If the given sequence {a,} is monotone
decreasing, we argue similarly with ¢ = inf,, a,. O

In working with sup and inf, it will be quite convenient to use the notation
sup, . X even when E is nonempty but not bounded above, and to use the notation
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inf, c g x even when E is nonempty but not bounded below. We introduce symbols
400 and —o0, plus and minus infinity, for this purpose and extend the definitions
of sup, . x and inf,cg x to all nonempty subsets E of R by taking

supx = +00 if E has no upper bound,
xeE
inf x = —o0 if E has no lower bound.
xeE

To work effectively with these new pieces of notation, we shall enlarge R to a
set R* called the extended real numbers by defining

R* = R U {+00} U {—o0}.

An ordering on R* is defined by taking —oo < r < +o0 for every member r of R
and by retaining the usual ordering within R. It is immediate from this definition
that

inf x < supx

x€E xek
if E is any nonempty subset of R. In fact, we can enlarge the definitions of inf,c g x
and sup,.p x in obvious fashion to include the case that £ is any nonempty
subset of R*, and we still have inf < sup. With the ordering in place, we can
unambiguously speak of open intervals (a, b), closed intervals [a, b], and half-
open intervals [a, b) and (a, b] in R* even if a or b is infinite. Under our
definitions the intervals of R are the intervals of R* that are subsets of R, even if
a or b is infinite. If no special mention is made whether an interval lies in R or
R*, it is usually assumed to lie in R.

The next step is to extend the operations of arithmetic to R*. It is important
not to try to make such operations be everywhere defined, lest the distributive
laws fail. Letting » denote any member of R and a and b be any members of R*,
we make the following new definitions:

+o0 ifr >0,
Multiplication: r(4+o00) = (+oo)r =13 0 ifr =0,
—o0 ifr <0,
—o0 ifr >0,
r(—o0) =(—oco)r =40 ifr =0,
+oo ifr <0,
(+00)(+00) = (—00)(—00) = +00,
(+00)(—00) = (—-00)(+00) = —00.
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Addition: r 4 (400) = (400) +r = 400,
r+ (—00) = (—=00) +r = —00,
(4+00) + (400) = 400,

(—00) + (—00) = —o0.
Subtraction: a—b=a+ (—b) whenever the right side is defined.
Division: a/b=0 ifa € Rand b is o0,

a/b=>b"'a ifbe R withb 0 anda is £oo.

The only surprise in the list is that O times anything is 0. This definition will be
important to us when we get to measure theory, starting in Chapter V.

It is now a simple matter to define convergence of a sequence in R*. The cases
that need addressing are that the sequence is in R and that the limit is 4+-0o or —oo.
We say that a sequence {a, } in R tends to +oo if for any positive number M, there
exists an integer N such that a, > M for all n > N. The sequence tends to —oo
if for any negative number —M, there exists an integer N such thata, < —M
for all » > N. It is important to indicate whether convergence/divergence of a
sequence is being discussed in R or in R*. The default setting is R, in keeping with
standard terminology in calculus. Thus, for example, we say that the sequence
{n},>1 diverges, but it converges in R* (to +00).

With our new definitions every monotone sequence converges in R*.

For a sequence {a, } in R or even in R*, we now introduce members lim sup,, a,
and lim inf, a, of R*. These will always be defined, and thus we can apply the
operations lim sup and liminf to any sequence in R*. For the case of lim sup
we define b, = sup,., a; as a sequence in R*. The sequence {b,} is monotone
decreasing. Thus it converges to inf, b, in R*. We define?

lim sup a, = inf sup a;
n n k>n

as a member of R*, and we define

liminfa, = sup infay
n n  k>n

as a member of R*. Let us underscore that lim sup a,, and lim inf a,, always exist.
However, one or both may be oo even if a, is in R for every n.

Proposition 1.7. The operations lim sup and lim inf on sequences {a,} and
{b,} in R* have the following properties:

(a) if a, < b, for all n, then limsupa, < limsupb, and liminfa, <
liminfb,,

2The notation lim was at one time used for lim sup, and lim was used for lim inf.
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(b) liminfa, < limsupa,,

(¢) {a,} has a subsequence converging in R* to lim sup a,, and another sub-
sequence converging in R* to liminf a,,,

(d) limsupa, is the supremum of all subsequential limits of {a,} in R*, and
lim inf}, is the infimum of all subsequential limits of {a,} in R*,

(e) if limsupa, < +oo, then limsup a, is the infimum of all extended real
numbers a such that a, > a for only finitely many #, and if liminfa, >
—00, then lim inf a,, is the supremum of all extended real numbers a such
that a, < a for only finitely many n,

(f) the sequence {a,} in R* converges in R* if and only if liminfa, =
lim sup a,,, and in this case the limit is the common value of lim inf a,, and
limsup ay,.

REMARK. It is enough to prove the results about lim sup, since liminfa, =
— lim sup(—a,).

PROOFS FOR lim sup.

(a) From a; < b; for all [, we have a; < sup,..,, by if I > n. Hence sup;..,, a; <
sup;-,, bx. Then (a) follows by taking the limit on 7. -

(b) This follows by taking the limit on 7 of the inequality infy~, a; < sup;-.,, ax.

(c) We divide matters into cases. The main case is that a = lim sup a, is in R.
Inductively, for each [ > 1, choose N > n;_; such that | sup;. y ar —a| < [
Then choose n; > n;—y such that |a,, — supyax| < -1 Together these
inequalities imply |a,, — a| < 21~1 for all I, and thus lim;_ a, = a. The
second case is that @ = limsupa, equals +o00. Since sup,.., ax iS monotone
decreasing in n, we must have sup,.., ay = +oo for all . Indﬁctively forl > 1,
we can choose n; > n;_; such that ay, > [. Then lim;_, o a, = +o0o. The
third case is that a = limsupa, equals —oo. The sequence b, = sup,.., a is
monotone decreasing to —oo. Inductively for [ > 1, choose n; > n;_ such that
b, < —l. Thena,, <b,, < —I, andlim;_,  a,, = —o0.

(d) By (c), limsupa, is one subsequential limit. Let a = limy_, » a,, be an-
other subsequential limit. Put b, = sup,.., ;. Then {b,} converges to limsupa,
in R*, and the same thing is true of every subsequence. Since a,, < SUp;>p,, A1 =
b,, for all k, we can let k tend to infinity and obtain a = limy_,a, <
limy_, o0 by, = limsupa,,.

(e) Since limsupa, < 400, we have sup,.., ax < 4oo for n greater than or
equal to some N. For this N and any a > sup,. y a, we then have a, > a only
finitely often. Thus there exists a € R such that a, > a for only finitely many n.
On the other hand, if @’ is a real number < lim sup a,,, then (c) shows that a,, > a’
for infinitely many n. Hence

limsupa, <inf{a | a, > a for only finitely many a}.
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Arguing by contradiction, suppose that < holds in this inequality, and let a” be a
real number strictly in between the two sides of the inequality. Then sup,., ax <
a” for n large enough, and so a, > a” only finitely often. But then a” is in the set

{a | a, > a for only finitely many n},

and the statement that a” is less than the infimum of this set gives a contradiction.

(f) If {a, } converges in R*, then (c¢) forces liminfa, = lim sup a,. Conversely
suppose liminfa, = limsupa,, and let a be the common value of lim inf @,, and
lim sup a,. The main case is thata isin R. Lete > 0 be given. By (e),a, > a+¢
only finitely often, and a, < a — € only finitely often. Thus |a, — a| < € for
all n sufficiently large. In other words, lima, = a as asserted. The other cases
are that a = 400 or a = —00, and they are completely analogous to each other.
Suppose for definiteness that @ = +o00. Since liminfa, = 400, the monotone
increasing sequence b, = infy>, a; converges in R* to +o0c. Given M, choose
N such that b, > M forn > N. Then also @, > M forn > N, and a, converges
in R* to +-00. This completes the proof. (|

With Proposition 1.7 as a tool, we can now prove the Bolzano—Weierstrass The-
orem. The remainder of the section will consist of applications of this theorem,
showing that Cauchy sequences in R converge in R, that continuous functions
on closed bounded intervals of R are uniformly continuous, that continuous
functions on closed bounded intervals are bounded and assume their maximum
and minimum values, and that continuous functions on closed intervals take on
all intermediate values.

Theorem 1.8 (Bolzano—Weierstrass). Every bounded sequence in R has a
convergent subsequence with limit in R.

PROOF. If the given bounded sequence is {a,}, form the subsequence noted
in Proposition 1.7c that converges in R* to limsupa,. All quantities arising in
the formation of lim sup a, are in R, since {a,} is bounded, and thus the limit is
inR. g

A sequence {a,} in R is called a Cauchy sequence if for any ¢ > 0, there
exists an N such that |a, — a,,| < € for all n and m that are > N.

EXAMPLE. Every convergent sequence in R with limit in R is Cauchy. In fact,
let a = lima,, and let € > 0 be given. Choose N such that n > N implies
la, —a| < €. Then n, m > N implies

la, —am| < la, —a|+|a —ay| < €+e€=2€.

Hence the sequence is Cauchy.
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In the above example and elsewhere in this book, we allow ourselves the luxury
of having our final bound come out as a fixed multiple Me of €, rather than e
itself. Strictly speaking, we should have introduced €' = ¢/M and aimed for
€’ rather than €. Then our final bound would have been Me’ = €. Since the
technique for adjusting a proof in this way is always the same, we shall not add
these extra steps in the future unless there would otherwise be a possibility of
confusion.

This convention suggests a handy piece of terminology —that a proof as in the
above example, in which M = 2, is a “2e proof.” That name conveys a great deal
of information about the proof, saying that one should expect two contributions
to the final estimate and that the final bound will be 2e.

Theorem 1.9 (Cauchy criterion). Every Cauchy sequence in R converges to a
limit in R.

PROOF. Let {a,} be Cauchy in R. First let us see that {a,} is bounded. In
fact, for € = 1, choose N such that n,m > N implies |a, — a,,] < 1. Then
lan| < lay] + 1 form > N, and M = max{|a|, ..., lay—1], lay| + 1} is a
common bound for all |a,]|.

Since {a,} is bounded, it has a convergent subsequence {a,,}, say with limit
a, by the Bolzano—Weierstrass Theorem. The subsequential limit has to satisfy
la] < M within R*, and thus « is in R.

Finally let us see that lima, = a. In fact, if € > 0 is given, choose N such
that ny > N implies |a,, — a| < €. Also, choose N’ > N such thatn,m > N’
implies |a, — an| < €. If n > N’, then any ny > N’ has |a, — a,,| < €, and
hence

la, —al < |la, — ap,| + la,, —al < € +¢€ =2e.

This completes the proof. g

Let f be a function with domain an interval and with range in R. The interval
is allowed to be unbounded, but it is required to be a subset of R. We say
that f is continuous at a point xo of the domain of f within R if for each
€ > 0, there is some § > 0 such that all x in the domain of f that satisfy
|x —xo| < & have | f(x) — f(xg)| < €. This notion is sometimes abbreviated as
lim,_,,, f(x) = f(x0). Alternatively, one may say that f(x) tends to f(xo) as
x tends to xg, and one may write f(x) — f(xp) as x — Xxg.

A mathematically equivalent definition is that f is continuous at x if whenever
a sequence has x, — xg within the domain interval, then f(x,) — f(xp). This
latter version of continuity will be shown in Section 1.4 to be equivalent to the
former version, given in terms of continuous limits, in greater generality than just
for R, and thus we shall not stop to prove the equivalence now. We say that f is
continuous if it is continuous at all points of its domain.
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We say that the a function f as above is uniformly continuous on its domain
if for any € > 0, there is some 6 > O such that | f(x) — f(x9)| < € whenever x
and xg are in the domain interval and |x — xo| < §. (In other words, the condition
for the continuity to be uniform is that § can always be chosen independently of
xo.)

EXAMPLE. The function f(x) = x? is continuous on (—oo, +00), but it is

not uniformly continuous. In fact, it is not uniformly continuous on [1, 4-00).
Assuming the contrary, choose § fore = 1. Then we musthave | (x+ % )2 —x? | <1

forall x > 1. But |(x + %)2 —x2| =éx + % > §x, and this is > 1 for x > §~1.
Theorem 1.10. A continuous function f from a closed bounded interval [a, b]
into R is uniformly continuous.
PROOF. Fix € > 0. For xj in the domain of f, the continuity of f at xop means
that it makes sense to define

8x,(€) = min {1, sup {8/ >0

|x — x9| < & and x in the domain }}
of f imply | f(x) — f(xo)| <€
If |[x — xo| < &x,(€), then | f(x) — f(x0)] < €. Put 8(e) = infy e[q.p] Ox, (€).
Let us see that it is enough to prove that §(e¢) > 0. If x and y are in [a, b] with
|x — y| < &(e), then [x — y| < 8(e) < &,(e). Hence |f(x) — f(y)] < € as
required.

Thus we are to prove that §(¢) > 0. If §(¢) = 0, then, for each integer
n > 0, we can choose x, such that §,, (¢) < % By the Bolzano—Weierstrass
Theorem, there is a convergent subsequence, say with x,, — x’. Along this
subsequence, v, (€) — 0. Fix k large enough so that |x,, —x'| < %&g(%). Then

|f Cen) — f(X)] < 5. Also, |x — x| < %&y(%) implies
1 1
Ix = x| < |x = x| + |xp, = X' < 580(5) 4+ 380 (5) = 8:(5),

so that | f(x) — f(x)| < 5 and

|f G = FOOI = 1fGn) = FODNHIfOD = fOl <5+ 5 =€

Consequently our arbitrary large fixed k has dy, > %&u(%), and the sequence
{5xnk (€)} cannot be tending to 0. ]

Theorem 1.11. A continuous function f from a closed bounded interval [a, b]
into R is bounded and takes on maximum and minimum values.

PROOF. Let ¢ = sup,cy,; f(x) in R*. Choose a sequence x, in [a, b]
with f(x,) increasing to c. By the Bolzano—Weierstrass Theorem, {x,} has a
convergent subsequence, say x,, — x’. By continuity, f(x,) — f(x’). Then
f(x) = ¢, and ¢ is a finite maximum. The proof for a finite minimum is
similar. ]



12 1. Theory of Calculus in One Real Variable

Theorem 1.12 (Intermediate Value Theorem). Let a < b be real numbers,
and let f : [a, b] — R be continuous. Then f, in the interval [a, b], takes on all
values between f(a) and f (b).

REMARK. The proof below, which uses the Bolzano—Weierstrass Theorem,
does not make absolutely clear what aspects of the structure of R are essential to
the argument. A conceptually clearer proof will be given in Section I1.8 and will
bring out that the essential property of the interval [a, b] is its “connectedness”
in a sense to be defined in that section.

PROOF. Let f(a) = o and f(b) = B, and let y be between « and 8. We may
assume that y is in fact strictly between « and . Possibly by replacing f by
— f, we may assume that also ¢ < 8. Let

A={xela,b]| f(x) <y} and B={xelab]| f(x)>y}

These sets are nonempty, since a is in A and b is in B, and f is bounded as
a result of Theorem 1.11. Thus the numbers y; = sup{f(x) | x € A} and
y» = inf{f(x) | x € B} are well defined and have y; < y < .

If y1 = y, then we can find a sequence {x,} in A suchthat f (x,) convergesto y.
Using the Bolzano—Weierstrass Theorem, we can find a convergent subsequence
{xn,} of {x,}, say with limit xo. By continuity of f, { f (x,,)} converges to f(xop).
Then f(x9) = y1 = v, and we are done. Arguing by contradiction, we may
therefore assume that y; < y. Similarly we may assume that y < y,, but we do
not need to do so.

Let € = y, — y1, and choose, by Theorem 1.10 and uniform continuity, § > 0
such that |x; — x3| < § implies | f(x;) — f(x2)| < € whenever x| and x, both
lie in [a, b]. Then choose an integer n such that 27"(b — a) < §, and consider
the value of f at the points py = a + k27"(b — a) for 0 < k < 2". Since
Pkt1 — pk = 27"(b —a) < 4, we have | f(pky1) — f(pu)| < € = 2 — 1.
Consequently if f(py) < y1, then

f i) < fpi) 1 f (i) — fF(pIl <1+ (2 — 1) = 12,

and hence f(pi+1) < y1. Now f(po) = f(a) = o < y;. Thus induction shows
that f(py) < y for all k < 2". However, for k = 2", we have p» = b, and
f(b) =B >y > yi, and we have arrived at a contradiction. O

Further topics. Here a number of other topics of an undergraduate course in real-variable
theory fit well logically. Among these are countable vs. uncountable sets, infinite series and tests
for their convergence, the fact that every rearrangement of an infinite series of positive terms has the
same sum, special sequences, derivatives, the Mean Value Theorem as in Section A2 of Appendix
A, and continuity and differentiability of inverse functions as in Section A3 of Appendix A. We shall
not stop here to review these topics, which are treated in many books. One such book is Rudin’s
Principles of Mathematical Analysis, the relevant chapters being 1 to 5. In Chapter 2 of that book,
only the first few pages are needed; they are the ones where countable and uncountable sets are
discussed.
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2. Interchange of Limits

Let {b;;} be a doubly indexed sequence of real numbers. It is natural to ask for
the extent to which
limlim b;; = limlim b;;,
i J J i
more specifically to ask how to tell, in an expression involving iterated limits,
whether we can interchange the order of the two limit operations. We can view
matters conveniently in terms of an infinite matrix

by b2
by by

The left-hand iterated limit, namely lim; lim; b;;, is obtained by forming the limit
of each row, assembling the results, and then taking the limit of the row limits
down through the rows. The right-hand iterated limit, namely lim; lim; b;;, is
obtained by forming the limit of each column, assembling the results, and then
taking the limit of the column limits through the columns. If we use the particular
infinite matrix

—_—

1 1 1
0 1 1
0 0 1
0 00

then we see that the first iterated limit depends only on the part of the matrix above
the main diagonal, while the second iterated limit depends only on the part of the
matrix below the main diagonal. Thus the two iterated limits in general have no
reason at all to be related. In the specific matrix that we have just considered,
they are 1 and 0, respectively. Let us consider some examples along the same
lines but with an analytic flavor.

EXAMPLES.
(1) Let bij = ﬁ Then hm, hmj bij = 1, while lln’l] hm, bij =0.
(2) Let F), be a continuous real-valued function on R, and suppose that F'(x) =

lim F, (x) exists for every x. Is F continuous? This is the same kind of question.
It asks whether lim,_,, F (¢) ZF (x), hence whether

lim lim F,() = lim lim F,(¢).

=X n—>o0 n—0o0 —X
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2
If we take fi(x) = (1—|)-C—2)k for k > 0 and define F,,(x) = ZZ:O Jfx(x), then
X
each F), is continuous. The sequence of functions {F,} has a pointwise limit
2
00 X . . . . .
F(x) = Zk:o m The series is a geometric series, and we can easily
calculate explicitly the partial sums and the limit function. The latter is
0 ifx=0
F(x) = ,
1+x- ifx #0.

It is apparent that the limit function is discontinuous.

(3) Let { f,} be a sequence of differentiable functions, and suppose that f (x) =
lim f,(x) exists for every x and is differentiable. Is lim f, (x) = f’(x)? This
question comes down to whether

.S = fulx)
m—

lim fim 22O = 2

n—oo t—x r—Xx t—x n—00 r—Xx

An example where the answer is negative uses the sine and cosine functions,

which are undefined in the rigorous development until Section 7 on power series.
sinnx

The example has f,(x) =

f(x) =0and f'(x) = 0. Also, f,(x) = /n cosnx, so that f,(0) = /n does
not tend to 0 = f/(0).

for n > 1. Then lim, f,(x) = 0, so that

Yet we know many examples from calculus where an interchange of limits is
valid. For example, in calculus of two variables, the first partial derivatives of
nice functions— polynomials, for example —can be computed in either order with
the same result, and double integrals of continuous functions over a rectangle can
be calculated as iterated integrals in either order with the same result. Positive
theorems about interchanging limits are usually based on some kind of uniform
behavior, in a sense that we take up in the next section. A number of positive
results of this kind ultimately come down to the following general theorem about
doubly indexed sequences that are monotone increasing in each variable. In
Section 3 we shall examine the mechanism of this theorem closely: the proof
shows that the equality in question is sup; sup; b;; = sup; sup; b;; and that it
holds because both sides equal sup; ; b;;.

Theorem 1.13. Let b;; be members of R* that are > 0 for all 7 and j. Suppose
that b;; is monotone increasing in i, for each j, and is monotone increasing in j,
for each i. Then

] J J 1

with all the indicated limits existing in R*.
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PROOF. Put L; = lim; b;; and L} = lim; b;;. These limits exist in R*, since
the sequences in question are monotone. Then L; < L;;; and L;. < L} 41> and
thus

L= lilm L; and L = li]m L}

both exist in R*. Arguing by contradiction, suppose that L < L’. Then we can
choose jy such that L;.O > L. Since L;.O = lim; b;j,, we can choose iy such that
bi,j, > L. Then we have L < b,,;, < L;, < L, contradiction. Similarly the
assumption L’ < L leads to a contradiction. We conclude that L = L’. (]

Corollary 1.14. If a;; are members of R* that are > 0 and are monotone
increasing in j for each /, then

limg ajj = E lim gy
i 5 T

in R*, the limits existing.

REMARK. This result will be generalized by the Monotone Convergence
Theorem when we study abstract measure theory in Chapter V.

PROOF. Put b;; = 2521 a;; in Theorem 1.13. O

Corollary 1.15. If ¢;; are members of R* that are > O for all i and j, then
Y Y=Y
i Ji

in R*, the limits existing.

REMARK. This result will be generalized by Fubini’s Theorem when we study
abstract measure theory in Chapter V.

PROOF. This follows from Corollary 1.14. O

3. Uniform Convergence

Let us examine more closely what is happening in the proof of Theorem 1.13, in
which it is proved that iterated limits can be interchanged under certain hypotheses
of monotonicity. One of the iterated limits is L = lim; lim; b;;, and the claim is
that L is approached as i and j tend to infinity jointly. In terms of a matrix whose
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entries are the various b;;’s, the pictorial assertion is that all the terms far down
and to the right are close to L:

All terms here
are close to L

To see this claim, let us choose a row limit L;, that is close to L and then take an
entry b;, , that is close to L;,. Then b, is close to L, and all terms down and to
the right from there are even closer because of the hypothesis of monotonicity.

To relate this behavior to something uniform, suppose that L < 400, and let
some € > 0 be given. We have just seen that we can arrange to have |L — b;;| < €
whenever i > ig and j > jo. Then |L; — b;j| < € whenever i > iy, provided
J = Jjo. Also,wehavelim; b;; = L; fori =1,2,...,ip— 1. Thus |[L; —b;;| < €
for all i, provided j > jj, where jj is some larger index than jy. This is the
notion of uniform convergence that we shall define precisely in a moment: an
expression with a parameter (i in our case) has a limit (on the variable j in our
case) with an estimate independent of the parameter. We can visualize matters as
in the following matrix:

Jo

All terms here
i s arecloseto L; |-

on all rows.

The vertical dividing line occurs when the column index j is equal to jj, and all
terms to the right of this line are close to their respective row limits L;.
Let us see the effect of this situation on the problem of interchange of limits.

The above diagram forces all the terms in the shaded part of < ) to
nin

be close to one number if lim L; exists, i.e., if the row limits are tending to a
limit. If the other iterated limit exists, then it must be this same number. Thus
the interchange of limits is valid under these circumstances.

Actually, we can get by with less. If, in the displayed diagram above, we
assume that all the column limits L} exist, then it appears that all the column
limits with j > j{ have to be close to the L;’s. From this we can deduce that the
column limits have a limit L’ and that the row limits L; must tend to the limit
of the column limits. In other words, the convergence of the rows in a suitable
uniform fashion and the convergence of the columns together imply that both
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iterated limits exist and they are equal. We shall state this result rigorously as
Proposition 1.16, which will become a prototype for applications later in this
section.

Let S be a nonempty set, and let f and f,, for integers n > 1, be functions
from S to R. We say that f,(x) converges to f(x) uniformly for x in S if for
any € > 0, there is an integer N such thatn > N implies | f,(x) — f(x)| < € for
all x in S. It is equivalent to say that sup,.s | f,(x) — f(x)| tends to O as n tends
to infinity.

Proposition 1.16. Let b;; be real numbers fori > 1 and j > 1. Suppose that

() L; = lim; b;; exists in R uniformly in i, and

(ii) L} = lim; b;; exists in R for each j.

Then

(a) L =1lim; L; exists in R,

(b) L' =lim, L;. exists in R,

(c) L=1L,

(d) the double limit on i and j of b;; exists and equals the common value of
the iterated limits L and L/, i.e., for each € > 0, there exist iy and jy such
that |b;; — L| < € wheneveri > ip and j > jo,

(e) L} = lim; b;; exists in R uniformly in j.

REMARK. In applications we shall sometimes have extra information, typically
the validity of (a) or (b). According to the statement of the proposition, however,
the conclusions are valid without using this extra information as an additional
hypothesis.

PROOF. Let € > 0 be given. By (i), choose jo such that |b;; — L;| < € for all
i whenever j > jo. With j > jj fixed, (ii) says that |b;; — L}.l < € whenever i is
> some ig = ig(j). For j > joandi > ip(j), we then have

|Li —L;l < |Ll _bij|+|bij —L;l <€+ € =2e.

If j > joand i > iy(j’), we similarly have |L; — L},I < 2¢. Hence if j > jy,
J' = Jjo,and i > max{io(j),io(j)}, then

L — L] < |L) — Lil +|L; — L))| < 2€ +2¢ = 4e.

In other words, {L’} is a Cauchy sequence. By Theorem 1.9, L’ = lim; L’ exists
in R. This proves (b).

Passing to the limit in our inequality, we have |L} — L'| < 4€ when j > jo
and in particular when j = jo. If i > i9(jo), then we saw that |b;;, — L;| < €
and |b;j, — L"iol < €. Hence i > ig(jo) implies

|L,' — L/| < |Li _bij0| + |b,’j0 — L}o| + |L}o - L/| < €+ €+ 4e = 6e.
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Since € is arbitrary, L = lim; L; exists and equals L’. This proves (a) and (c).

Since lim; L; = L, choose i; suchthat |L; — L| < € wheneveri > ;. Ifi > i,
and j > jo, we then have

|b,’j—L| < |bij_Li|+|Li — Ll <e+e=2e

This proves (d).

Leti; and ji be as in the previous paragraph. We have seen that |[L;—L/,| < 4¢
for j > jo. By (b), |L; —L’| < 4€ whenever j > jo. Hence (c) and the inequality
of the previous paragraph give

|bij — Li| < |bij — LI+ |L — L'| + |L' — L] < 2€ +0 + 4¢ = 6¢

wheneveri > iy and j > jo. By (ii), choose i, > i; such that |b;; — L}l < 6¢
whenever j € {1, ..., jo—1}andi > i,. Theni > i, implies |b;; — L}l < 6¢ for
all j whenever i > i,. (]

In checking for uniform convergence, we often do not have access to explicit
expressions for limiting values. One device for dealing with the problem is a
uniform version of the Cauchy criterion. Let S be a nonempty set, and let { f;,},>1
be a sequence of functions from S to R. We say that { f;, (x)} is uniformly Cauchy
for x € § if for any € > 0, there is an integer N such thatn > N andm > N
together imply | f;,(x) — fn(x)| < € forall x in S.

Proposition 1.17 (uniform Cauchy criterion). A sequence { f,,} of functions
from a nonempty set S to R is uniformly Cauchy if and only if it is uniformly
convergent.

PROOF. If {f,} is uniformly convergent to f, we use a 2¢ argument, just as
in the example before Theorem 1.9: Given € > 0, choose N such that n > N
implies | f,(x) — f(x)| < €. Thenn > N and m > N together imply

| /() = QO = [fa ) = fFOOI+[f(x) = fu(X)| < € + € =2e.

Thus { f,,} is uniformly Cauchy.

Conversely suppose that { f;,} is uniformly Cauchy. Then { f,, (x)} is Cauchy for
each x. Theorem 1.9 therefore shows that there exists a function f : S — R such
that lim,, f,(x) = f(x) for each x. We prove that the convergence is uniform.
Given € > 0, choose N, as is possible since { f;,} is uniformly Cauchy, such that
n > N and m > N together imply | f,(x) — fin(x)| < €. Letting m tend to oo
shows that | f,(x) — f(x)| < € forn > N. Hence lim, f,(x) = f(x) uniformly
for x in S. O
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In practice, uniform convergence often arises with infinite series of functions,
and then the definition and results about uniform convergence are to be applied to
the sequence of partial sums. If the seriesis Y | ax(x), one wants ] Y i Ak (X) |
to be small for all m and n sufficiently large. Some of the standard tests for
convergence of series of numbers yield tests for uniform convergence of series of
functions just by introducing a parameter and ensuring that the estimates do not
depend on the parameter. We give two clear-cut examples. One is the uniform
alternating series test or Leibniz test, given in Corollary 1.18. A generalization
is the handy test given in Corollary 1.19.

Corollary 1.18. If for each x in a nonempty set S, {a,(x)},>1 is a mono-
tone decreasing sequence of nonnegative real numbers such that lim,, a,(x) =0
uniformly in x, then Y >~ (—1)"a,(x) converges uniformly.

PROOF. The hypotheses are such that | Y ;_,, (—D*ax(x)| < sup, |a,(x)]
whenever n > m, and the uniform convergence is immediate from the uniform
Cauchy criterion. O

Corollary 1.19. If for each x in a nonempty set S, {a,(x)},>1 is a monotone
decreasing sequence of nonnegative real numbers such that lim, a,(x) = 0
uniformly in x and if {b,(x)},>; is a sequence of real-valued functions on S
whose partial sums B, (x) = Z:l bi(x) have |B, (x)| < M for some M and all
n and x, then Zzozl an(x)b, (x) converges uniformly.

PROOF. If n > m, summation by parts gives

n n—1
D abi(x) =Y Bl (@ (x) — a1 (x)) + By (¥)an(x) = Bpo1 (X)am (x),
k=m k=m

as one can check by expanding out the right side. Let € > 0 be given, and choose
N such that a;(x) < € for all x whenever k > N. If n > m > N, then

n n—1
| Y a@h)] = 3 IBol@ ) = a0 + Me + Me
k=m k=m

n—1
=M ) (ak(x) —ars1(x)) +2Me

k=m

< Ma,(x)+2Me
< 3Me,

and the uniform convergence is immediate from the uniform Cauchy criterion. []
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A third consequence can be considered as a uniform version of the result that
absolute convergence implies convergence. In practice it tends to be fairly easy
to apply, but it applies only in the simplest situations.

Proposition 1.20 (Weierstrass M test). Let S be a nonempty set, and let { f,,}
be a sequence of real-valued functions on § such that | f,,(x)| < M,, for all x in
S. Suppose that ), M, < +oc. Then ) 77, f,(x) converges uniformly for x in
S.

PROOF. If n > m > N, then | Y p_, fi@)| < D5 ,, 1@ < Y4, My,
and the right side tends to O uniformly in x as N tends to infinity. Therefore the
result follows from the uniform Cauchy criterion. O

EXAMPLES.
(1) The series

| =

xn

>
n=1 n
converges uniformly for —1 < x < 1 by the Weierstrass M test with M,, = 1/n>.

(2) The series
> x24+n
—1)"

converges uniformly for —1 < x < 1, but the M test does not apply. To see
that the M test does not apply, we use the smallest possible M,,, which is M,, =
sup, |(—1)" xzn#l = ”n—t' The series ) ””izl diverges, and hence the M test
cannot apply for any choice of the numbers M,,. To see the uniform convergence
of the given series, we observe that the terms strictly alternate in sign. Also,

[\S}

XX4+n xX*4+m+D x2 x2 1 1
> because — > —— and - > .
n2 (n+ 1)? n? = (n+1)2 n_ n+1
Finally

x>4n n+1
<

p p -0
uniformly for —1 < x < 1. Hence the series converges uniformly by the uniform
Leibniz test (Corollary 1.18).

Having developed some tools for proving uniform convergence, let us apply
the notion of uniform convergence to interchanges of limits involving functions
of areal variable. For a point of reference, recall the diagrams of interchanges of
limits at the beginning of the section. We take the column index to be n and think
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of the row index as a variable ¢, which is tending to x. We make assumptions
that correspond to (i) and (ii) in Proposition 1.16, namely that { f,,(¢)} converges
uniformly in ¢ as n tends to infinity, say to f(¢), and that f;,(#) converges to some
limit f,(x) as ¢ tends to x. With f,(x) defined as this limit, f, is continuous
at x. In other words, the assumptions are that the sequence {f,} is uniformly
convergent to f and each f, is continuous.

Theorem 1.21. If { f,,} is a sequence of real-valued functions on [a, b] that are
continuous at x and if { f;;} converges to f uniformly, then f is continuous at x.

REMARKS. This is really a consequence of Proposition 1.16 except that one of
the indices, namely 7, is regarded as continuous and not discrete. Actually, there is
a subtle simplification here, by comparison with Proposition 1.16, in that { f,,(x)}
at the limiting parameter x is being assumed to tend to f(x). This corresponds
to assuming (b) in the proposition, as well as (i) and (ii). Consequently the proof
of the theorem will be considerably simpler than the proof of Proposition 1.16.
In fact, the proof will be our first example of a 3¢ proof. In many applications
of Theorem 1.21, the given sequence { f,,} is continuous at every x, and then the
conclusion is that f is continuous at every x.

PROOF. We write

|f@) = fCO = 1f@) = fu@O + 1 fu@) = fu(] + 1 fa(x) = f )]
Given € > 0, choose N large enough so that | f,,(t) — f(¢)| < € for all t whenever
n > N. With such an n fixed, choose some § of continuity for the function
fu, the point x, and the number €. Each term above is then < €, and hence
| f(t) — f(x)| < 3e. Since € is arbitrary, f is continuous at x. g

Theorem 1.21 in effect uses only conclusion (c) of Proposition 1.16, which
concerns the equality of the two iterated limits. Conclusion (d) gives a stronger
result, namely that the double limit exists and equals each iterated limit. The
strengthened version of Theorem 1.21 is as follows.

Theorem 1.21°. If {f,} is a sequence of real-valued functions on [a, b] that
are continuous at x and if {f,} converges to f uniformly, then for each ¢ > 0,
there exist an integer N and a number § > 0 such that

/@) — fO)] <€
whenever n > N and |t — x| < 6.

PROOF. If € > 0 is given, choose N such that | f,(r) — f(¢)| < €/2 for all
t whenever n > N, and choose § in the conclusion of Theorem 1.21 such that
|t — x| < & implies | f(¢) — f(x)] < €/2. Then
|fu@) = fFOI @) = fOIH @) — fO <5+5=¢€

whenever n > N and |t — x| < 8. Theorem 1.21’ follows. O
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In interpreting our diagrams of interchanges of limits to get at the statement of
Theorem 1.21, we took the column index to be n and thought of the row index as
a variable 7, which was tending to x. It is instructive to see what happens when
the roles of n and ¢ are reversed, i.e., when the row index is n and the column
index is the variable 7, which is tending to x. Again we have f,(¢) converging
to f(¢t) and lim,,, f,(t) = fu,(x), but the uniformity is different. This time
we want the uniformity to be in n as ¢ tends to x. This means that the § of
continuity that corresponds to € can be taken independent of n. This is the notion
of “equicontinuity,” and there is a classical theorem about it. The theorem is
actually stronger than Proposition 1.16 suggests, since the theorem assumes less
than that f,(¢) converges to f(¢) for all 7.

Let F = {fy | « € A} be a set of real-valued functions on a bounded interval
[a, b]. We say that F is equicontinuous at x € [a, b] if for each € > 0, there is
some § > 0 suchthat |t —x| < § implies | f () — f(x)| < e forall f € F. Theset
JF of functions is pointwise bounded if for each ¢ € [a, b], there exists a number
M; suchthat | f(¢)| < M, forall f € F. The set is uniformly equicontinuous on
[a, b] if it is equicontinuous at each point x and if the § can be taken independent
of x. The set is uniformly bounded on [a, b] if it is pointwise bounded at each
t € [a, b] and the bound M, can be taken independent of 7.

Theorem 1.22 (Ascoli’s Theorem). If { f;;} is a sequence of real-valued func-
tions on a closed bounded interval [a, b] that is equicontinuous at each point of
[a, b] and pointwise bounded on [a, b], then

(a) {f,}is uniformly equicontinuous and uniformly bounded on [a, b],
(b) {f»} has a uniformly convergent subsequence.

PROOF. Since each f, is continuous at each point, we know from Theorems
1.10 and 1.11 that each f; is uniformly continuous and bounded. The proof of
(a) amounts to an argument that the estimates in those theorems can be arranged
to apply simultaneously for all n.

First consider the question of uniform boundedness. Choose, by Theorem 1.11,
some x, in [a, b] with | f,(x,)| equal to K,, = sup,, 5 |fn(x)|. Then choose a
subsequence on which the numbers K, tend to sup, K, in R*. There will be no
loss of generality in assuming that this subsequence is our whole sequence. Apply
the Bolzano—Weierstrass Theorem to find a convergent subsequence {x,, } of {x,},
say with limit xo. By pointwise boundedness, find M,, with | f, (xo)| < M, for
all n. Then choose some § of equicontinuity at xo for e = 1. As soon as k is large
enough so that |x,, — xo| < §, we have

Knk = |fnk(xnk)| S |fnk(xnk) - fnk(x0)| + |fnk(x0)| < 1+ MX()'

Thus 1 + M, is a uniform bound for the functions f;,.
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The proof of uniform equicontinuity proceeds in the same spirit but takes

longer to write out. Fix € > 0. The uniform continuity of f, for each n means
that it makes sense to define

8,(€) = min {l, sup {3’ >0

| fnx)— f(»)| < € whenever [x—y| < §
and x and y are in the domain of f, ’

If |[x — y| < é8,(€), then | f,,(x) — f,(y)| < €. Put 8(¢) = inf, §,(¢). Let us see
thatitis enough to prove that §(¢) > O: If x and y are in [a, b] with |x —y| < &(¢€),
then |x — y| < §(e) < ,(¢e). Hence | f,(x) — f,(¥)| < € as required.

Thus we are to prove that §(¢) > 0. If §(¢) = 0, then we first choose an
increasing sequence {n;} of positive integers such that §,, (¢) < 1 and we next
choose xx and yi in [a, b] with |x; — yk| < 1/k and | f,,, (xk) — fa, (Vk)| = €.
Applying the Bolzano—Weierstrass Theorem, we obtain a subsequence {xi,} of
{xx} such that {xz,} converges, say to xp. Then

limsup |y, — xo| < limsup |yx, — x| + limsup |x;, —xo| =0+0 =0,
I ! !

so that {yg,} converges to xo. Now choose, by equicontinuity at xo, a number
8" > 0 such that | f,(x) — fu(x0)| < § for all n whenever |x — x| < §'. The
convergence of {x;,} and {yy,} to xo implies that for large enough /, we have
|xx, — xo0| < 8’/2 and |yx, — xo| < 8’/2. Therefore | fr, (Ock) = o, (0D | < 5 and
|fnk, (ykl)_f"kl (x0)] < %, from which we conclude that If,,kl (ku)_fnkl (k)| < €.
But we saw that | f,,, (xx) — f, (k)| = € for all k, and thus we have arrived at a
contradiction. This proves the uniform equicontinuity and completes the proof
of (a).

To prove (b), we first construct a subsequence of { f,} that is convergent at
every rational point in [a, b]. We enumerate the rationals, say as xi, x5, ... . By
the Bolzano—Weierstrass Theorem and the pointwise boundedness, we can find
a subsequence of {f,,} that is convergent at x|, a subsequence of the result that
is convergent at x;, a subsequence of the result that is convergent at x3, and so
on. The trouble with this process is that each term of our original sequence may
disappear at some stage, and then we are left with no terms that address all the
rationals. The trick is to form the subsequence {f,,} of the given {f,} whose
k™ term is the k™ term of the kth subsequence we constructed. Then the kth,
k + D%, (k+2)", ... terms of { f, .1 all lie in our k™ constructed subsequence,
and hence {f,, } converges at the first k points xi, ..., x¢. Since k is arbitrary,
{ f.} converges at every rational point.

Let us prove that { f,,,} is uniformly Cauchy. Redefining our indices, we may
assume that n; = k for all k. Let € > 0 be given, let § be some corresponding
number exhibiting uniform equicontinuity, and choose finitely many rationals
ri,...,r; in [a, b] such that any member of [a, b] is within § of at least one of
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these rationals. Then choose N such that | f,,(r;) — fu(rj)| < eforl < j <1
whenever n andm are > N. If x isin [a, b], letr (x) be anr; with [x —r(x)| < 4.
Whenever n and m are > N, we then have

[ fu(X) = fim(X)]
S Nfax) = fur D+ [ fu(r(x) = fn(r )] + | fin (r (x)) — f(X)]
<€+e€+€ =3¢

Hence { f5,,} is uniformly Cauchy, and (b) follows from Proposition 1.17. ]

REMARK. The construction of the subsequence for which countably many
convergence conditions were all satisfied is an important one and is often referred
to as a diagonal process or as the Cantor diagonal process.

EXAMPLE. Let K and M be positive constants, and let F be the set of con-
tinuous real-valued functions f on [a, b] such that | f(#)| < K fora <t < b
and such that the derivative f'(¢) exists fora < ¢t < b and satisfies | f' ()| < M
there. This set of functions is certainly uniformly bounded by K, and we show
that it is also uniformly equicontinuous. To see the latter, we use the Mean Value
Theorem. If x is in the closed interval [a, b] and ¢ is in the open interval (a, b),
then there exists £ depending on ¢ and x such that

1f@) = fOI =1 ®Ilt — x| < M|t —x].

From this inequality it follows that the number § of uniform equicontinuity for
€ and F can be taken to be €/M. The hypotheses of Ascoli’s Theorem are
satisfied, and it follows that any sequence of functions in F has a uniformly
convergent subsequence. The estimate of § is independent of the uniform bound
K, yet Ascoli’s Theorem breaks down if there is no bound at all; for example, the
sequence of constant functions with f;,(x) = n is uniformly equicontinuous but
has no convergent subsequence.

We turn now to the problem of interchange of derivative and limit. The two
indices again will be an integer n that is tending to infinity and a parameter ¢ that
is tending to x. Proposition 1.16 takes away all the surprise in the statement of
the theorem, and it tells us the steps to follow in a proof. What the proposition
suggests is that the general entry in our interchange diagram should be whatever
quantity we want to take an iterated limit of in either order. Thus we expect not a
theorem about a general entry f,(¢), but instead a theorem about a general entry

Ja (@) = fa(x) J) = fx)
t—x

p . The limit on n gives us
—X

and then the limit as ¢ — x gives us f’(x). In the other order the limit as 7 — x

for a limiting function f,
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gives us f,(x), and then we are to consider the limit on n. If Proposition 1.16 is
to be a guide, we are to assume that the convergence in one variable is uniform
in the other. The proposition also suggests that if we have existence of each row
limit and each column limit, then uniform convergence when one variable occurs
first is equivalent to uniform convergence when the other variable occurs first.
Thus we should assume whichever is easier to verify.

Theorem 1.23. Suppose that {f,} is a sequence of real-valued functions
continuous for ¢ < ¢ < b and differentiable for « < r < b such that {f,}
converges uniformly fora < ¢t < b and { f,, (xo)} converges in R for some xy with
a < xo9 < b. Then { f,} converges uniformly for a <t < b to a function f, and
f'(x) =lim, f,(x) fora < x < b, with the derivative and the limit existing.

REMARKS. The convergence of { f(xp)} cannot be dropped completely as a
hypothesis because f,,(f) = n would otherwise provide a counterexample. In
practice, { f,} will be known in advance to be uniformly convergent. However,
uniform convergence of { f,} is not enough by itself, as was shown by the example

fn(_x) _ sSmnx

in Section 2.

PROOF. The first step is to apply the Mean Value Theorem to f;, — f;,,, estimate
f»— fr,and use the convergence of { f, (x)} to obtain the existence of the limit
function f. The Mean Value Theorem produces some £ strictly between ¢ and
xo such that

Fa@) = fu@) = (f2(x0) = fin(x0)) + (¢t = x0) (/€)= £,,(8))-

Our hypotheses allow us to conclude that { f;,(¢)} is uniformly Cauchy, and thus
{fa} converges uniformly to a limit function f by Proposition 1.17.

The second step is to apply the Mean Value Theorem again to f, — f,, this
time to see that
f n (t ) - f n ()C)
on(t) =
t—x

converges uniformly in 7 (for ¢ # x) as n tends to infinity, the limit being ¢ () =

f@) — fx)
r—Xx

t and x such that

. Infact, the Mean Value Theorem produces some £ strictly between

0n0) — () = DO =IOV ZInOT_ ey e,

r—Xx

and the right side tends to O uniformly as n» and m tend to infinity. Therefore
{@n(?)} is uniformly Cauchy for ¢t # x, and Proposition 1.17 shows that it is
uniformly convergent.
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The third step is to extend the definition of ¢ to x by ¢,(x) = f,(x) and
then to see that ¢, is continuous at x and Theorem 1.21 applies. In fact, the
definition of ¢, (¢) is as the difference quotient for the derivative of f; at x, and
thus ¢,(t) — f,(x) = @,(x). Hence ¢, is continuous at x. We saw in the
second step that ¢, (¢) is uniformly convergent for # # x, and we are given that
¢n(x) = f,(x) is convergent. Therefore ¢, () is uniformly convergent for all ¢

with
M fort # X,
lim g, (1) = r—x
lim f, (x) fort = x.

Theorem 1.21 says that the limiting function lim ¢, (¢) is continuous at x. Thus

Cf) - f)
m——r—"- =

li lim £, (x).
t—x tr—Xx n
In other words, f is differentiable at x and f'(x) = lim, f, (x). d

4. Riemann Integral

This section contains a careful but limited development of the Riemann integral
in one variable. The reader is assumed to have a familiarity with Riemann sums
at the level of a calculus course. The objective in this section is to prove that
bounded functions with only finitely many discontinuities are Riemann inte-
grable, to address the interchange-of-limits problem that arises with a sequence
of functions and an integration, to prove the Fundamental Theorem of Calculus
in the case of continuous integrand, to prove a change-of-variables formula, and
to relate Riemann integrals to general Riemann sums. The Riemann integral in
several variables will be treated in Chapter III, and some of the theorems to be
proved in the several-variable case at that time will be results that have not been
proved here in the one-variable case. In Chapters VI and VII, in the context
of the Lebesgue integral, we shall prove a much more sweeping version of the
Fundamental Theorem of Calculus.

First we give the relevant definitions. We work with a function f : [a, b] - R
with @ < b in R, and we always assume that f is bounded. A partition P of
[a, b] is a subdivision of the interval [a, b] into subintervals, and we write such a
partition as

a=xg<x <---<x,=b.

The points x; will be called the subdivision points of the partition, and we may
abbreviate the partition as P = {x;}7_,. In order to permit integration over an
interval of zero length, we allow partitions in which two consecutive x;’s are
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equal; the multiplicity of x; is the number of times that x; occurs in the partition.
For the above partition, let

Ax; = Xx; — X1, w(P) = mesh of P = max Ax;,
1
M; = sup f(x), m; = inf  f(x).
Xi—1 <x<x; Xi—1 SX=X;

Put

n
UP, f)= Z M; Ax; = upper Riemann sum for P,

i=1

n
L(P, f)= ZmiAx,- = lower Riemann sum for P,
i=1

— b
/ fdx = iI[l)f U (P, f) = upper Riemann integral of f,

b
/ fdx =sup L(P, f) = lower Riemann integral of f.
Y a P

—b
We say that f is Riemann integrable on [a,b]if [, fdx = [ ’ fdx, and in

this case we write fab f dx for the common value of these two numbers. We write
Rla, b] for the set of Riemann integrable functions on [a, b].

If f > 0, an upper Riemann sum for f may be visualized in the traditional
way as the sum of the areas of rectangles with bases [x;_1, x;] and with heights
just sufficient to rise above the graph of f on the interval [x;_1, x;], and a lower
sum may be visualized similarly, using rectangles as large as possible so that they
lie below the graph.

EXAMPLES.

(1) Suppose f(x) = ¢ fora < x < b. No matter what partition P is used,
we have M; = ¢ and m; = c. Therefore U(P, f) = L(P, f) = c(b — a),
Ta bf dx = fif dx = c(b — a), and f is Riemann integrable on [a, b] with
fab fdx =c(b—a).

(2) Let [a, b] be arbitrary with a < b, and let f be 1 on the rationals and 0 on

the irrationals. This f is discontinuous at every point of [a, b]. No matter what
partition is used, we have M; = 1 and m; = 0 whenever Ax; > 0. Therefore

—b
U(P, f)=b—aand L(P, f) =0. Hence [, fdx =b—aandfbfdx =0,
- a
and f is not Riemann integrable.
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Let us work toward a proof that continuous functions are Riemann integrable.
We shall use some elementary properties of upper and lower Riemann sums along
with Theorem 1.10, which says that a continuous function on [a, b] is uniformly
continuous.

Lemma 1.24. Suppose that f : [a,b] - Rhasm < f(x) < M for all x in
[a, b]. Then

mb—a)<L(P,f)<UPP, f) <M®b—-a),

b
mb —a) 5f Fdx < M(b —a),

—b
m(b—a)i/ fdx <M —a).

PROOF. The first conclusion follows from the computation
mb—a) =Y mAx; < L(P, f) =) mAx;
i=1 i=1
<Y MiAx;=U(P, f) <Y MAx; = M(b—a).
i=1 i=1

If we concentrate on the first, third, and last members of the above inequalities
and take the supremum on P, then we obtain the second conclusion. Similarly if
we concentrate on the first, sixth, and last members of the above inequalities and
take the infimum on P, then we obtain the third conclusion. O

A refinement of the partition P is a partition P* containing all the subdivision
points of P, with at least their same multiplicities. If P; and P, are two parti-
tions, then P; and P> have at least one common refinement: one such common
refinement is obtained by taking the union of the subdivision points from each
and repeating each such point with the maximum of the multiplicities with which
it occurs in Py and P,. We use this notion in order to prove a second lemma.

Lemma 1.25. Let f : [a, b] — R satisfy m < f(x) < M for all x in [a, b].
Then

(a) L(P, f) < L(P*, f)yand U(P*, f) < U(P, f) whenever P is a parti-
tion of [a, b] and P* is a refinement,
(b) L(Py, f) <U(P,, f) whenever P; and P, are partitions of [a, b],

(©) _fifdx §f_abfdx,
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d) [, fdx—["fdx <(M—m)b—a),
(e) the function f is Riemann integrable on [a, b] if and only if for each
€ > 0, there exists a partition P with U(P, f) — L(P, f) < €.

PROOF. In (a), it is enough to handle the case in which P* is obtained from P
by including one additional point, say x* between x;_; and x;. The only possible
difference between L(P, f) and L(P*, f) comes from [x;_1, x;], and there we
have

inf ]f(x)(xi_xi—1)= [inf ]f(x)(xi—X*)-i- [inf ]f(x)(x*_xi—l)

XE[Xi_1,X; X€E[Xi—1,X; X€E[Xi—1,X;
< inf fx)(—x")+ inf f(x) x"—x_1).
XE[xj_1,x%] XE[x*,x;]

Hence L(P, f) < L(P*, f), and similarly U (P*, f) < U(P, f). This proves
(a).
Let P* be a common refinement of P; and P,. Combining (a) with Lemma
1.24 gives
L(Py, f) S L(P*, f) SU(P*, f) SU(Py, f).

This proves (b). Conclusion (c) follows by taking the supremum on P; and
then the infimum on P,, and conclusion (d) follows by subtracting the second
conclusion of Lemma 1.24 from the third.

For (e), we have

—b

b
L(Pl,f)s/ fdxs/ Fdx < UPs, )

— a

for any partitions P, and P; of [a, b]. Riemann integrability means that the center
two members of this inequality are equal. If they are not equal, then there certainly
can existno P with U(P, f) — L(P, f) <eife = [, hfdx —fhfdx. On the
other hand, equality of the center two members, together with tﬁeadeﬁnitions of
the lower and upper Riemann integrals, means that for each € > 0, we can choose
Py and P, with U(Ps, f) — L(P, f) < €. Letting P be a common refinement
of P; and P, and applying (a), we see that U (P, f) — L(P, f) < €. This proves
(e). O

Theorem 1.26. If f : [a, b] — R is continuous on [a, b], then f is Riemann
integrable on [a, b].

PROOF. From Theorem 1.10 we know that f is uniformly continuous on [a, b].
Given e > 0, we can therefore choose some number § > 0 corresponding to f and
eon[a,b]. Let P = {x;}!_, be a partition on [a, b] of mesh u(P) < 5. On any
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subinterval [x;_1, x;] corresponding to P, we have m; = f (&) and M; = f(n;)
for some &; and #; in [x;_1, x;], by Theorem 1.11. Since |n; —&;| < |x; —x;—1| =
Ax; < u(P) < §,weobtain M; —m; = f(n;) — f(&) < €. Therefore

U(P, /)= L(P, /)= (Mi—m)Ax; <€) Ax; =e(b —a),
i=1

i=1
and the theorem follows from Lemma 1.25e. O

We shall improve upon Theorem 1.26 by allowing finitely many points of
discontinuity, but we need to do some additional work beforehand.

—b
Lemma 1.27. If f is bounded on [a, ] and a < ¢ < b, then fa fdx =

—c —b

[, fdx+ [ fdx,and similarly for [ b Consequently £ is in R[a, b] if and
Za

only if f is in both R[a, c] and R][c, b], and in this case,

/abfdx=/acfdx+/cbfdx.

REMARKS. After one is done developing the Riemann integral and its prop-
erties, it is customary to adopt the convention that fba fdx = — fab f dx when
b < a. One of the places that this convention is particularly helpful is in applying
the displayed formula of Lemma 1.27: the formula is then valid for all real a, b, ¢
without the assumption that a, b, ¢ are ordered in a particular way.

PROOF. If P and P, are partitions of [a, c] and [c, b], respectively, let P be
their “union,” which is obtained by using all the subdivision points # ¢ of each
partition, together with c itself. The multiplicity of ¢ in P is to be the larger of
the numbers of times ¢ occurs in P; and P,. This P is a partition of [a, b]. Then

—b
/ fdx <UP, f)=UPr, /) +U(P, f).

Taking the infimum over P; and then the infimum over P,, we obtain

bedxfchdx—{—zbfdx.

For the reverse inequality, let € > O be given, and choose a partition P of

—b
[a, b] with U (P, ) — fa f dx < €. Let P* be the refinement of P obtained by
adjoining ¢ to P if ¢ is not a subdivision point of P or by using P itself if ¢ is a
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subdivision point of P. Lemma 1.25a gives U (P*, f) — [, hf dx < €. Because
c is a subdivision point of P*, the subdivision points < ¢ give us a partition P; of
[a, c] and the subdivision points > ¢ give us a partition P, of [c, b]. Moreover,
P* is the union of P; and P>. Then we have

— b —c — b

f fdx+e>UP*, )=U(P, [)+U(P, f) 2/ fdx—|—/ fdx.
Since € is arbitrary, the lemma follows. O

Lemma 1.28. Suppose that f : [a,b] — R is bounded on [a, b] and that
a < c <b. Ifforeach$§ > 0, f is Riemann integrable on each closed subinterval
of [a,b] N {x ‘ |lx —c| > 8}, then f is Riemann integrable on [a, b].

PROOF. We give the argument whena < ¢ < b, the casesc = a andc = b
being handled similarly. Since f is by assumption bounded, find m and M
withm < f(x) < M for all x € [a,b]. Choose § > 0 small enough so that
a<c—046<c<c+68 <b. Tosimplify the notation, let us drop “f dx” from
all integrals. Since f is by assumption Riemann integrable on [a, ¢ — 8] and
[c + 8, b], Lemma 1.27 gives

— c+6

— b —c—4 — b =38 — c+6 b

A A R e B |

a a c—§ c+6 Joa c—38 ot
c—§8 +8

c b
5/ +(/ +28(M—m)>+/
v Y c—§ 2 c+6
b
= / +25(M — m).
. . . - b b
Since § is arbitrary, [ = [ . The lemma follows. O

Proposition 1.29. If f : [a, b] — R is bounded on [a, ] and is continuous
at all but finitely many points of [a, b], then f is Riemann integrable on [a, b].

REMARK. There is no assumption that f has only jump discontinuities. For
example, the proposition applies if [a, b] = [0, 1] and f is the function with
fx) = sin)l( for x £ 0 and f(0) =0.

PROOF. By Lemma 1.27 and induction, it is enough to handle the case that f is
discontinuous at exactly one point, say c. Since f is bounded and is continuous
at all points but ¢, Theorem 1.26 shows that the hypotheses of Lemma 1.28
are satisfied. Therefore Lemma 1.28 shows that f is Riemann integrable on
[a, b]. 0
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We shall now work toward a theorem about interchanging limits and integrals.
The preliminary step is to obtain some simple properties of Riemann integrals.

Proposition 1.30. If f, fi, and f> are Riemann integrable on [a, b], then

@) fi+ frisinRla,bland [7 (fi + fo)dx = [ frdx + [ frdx,
(b) cf isin Rl[a, b] and fab cfdx =c fab f dx for any real number c,

(©) fi < fron[a, bl implies [, fidx < [} frdx,

(d m < f <Monla,b]land ¢ : [m, M] — R continuous imply that ¢ o f
is in Rla, b],

(e) |flisinRla,bl,and | [* fdx| < [71f]dx,

() f?and fi f> are in R[a, b],

(g) +/f isin Rla, b]if f > 0on [a, b],

(h) the function g with g(x) = f(—x) is in R[—b, —a] and satisfies

- b
[ gdx =[] fdx.
REMARK. The proof of (c) will show, even without the assumption of Riemann

. o —b —b b b

integrability, that [~ fidx < [ fodxand [” fidx < [” f>dx. We shall make
“a Za

use of this stronger conclusion later in this section.

PROOF. For (a), write f = f| + f», and let P be a partition. From

inf ]fl (x) + [inf ]fz(X) = [inf ](fl + f2)(x) er[inf ]f(X)

xelXi_1,% xelXi_1,% €lxi—1,% Xim1,Xi
and a similar inequality with the supremum, we obtain

L(P, f)+L(P, f) <L(P, ) <UP, f) =U(P, f) +U(P, f2). (%)
Let € > 0 be given. By Lemma 1.25e, choose P; and P, with

U(Py, fi) = L(P1, fi) <€ and U(Py, f2) — L(P2, fo) <e.
If P is a common refinement of P; and P, then Lemma 1.25a gives
U(P, fi) — L(P, fi) <e and U(P, fo) — L(P, f») <e.

Hence

b
U(P,fl)E/ frdx +€ < L(P, fi) + 2,

b
UP, f3) < / Frdx+e < L(P, fr) + 2,
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and (x) yields U(P, f) — L(P, f) < 4e. Since € is arbitrary, Lemma 1.25¢
shows that f is in R[a, b]. From the inequalities for U (P, f1) and U (P, f>),
combined with the last inequality in (), we see that

b b b
/fdeU(P,f)SU(P,f1)+U(P,fz)§/ fldx+/ fodi + 2,

while the first inequality in () shows that

b b
/fldx—i—/ frdx +2¢ < L(P, fi) + L(P, f2) +4e
b
5L(P,f)+4e§/ fdx +4e.

Since € is arbitrary, we obtain fab (fi + f)dx = fab fidx + fab f>dx. This
proves (a).

For (b), consider any subinterval [x;_;, x;] of a partition, and let m; and
M; be the infimum and supremum of f on this subinterval. Also, let m; and
M be the infimum and supremum of ¢f on this subinterval. If ¢ > 0, then
M! = cM; and m; = cm;, so that U(P,cf) = cU(P, f) and L(P,cf) =
cL(P, f). If ¢ <0, then M] = cm; and m; = cM;, so that U(P,cf) =
cL(P, f)and L(P,cf) = cU(P, f). In either case, U(P,cf) — L(P,cf) =
lc|(U(P, f)— L(P, f)), and (b) follows from Lemma 1.25¢.

—b

For (c), we have [ fidx < U(P, fi) < U(P, f») for all P. Taking the
—b

infimum on P in the inequality of the first and third members gives fu fidx <

/, ’ frdx. (Similarly [ Z fidx < [ Z f>dx, but this is not needed under the
hypothesis that f; and j_fz are Riemann integrable.)

For (d), let K’ = sup,p,, 417 |9 (#)]. Lete > 0 be given, and choose by Theorem
1.10 some § of uniform continuity for ¢ and €. Without loss of generality, we
may assume that § < €. By Lemma 1.25e, choose a partition P = {x;}?_, of
[a, b] such that U(P, f) — L(P, f) < 8. On any subinterval [x;,_;, x;] of P,
let m; and M; be the infimum and supremum of f, and let m; and M; be the
infimum and supremum of ¢ o f. Divide the set of integers {1, ..., n} into two
subsets —the subset A of integers i with M; —m; < § and the subset B of integers
i with M; —m; > 8. If i is in A, then the definition of § makes M/ — m] < €. If
i is in B, then the best we can say is that Ml./ — m; < 2K. However, on B we do
have M; — m; > &, and thus

n

§Y Axi <Y (Mi—m)Ax; <Y (Mi—m)Ax; = U(P,f)—L(P, f) < &.

ieB ieB i=1
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Thus ), g Ax; < & and
U(P,go f)—L(P,go f) =Y (M —m)Ax;+ Y (M —m})Ax;

icA ieB
SGZAxi—l-zKZAX,‘
icA ieB

<eb—a)+2Ks <elb—a)+2Ke.
Since € is arbitrary, the Riemann integrability of g o f follows from Lemma 1.25e.

For (e), the first conclusion follows from (d) with ¢(¢) = |¢|. For the asserted
inequality we have f < |f| and —f < | f], so that (c) and (b) give fab fdx <
J21f1dx and — [” fdx < [”|f]dx. Combining these inequalities, we obtain
|7 fdx] < [} 1f1dx.

For (f), the first conclusion follows from (d) with ¢(7) = ¢2. For the Riemann
integrability of f; f>, we use the formula f| f, = %((fl + f)* — ff — f}) and
the earlier parts of the proposition.

Conclusion (g) follows from (d) with ¢ (1) = /7.

For (h), each partition P of [a, b] yields a natural partition P’ of [—b, —a] by
using the negatives of the partition points. When P and P’ are matched in this way,
U(P, f)=U(P',g)and L(P, f) = L(P’, g). Itis immediate that f € Rla, b]
implies ¢ € R[—b, —a] and that [’ gdx = fab fdx. This completes the
proof. (]

The next topic is the problem of interchange of integral and limit.

EXAMPLE. On the interval [0, 1], define f,,(x) toben forO < x < 1/n and to
be 0 otherwise. Proposition 1.29 shows that f,, is Riemann integrable, and Lemma
1.27 allows us to see that fol fndx = lforalln. Ontheotherhand, lim, f,(x) =0
forall x € [0, 1]. Since [, 0dx =0, wehave [ f,dx =10 = [lim, f, dx.
Thus an interchange of integral and limit is not justified without some additional
hypothesis.

Theorem 1.31. If { f,} is a sequence of Riemann integrable functions on [a, b]
and if { f,,} converges uniformly to f on [a, b], then f is Riemann integrable on

[a’ b]’ and hmn fah fn dx = fah fdx

REMARKS. Proposition 1.16 suggests considering a “matrix” whose entries
are the quantities for which we are computing iterated limits, and these quantities
are U(P, f,) here. (Alternatively, we could use L(P, f,).) The hypothesis of
uniformity in the statement of Theorem 1.31, however, concerns f,,,notU (P, f,).
In fact, the tidy hypothesis on f, in the statement of the theorem implies a less
intuitive hypothesison U (P, f,) thathas notbeen considered. The proof conceals
these details.
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PROOF. Using the uniform Cauchy criterion with € = 1, we see that there
exists N such that | f,(x)] < My + 1 for all x whenever n > N. It follows
from the boundedness of fi, ..., fy—; that the | f;;| are uniformly bounded, say
by M. Then also | f(x)| < M for all x. Put e, = sup, |f,(x) — f(x)], so that
fo —en < f < fu + &,. Proposition 1.30c and the remark with the proposition,
combined with Lemma 1.25c¢, then yield

b b b b
/(fn—sn)dxfffdxff fdxf/ (fn+en)dx.

Subtracting fab fndx throughout gives | bf dx — fbfdx < 2e, fab dx =
2&,(b — a) for all n. The uniform convergence of {]_‘na} to f forces ¢, to tend
to 0, and thus f is in R[a, b]. The displayed equation, in light of the Riemann
integrability of f, shows that

b b
/fdx—/ f,,dx‘§28n(b—a).

The right side tends to 0, and therefore lim, fab fodx = fab fdx. O

EXAMPLE. Let f : [0, 1] — R be defined by

1/q if x is the rational p/q in lowest terms

f(X)={

0 if x is irrational.

This function is discontinuous at every rational and is continuous at every irra-
tional. Its Riemann integrability is not settled by Proposition 1.29. Define

1/q if x is the rational p/q in lowest terms, g < n
fux) =140 if x is the rational p/q in lowest terms, g > n
0 if x is irrational.

Proposition 1.29 shows that f;, is Riemann integrable, and Lemma 1.27 shows that
fol fadx = 0. Since | f,(x) — f(x)] < 1/n for all x, {f,} converges uniformly
to f. By Theorem 1.31, f is Riemann integrable and fol fdx =0.

Theorem 1.32 (Fundamental Theorem of Calculus). If f : [a,b] — R is
continuous, then
(a) the function G(x) = fax fdt is differentiable for a < x < b with
derivative f(x), and it is continuous at @ and b with G(a) =0,
(b) any continuous function F on [a, b] that is differentiable fora < x < b
with derivative f(x) has [” f dt = F(b) — F(a).
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REMARK. The derivative of G(x) on (a, b), namely f(x), has the finite limits
f(a) and f(b) at the endpoints of the interval, since f has been assumed to
be continuous on [a, b]. Thus, in the sense of the last paragraph of Section A2
of Appendix A, G(x) has the continuous derivative f(x) on the closed interval
[a, b].

PROOF OF (a). Riemann integrability of f is known from Theorem 1.26. For
h > 0 small enough to make x + & < b, Lemma 1.27 and Proposition 1.30 give

Gx+h) —G hoedr — [ fd
A CON Y e - S T
1 x+h
=ﬁ/ fdi - f@)
1 x+h
= / LF() — FColde

G(x+h)—G 1 [t
and hence ‘ o+ 2 o) —f(X)‘ EE/ [f () — fx)ldt.
If € > 0 is given, choose the § of continuity for f and € at x. Then0 < h < §
implies that the right side is < e. For negative i, we instead take 4 > 0 and
consider

G(x—h)—G L L[
(x )h @ o L pan— e - E/ Lf (D) — fCOdr.
_ X—h x—h
Then
G(x—h)—G e
(x —h) (x) ol < — | (1) — f(x)|dt <e,
—h |h| x—h
as required. -

PROOF OF (b). The functions F and G are two continuous functions on [a, b]
with equal derivative on (a, b). A corollary of the Mean Value Theorem stated
in Section A2 of Appendix A implies that G = F 4 ¢ for some constant c. Then

b
/ fdt=Gb)-0=G0b)—-G(a)=F®b)+c—F(a) —c=F(@®)— F(a).

0
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Corollary 1.33 (integration by parts). Let f and g be real-valued functions
defined and having a continuous derivative on [a, b]. Then

b b b
/ f(x)g’(x)dx=[f(x>g<x>]a— / £/(@)g(x) dx.

REMARK. The notion of a continuous derivative at the endpoints of an interval
is discussed in the last paragraph of Section A2 of Appendix A.

PROOF. We start from the product rule for differentiation, namely
d
E[f(X)g(X)] = f(0)g'(x) + f(x)g(x),

and we apply fab to both sides. Taking Theorem 1.32 into account, we obtain the
desired formula. (]

Theorem 1.34 (change-of-variables formula). Let f be Riemann integrable
on [a, b], let ¢ be a continuous strictly increasing function from an interval [A, B]
onto [a, b], suppose that the inverse function ™' : [a, b] — [A, B]is continuous,
and suppose finally that ¢ is differentiable on (A, B) with uniformly continuous
derivative ¢’. Then the product (f o ¢)¢’ is Riemann integrable on [A, B], and

b B
/f(X)dX=/A FleMe¢' (y)dy.

REMARKS. The uniform continuity of ¢ forces ¢’ to be bounded. If ¢’ were
also assumed positive on (A, B), then the continuity of ¢! on (a, b) would be
automatic as a consequence of the proposition in Section A3 of Appendix A. The
result in the appendix is not quite good enough for current purposes, and thus we
have assumed the continuity of ¢! on [a, b]. It will be seen in Section I1.7 that
the continuity of ¢~ ! on [a, b] is automatic in the statement of Theorem 1.34 and
need not be assumed.

PROOFIF f > 0. Given € > 0, choose some 1 of uniform continuity for ¢’ and
€, and then choose, by Theorem 1.10, some § of uniform continuity for ¢ landn.
Next choose a partition P = {x;}_, on [a, b] suchthat U(P, f) — L(P, f) <.
Possibly by passing to a refinement of P, we may assume that u(P) < é. Let Q
be the partition {y;}"_, of [A, B] with y; = ¢ ' (x;). Then u(Q) < n.

The Mean Value Theorem gives Ax; = (Ay;)¢’(&;) for some &; between y;_;
and y;. On [A, B], ¢’ is bounded; let m} and M be the infimum and supremum
of ¢’ on [y;—1, yil, so that m} < ¢'(§) < M} and mAy; < Ax; < M}Ay;.
Since u(Q) < n, we have M — m? < €. Then we have

D o MimiAy <Y MiAx; =U(P, f) =Y Mg/ () Ayi < Y M;M; Ay;.
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Whenever F and G are > 0 on a common domain and x is in that domain,
(inf G) F (x) < G(x) F (x); taking the supremum of both sides gives the inequality
(inf G)(sup F) < sup(FG). Also, sup(FG) < sup(F)sup(G). Applying these
inequalities with G = ¢’ and F = f o ¢ yields

D MimiAy <UQ, (fog)g)) < D MM Ay;.

Subtraction of the right-hand inequality of the first display and the left-hand
inequality of the second display shows that

U(P, f)=U(Q, (fop)¢) <Y M;(M] —m?)Ay;, ()

while subtraction of the right-hand inequality of the second display and the left-
hand inequality of the first display gives

U(Q, (f op)p) —U(P, f) <Y Mi(M —m?)Ay;. ()
Suppose that | f(x)| < M on [a, b]. Then (x) and (x*) give

[P, f) = U(Q.(fop)@)| <> M;(Mj —m})Ay; < eM(B — A).

Similarly IL(P, ) — L(Q, (f o p)¢")| < eM(B — A),
and hence

1UQ, (f op)¢) — L(Q, (f o9)¢)l
< U, (fop)¢) —UP, HI +IUP, f) = L(P, [)]
+IL(P, f) = L(Q, (f o )¢

<2eM(B — A) +e.
Since € is arbitrary, Lemma 1.25¢ shows that (f o ¢)¢’ is in R[A, B]. Our
inequalities imply that

[ fdx—UP, f)] <€,
\UP, ) = U(Q. (f op)p)| < eM(B — A),

and  |U(Q,(fo@)g) — [{ (fop)y' dy| <2M(B— A)+e.
Addition shows that | [ fdx — [ (f o 9)¢' dy| < 2¢ +3eM(B — A). Since
€ is arbitrary, fab fdx = ff (fop)p'dy. O

PROOF FOR GENERAL f. The special case just proved shows that the result
holds for f + ¢ for a suitable positive constant ¢, as well as for the constant
function c¢. Subtracting the results for f + ¢ and ¢ gives the result for f, and the
proof is complete. U
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If f isRiemannintegrableon [a, b],then U (P, f)and L(P, f)tendto fah fdx
as P gets finer by insertion of points. This conclusion tells us nothing about fine-
looking partitions like those that are equally spaced with many subdivisions. The
next theorem says that the approximating sums tend to f ab f dx just under the
assumption that p(P) tends to 0.

Relative to our standard partition P = {x;}i_,, let t; for 1 < i < n satisfy
xi—1 <t; < x;,and define

S(P, ), ) =) ft)Ax;.
i=1

This is called a Riemann sum of f.

Theorem 1.35. If f is Riemann integrable on [a, b], then

b
i S, ) = / £ dx.

Conversely if f is bounded on [a, b] and if there exists a real number r such
that for any € > 0, there exists some § > 0 for which |S(P, {#;}, f) —r| < €
whenever w(P) < 6, then f is Riemann integrable on [a, b].

PROOF. For the direct part the function f is assumed bounded; suppose
|f(x)] < M on [a, b]. Let € > 0 be given. Choose a partition P* of [a, b] with
U(P*, f) < fah fdx + €. Say P* is a partition into k intervals. Put §; = ﬁ
and suppose that P is any partition of [a, b] with w(P) < §;. In the sum giving
U(P, f), we divide the terms into two types —those from a subinterval of P that
does not lie within one subinterval of P* and those from a subinterval of P that
does lie within one subinterval of P*.

Each subinterval of P of the first kind has at least one point of P* strictly
inside it, and the number of such subintervals is therefore < k — 1. Hence the
sum of the corresponding terms of U (P, f) is

(k—1)Me <

< (k—=DMu(P) < "k

For the terms of the second kind, fix attention on one subinterval I* of P* and
consider all the subintervals I; of P that are of the second kind and lie within
I*. Let |I;] be the length of [;, and let m; be the supremum of f, positive
or negative or zero, on /;. Let m be the supremum of f on /*. Then the
contribution of the intervals /; to U(P, f) is ), m;|I;|, and term by term this is
< Y. mllj| =m) , |I;|. The intervals /; must fill up /* except possibly for a
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part of I* at each end, and each of these two ends has a total length of < u(P).
Thus the contribution of the intervals I; of the second kind inside 7* to U (P, f)
is

<m Y _|I;| = m(|I*| — [left end| — |right end])

< m|I*| +|m2u(P) < m|I"| + (sup | fD2u(P) < m|I”| 4 2€/k.

On the right side the term m|[*| is the term of U (P*, f) coming from /*. Sum-
ming over the k intervals I* whose union is [a, b], we see that the contribution
to U(P, f) of all intervals of the second kind is

< U(P*, f) +2e.
Thus ,
UP. f) < e+ UP*. f) ff Fdx + 3e.

Similarly we can produce &, such that u(P) < §, implies

b
L(P, f)z/ fdx —3e.

If § = min{d;, 6} and u(P) < §, then
b b
/ fdx—3esL(P,f)sS(P,f)sU(P,f)s/ fdx + 3e,

and hence |S(P, f) — [7 fdx| < 3e.

For the converse lete > 0be given, and choose some § as in the statement of the
theorem. Next choose a partition P = {x;}!_, with |U (P, f)— f_a ’ f dx| <€
and |fbf dx — L(P, f)| < €; possibly by passing to a refinement of P, we
may eistslume without loss of generality that ;1(P) < 8. Choosing {t;}!_, suitably
for the partition P, we can make |U (P, f) — S(P, {t;}, f)| < €. For a possibly

different choice of the set of intermediate points, say {tl./ }, we can make
IS(P,{t]}, f) — L(P, f)| < €. Then

1 pdx = [ pax| <|UP. £y =T, Fdx| +1UP. )= S, 1), £
FIS(P. 18, ) =l + Ir = S(P. {5}, £)]
+1S(P, {1}, ) = L(P, Pl +|L(P, ) — [ f dx|

< 6e.

Since € is arbitrary, the Riemann integrability of f follows from Lemma 1.25e.
0
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With integration in hand, one could at this point give rigorous definitions of
the logarithm and exponential functions log x and exp x, as well as rigorous but
inconvenient definitions of the trigonometric functions sin x, cos x, and tan x. For
each of these functions we would obtain a formula for the derivative and other
information. We shall not pursue this approach, but we pause to mention the idea.
We put logx = flx t='dt for 0 < x < +oo and see that log carries (0, +00)
one-one onto (—oo, +00). The function log x has derivative 1/x and satisfies
the functional equation log(xy) = logx 4 log y. The proposition in Section A3
of Appendix A shows that the inverse function exp exists, carries (—oo, +00)
one-one onto (0, +00), is differentiable, and has derivative exp x. The functional
equation of log translates into the functional equation exp(a 4+ b) = expa expb
for exp, and we readily derive as a consequence that expx = e*, where ¢ =
exp 1. For the trigonometric functions, the starting points with this approach are
the definitions arctanx = fj (14 t*)~'dt, arcsinx = [; (1 —?)7"/2dt, and
m = 4arctan 1.

Instead of using this approach, we shall use power series to define these
functions and to obtain their expected properties. We do so in Section 7.

5. Complex-Valued Functions

Complex numbers are taken as known, and their notation and basic properties
are reviewed in Section A4 of Appendix A. The point of the present section is
to extend some of the results for real-valued functions in earlier sections so that
they apply also to complex-valued functions.

The distance between two members z and w of C is defined by d(z, w) =
|z — w|. This has the properties

(i) d(z1, z2) = 0 with equality if and only if z; = z»,

(i) d(z1,22) = d(z2, 21),

(iii) d(z1,22) < d(z1,23) +d(z3, 22).
The first two are immediate from the definition, and the third follows from the
triangle inequality of Section A4 of the appendix withz = z;—zz and w = z3—2».
For this reason, (iii) is called the triangle inequality also.

Convergence of a sequence {z,} in C to z has two possible interpretations:
either {Re z,,} converges to Re z and {Im z,,} converges to Imz, or d(z,, z) con-
verges to 0 in R. These interpretations come to the same thing because

max {Rew, Imw} < |w| < \/Emax{Re w, Im w}.

Then it follows that uniform convergence of a sequence of complex-valued
functions has two equivalent meanings, so does continuity of a complex-valued
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function at a point or everywhere, and so does differentiation of a complex-
valued function. We readily check that all the results of Section 3, starting with
Proposition 1.16 and ending with Theorem 1.23, extend to be valid for complex-
valued functions as well as real-valued functions.

The one point that requires special note in connection with Section 3 is the
Mean Value Theorem. This theorem is valid for real-valued functions but not
for complex-valued functions. It is possible to give an example now if we again
allow ourselves to use the exponential and trigonometric functions before we
get to Section 7, where the tools will be available for rigorous definitions. The
example is f(x) = e for x € [0, 27]. This function has f(0) = f(2m) =1,
but the derivative f'(x) = ie'* is never 0.

The Mean Value Theorem was used in the proof of Theorem 1.23, but the
failure of the Mean Value Theorem for complex-valued functions causes us no
problem when we seek to extend Theorem 1.23 to complex-valued functions.
The reason is that once Theorem 1.23 has been proved for real-valued functions,
one simply puts together conclusions about the real and imaginary parts.

Next we examine how the results of Section 4 may be extended to complex-
valued functions. Upper and lower Riemann sums, of course, make no sense for
a complex-valued function. It is possible to make sense out of general Riemann
sums as in Theorem 1.35, but we shall not base a definition on this approach.

Instead, we simply define definite integrals of a function f : R — C in terms
of real and imaginary parts. Define the real and imaginary parts ¥ = Re f and
v=1Im f by f(x) = u(x)+iv(x), and let fab fdx = fabudx +i fabvdx. We
can then redefine the set R[a, b] of Riemann integrable functions on [a, /] to
consist of bounded complex-valued functions on [a, b] whose real and imaginary
parts are each Riemann integrable.

Most properties of definite integrals go over to the case of complex-valued
functions by inspection; there are two properties that deserve some discussion:

(i) If f isin Rla, b] and c is complex, then cf is in R[a, b] and fab cfdx =
c [’ fdx.
(ii) If f is in Rla, b], then | | is in Rla, bl and | [* f dx| < [71f]dx.
To see (i), write f =u +ivandc =r +is. Thencf = (r +is)(u +iv) =
(ru—sv)+i(rv+su). The functions ru —sv and r v+ su are Riemann integrable
on [a, b], and hence so is ¢f. Then
fab cf dx = fab (ru —sv)dx +i fab (rv+su)dx
=rfabudx —sfabvdx+irfabvdx+isfabudx
:rfab (u—}—iv)dx—l—isfab (u+iv)dx :cfabfdx.

To see (ii), let f be in Rla, b]. Proposition 1.30 shows successively that
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(Re f)? and (Im f)? are in R[a, b], that (Re f)*> + (Im f)? = | f|? is in R[a, b],
and that /[ f|> = | f| is in R[a, b]. For the inequality with | [ f dx|, choose
¢ € C with |c| = 1 such that ¢ fab f dx is real and nonnegative, i.e., equals
| [ f dx|. Using (i), we obtain (ii) from

| [P fdx| =c [P fdx = ["cfdx = ["Re(cf)dx
< [} lefldx = [} |f|dx.

Finally we observe that Theorem 1.35 extends to complex-valued functions
f. The definition of Riemann sum is unchanged, namely S(P, {#;}, f) =
Y iy f(t;) Ax;, and the statement of Theorem 1.35 is unchanged except that the
number r is now allowed to be complex. The direct part of the extended theorem
follows by applying Theorem 1.35 to the real and imaginary parts of f separately.
For the converse we use that the inequality |S(P, {t;}, f) —c| < € with ¢ complex
implies |S(P, {t;},Re f) —Rec| < € and |S(P, {t;},Im f) — Imc| < €. Theo-
rem 1.35 for real-valued functions then shows that Re f and Im f are Riemann
integrable, and hence so is f.

6. Taylor’s Theorem with Integral Remainder

There are several forms to the remainder term in the one-variable Taylor’s
Theorem for real-valued functions, and the differences already show up in their
lowest-order formulations. Let f be given, and, for definiteness, suppose a < x.
If o(1) denotes a term that tends to 0 as x tends to a, three such lowest-order
formulas are

f(x) = fa)+0(1) if f is merely assumed to be continuous,

f(x) = f(a)+ (x —a)f' (&) witha < & < x if f is continuous
on [a, x] and f’ exists on (a, x),

fx) = f(a)+ /x fl@dt if f and f’ are continuous on [a, x].

The first formula follows directly from the definition of continuity, while the sec-
ond formula restates the Mean Value Theorem and the third formula restates part
of the Fundamental Theorem of Calculus. The hypotheses of the three formulas
increase in strength, and so do the conclusions. In practice, Taylor’s Theorem
is most often used with functions having derivatives of all orders, and then the
strongest hypothesis is satisfied. Thus we state a general theorem corresponding
only to the third formula above. It applies to complex-valued functions as well
as real-valued functions.
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Theorem 1.36 (Taylor’s Theorem). Let n be an integer > 0, let @ and x
be points of R, and let f be a complex-valued function with n 4+ 1 continuous
derivatives on the closed interval from a to x. Then

f( ) (x f™@)
n!

f(x) (x—a)"—I—R,,(a,x),

where

1 X
—'/ (x — )" fOV @) de ifa < x,
n'J,
Ry(a, x) = 1 ra
——'/ x =" f"V@®)ydr  ifx <a.
n'Jy

REMARKS. The notion of a continuous derivative at the endpoints of an interval
is discussed for real-valued functions in the last paragraph of Section A2 of
Appendix A and extends immediately to complex-valued functions; iteration of
this definition attaches a meaning to continuous higher-order derivatives on a
closed interval. Once the convention in the remarks with Lemma 1.27 is adopted,
namely that [ fdt = — [* fdt when x < a, the formula for the remainder
term becomes tidier:

Ru(a,x) = % / ) (x = )" fOV @) dt,

with no assumption that a < x.

PROOF. We give the argument when a < x, the case x < a being handled
analogously. The proof is by induction on n. For n = 0, the formula is immediate
from the Fundamental Theorem of Calculus (Theorem 1.32b). Assume that the
formula holds for n — 1. We apply integration by parts (Corollary 1.33) to the
remainder term at stage n — 1, obtaining

[ amirtsoaar = famrrmo] 4 [ amoe o
a n

Substitution gives

R,_1(a,x) =

T AR AR
_ _nl [ ro@] v [ a
- E (x —a)" f" (@) + Ry(a. x),

and the induction is complete. O
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7. Power Series and Special Functions

A power series is an infinite series of the form Y 2 ¢,z". Normally in math-
ematics, if nothing is said to the contrary, the coefficients ¢, are assumed to be
complex and the variable z is allowed to be complex. However, in the context of
real-variable theory, as when forming derivatives of functions defined on intervals,
one is interested only in real values of z. In this book the context will generally
make clear whether the variable is to be regarded as complex or as real.
F®©0)x"
0 of
afunction f having derivatives of all orders, with the remainder terms discarded.
In this case the variable is to be real. If the series is convergent at x, the series
has sum f(x) if and only if lim, R,(0, x) = 0. Later in this section, we shall
see examples both where the limit is identically O and where it is nowhere O for

x # 0.

One source of power series is the “infinite Taylor series” E 0
n=,

Theorem 1.37. If a power series ) -, ¢,z" is convergent in C for some com-
plex zo with |zo| = R and if " < R, then Y o |c,2"| is uniformly convergent
for complex z with |z| < R, and sois Y oo (n + 1)|cat12"].

REMARKS. The number
R = sup {R’ } > > hcn2" converges for some zo with |z9] = R’ }

is called the radius of convergence of ) - c,z". The theorem says that if
R’ < R,then ) 2 |c,z"| converges uniformly for |z| < R’, and it follows from
the uniform Cauchy criterion that Y >~ ¢,z" converges uniformly for |z| < R’
The definition of R carries with it the implication that if zg has |z9| > R, then
Yoo cnzgy diverges.

PROOF. The theorem is vacuous unless R > 0. Since Y - ¢,z is convergent,
the terms ¢,z; tend to 0. Thus there is some integer N for which |c,|R" < 1
whenn > N. Fix R' < R. For |z] < R"andn > N, we have

n R/ \n
=(%)-
~\R

Since ) (%)” < +00, the Weierstrass M test shows that Y - ¢,z" converges
uniformly for |z| < R'.

For the series Y oo (n + 1)|c,412"|, the inequalities |z| < R’ and n > N
together imply

Z

lcn2"| = |angl
20

Z n
—| =lealR"
20

'\ n /

|+ Den 2" < (n+ Dlcar |R"(%) <+ DR (%)
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To see that the Weierstrass M test applies here as well, choose r’ with R'/R <

r’ < 1 and increase the size of N so that ”“ < 11; r’ whenever n > N. For such
n, the ratio test and the inequality

/

= <r

n+2R ()T 42 R
R =

(n+ DHR(E) " n+1 R
show that Y (n + I)R_l('%)'1 converges. Thus the Weierstrass M test indeed
applies, and the proof is complete. O

Corollary 1.38. If Y 7, ¢,x" converges for |x| < R and the sum of the series
for x real is denoted by f(x), then the function f has derivatives of all orders
for |[x| < R. These derivatives are given by term-by-term differentiation of the
series for f, and each differentiated series converges for [x| < R. Moreover,
TA)

k!

REMARK. When a function has derivatives of all orders, we say that it is
infinitely differentiable.

Cr =

PROOF. The corollary is vacuous unless R > 0. Let R’ < R. The given
series certainly converges at x = 0, and Theorem 1.37 shows that the term-by-
term differentiated series converges uniformly for |x| < R’. Thus Theorem 1.23
gives f/(x) = Y o7 (n + 1)c,p1x" for |x| < R'. Since R’ < R is arbitrary,
fl(x) =302 (n+ Dcyp1x™ for |x| < R.

We can iterate this result to obtain the corresponding conclusion for the higher-
order derivatives. Evaluating the derivatives at 0, we obtain f®(0) = c;k!, as
asserted. O

Corollary 1.39. If 72 ¢, x" and ) .-, d,x" both converge for |x| < R and
if their sums are equal for x real with |x| < R, then ¢, = d,, for all n.

PROOF. This result is immediate from the formula for the coefficients in

Corollary 1.38. O
If f : R — Cis infinitely differentiable near x = a, we call the infinite series
oo £(n)
> AC) (x — a)" the (infinite) Taylor series of f. We call a general series
n!

n=0
ano ¢, (x — a)" a power series about x = qa; its behavior at x = a + ¢ is the
same as the behavior of the series Y --,c,x" at x = ¢. In applications, one
usually adjusts the function f so that Taylor series expansions are about x = 0.
Thus we shall concentrate largely on power series expansions about x = 0.



7. Power Series and Special Functions 47

Had we chosen at the end of Section 4 to define log x as || lx t~'dt and exp x as

the inverse function of log x, we would have found right away that (%)k expx =
exp x for all k. Therefore the infinite Taylor series expansion of exp x aboutx = 0
is Z;’,OZO j‘;—n, This fact does not, however, tell us whether exp x is the sum of this
series. For this purpose we need to examine the remainder. Theorem 1.36 shows
that the remainder after the term x" /n! is

1 [* 1 [
R,(0,x)=— | (x=0)"f"*Vydt=— | (x—1)"¢ dr.
n! 0 n! 0

Between 0 and x, ¢’ is bounded by some constant M (x) depending on x, and thus
|R2(0, x)| < G| [ (x —1)" di| = 55 |x|"F!. With x fixed, this tends to 0 as
n tends to infinity, and thus lim, R, (0, x) = O for each x. The conclusion is that
expx =y ooy fl—,l In a similar fashion one can obtain power series expansions of
sin x and cos x if one starts from definitions of the corresponding inverse functions
in terms of Riemann integrals.

Instead of using this approach, we shall define exp x, sinx, and cos x directly
as sums of standard power series. An advantage of using series in the definitions
is that this approach allows us to define these functions at an arbitrary complex

Z, not just at a real x. Thus we define

00 _n o) n,2n+1 o) n,2n
z . (=D"z (=D"z

expz = E -, sinzg = E - cosz = E _
— n! — 2n + 1)! — 2n)!

The ratio test shows immediately that these series all converge for all complex z.
Inspection of all these series gives us the identity

expiz =cosz+isinz.

Corollary 1.38 shows that the functions exp z, sin z, and cos z, when considered
as functions of a real variable z = x, are infinitely differentiable with derivatives
given by the expected formulas

— expx = expux, — sinx = cos x, — COSX = —sinx.
dx P P dx dx
From these formulas it is immediate that % (sin®x + cos’x) = 0 for all x.
Therefore sin® x + cos® x is constant. Putting x = 0 shows that the constant is 1.
Thus
sin® x + cos’>x = 1.

In order to prove that expx = e*, where e = exp 1, and to prove other familiar
trigonometric identities, we shall do some calculations with power series that are
justified by the following theorem.
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Theorem 1.40. If f(z) = > o a,z" and g(z) = Y .o byz" for complex z
with |z] < R, then f(2)g(z) = Y o caz” for |z| < R, where
cp = apby +ap_1b1 + - - - + apby,.
REMARK. In other words, the rule is to multiply the series formally, assuming
a kind of infinite distributive law, and reassemble the series by grouping terms
with like powers of z. The coefficient ¢, of z"” in the product comes from all

products a;z¥b;z! for which the total degree is 7, i.e., for which k +{ = n. Thus
¢, 1s as indicated.

PROOF. The theorem is vacuous unless R > 0. Fix R’ < R. For |z|] < R/,
put F(z) = Y ooy lanz"l and G(z) = Y o= |byz"|. These series are uniformly
convergent for |z| < R’ by Theorem 1.37, and also | f(z)| < F(z) and |g(2)| <
G(z). By the uniform convergence of the series for F and G when |z| < R/,
there exists M < +o00 such that F(z) < M and G(z) < M for |z] < R'. Given
€ > 0, choose an integer N’ such that |z| < R’ implies ) _,_ ./ |a,z"| < € and
Y pon 1bn2"| < €. If|z] < R"and N > 2N’ then -

< |r@s@ - (iaZ)(i’”)
n=0

n=0
N N N
(o) (Sne) - Lo
n=0 n=0 n=0
Call the two terms on the right side 77 and 7,. Then we have

N N
@1 +| Y@ [g@ = Y bz
n=0 n=0

and also, with [N /2] denoting the greatest integer in N /2,

L= Y abds Y ladibd

N
‘f(z)g(z) — ) et
n=0

N
T |f@ =Y ad < €G() +€F ),
n=0

k+I>N, k+I>N,
k<N, I<N k<N, I<N
N N N N

=2 2t )
k=01=[N/2] k=[N/2] I=0
00 00 00

SN

<eG(z) +€F(2).
Since G(z) < M and F(z) < M for |z| < R’, the total estimate is that T} + T5 <
4eM. Since € is arbitrary, we conclude that limy ZQ’:O cn' = f(2)g(2) for

lz| < R’. Since R’ is an arbitrary number < R, we conclude that Y oo ¢,2" =
f(@)g(2) for |z < R. O
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Corollary 1.41. Forany z and w in C, exp(z+w) = exp z exp w. Furthermore,
expz = expz.

PROOF. Theorem 1.40 and the infinite radius of convergence allow us to write

expzexpw

I I
v
M2 |
=y =<
=N
|2s i[™e
= =g
T
e 21
-zl
— ©
-
N
~ =z
~=
S?\"
I

For the second formula, write z = x + iy. Then

expz = exp(x —iy) = expxexp(—iy) = (expx)(cosy —isiny)

= (expx)(cosy +isiny) = expxexp(iy) = exp(x +iy) =expz.
g

Corollary 1.42. The exponential functionexp x, as a function of areal variable,
has the following properties:

(a) exp is strictly increasing on (—oo, +00) and is one-one onto (0, 4+-00),

(b) expx = e*, wheree =exp,

(c) expx has an inverse function, denoted by log x, that is strictly increas-
ing, carries (0, +00) one-one onto (—o0, +00), has derivative 1/x, and
satisfies log(xy) = logx + log y.

REMARKS. The three facts that expx = e* for x real, expz satisfies the
functional equation of Corollary 1.41 for z complex, and e is previously undefined
for z nonreal allow one to define e* to mean exp z for all complex z. We follow
this convention. In particular, ¢’* = exp(ix) = cosx + i sinx.

PROOF. For x > 0, we certainly have expx > 1. Also, each term of the
series for exp x is strictly increasing for x > 0, and hence the same thing is true
of the sum of the series. From Corollary 1.41, exp(—x)expx = exp0 = 1,
and thus exp x is strictly increasing for x < 0 with 0 < expx < 1. Putting
these statements together, we see that exp x is strictly increasing and positive on
(—o00, +00). Hence it is one-one. This proves part of (a).

Since exp x > 0, it makes sense to consider rational powers of exp x. Iteration
of the identity exp(z + w) = expzexpw shows that (exp %)q = exppx =
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(expx)”, and application of the g™ root function gives exp % = (expx)P/4.
Taking x = 1 yields exp(p/q) = e”/? for all rational p/q. The two functions
expx and e* are continuous functions of a real variable that are equal when x is
rational, and hence they are equal for all x. This proves (b).

From the first two terms of the series for exp 1, we see that e > 2. Therefore
e" > 2" > n for all positive integers n, and exp x has arbitrarily large numbers
in its image. The Intermediate Value Theorem (Theorem 1.12) then shows that
[1, +o0) is contained in its image. Since exp(—x) expx = 1, the interval (0, 1]
is contained in the image as well. Thus exp x carries (—oo, +00) onto (0, +00).
This proves the remainder of (a).

Consequently exp x has an inverse function, which is denoted by log x. Since
exp x has the continuous everywhere-positive derivative exp x, the proposition
in Section A3 of Appendix A applies and shows that log x is differentiable with
derivative 1/ exp(log x). Since exp and log are inverse functions, exp(log x) = x.
Thus the derivative of log x is 1/x.

Finally exp(logx + logy) = exp(log x) exp(log y) = xYy, since exp and log
are inverse functions. Applying log to both sides gives log x 4+ logy = log(xy).
This proves (c). ]

Corollary 1.43. The trigonometric functions sinx and cos x, as functions of
a real variable, satisfy

(a) sin(x 4+ y) = sinxcosy 4 cosxsiny,
(b) cos(x + y) =cosxcosy — sinx sin y.

PROOF. By Corollary 1.41, cos(x + y) +isin(x + y) = /@) = ¢l*ely =
(cosx +i sinx)(cos y 4 i sin y). Multiplying out the right side and equating real
and imaginary parts yields the corollary. g

The final step in the foundational work with the trigonometric functions is to
define 7 and to establish the role that it plays with trigonometric functions.

Proposition 1.44. The function cos x, with x real, has a smallest positive xg
for which cos xo = 0. If 7 is defined by writing xo = /2, then
(a) sinx is strictly increasing, hence one-one, from [0, %] onto [0, 1], and
cos x is strictly decreasing, hence one-one, from [0, %] onto [0, 1],

(b) sin(—x) = —sinx and cos(—x) = cos x,
(¢) sin(x + %) = cosx and cos(x + 7) = —sinx,
(d) sin(x + ) = —sinx and cos(x + w) = —cos x,

(e) sin(x + 27) = sinx and cos(x + 27) = cos x.
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PROOF. The function cos x has cos0 = 1. Arguing by contradiction, suppose
that cos x is nowhere O for x > 0. By the Intermediate Value Theorem (Theorem
1.12), cosx > 0 for x > 0. Since sinx is 0 at 0 and has derivative cos x, sin x is
strictly increasing for x > 0 and is therefore positive for x > 0. Since cos x has
derivative — sin x, cos x is strictly decreasing for x > 0. Let us form the function
f(x) =(cosx —cos 1)+ (sin1)(x — 1). If there is some x; > 1 with f(x;) > 0,
then the Mean Value Theorem produces some & with 1 < & < x; such that

0< fx)=flx) = f() = (x1 = Df'E) = (x — D(—sin +sinl) <0,

and we have a contradiction, since sin® £ + cos? & = 1 forces |sin&| < 1. Thus
f(x) <0 forall x > 1. In other words, cosx < cos1 — (sinl)(x — 1) for all
x > 1. For x sufficiently large, cos 1 — (sin1)(x — 1) is negative, and we see
that cos x has to be negative for x sufficiently large. The result is a contradiction,
and we conclude that cos x is O for some x > 0. Let xo be the infimum of the
nonempty set of positive x’s for which cosx = 0. We can find a sequence {x,}
with x, — xo and cos x,, = O for all n. By continuity cos xo = 0. We know that
xo > 0, and we must have xo > 0, since cos0 = 1. This proves the existence of
X0-

Since sinx has derivative cos x, which is positive for 0 < x < /2, sinx is
strictly increasing for 0 < x < 7 /2. From sin® x + cos? x = 1, we deduce that
sin(r/2) = 1. By the Intermediate Value Theorem, sin x is one-one from [0, Z]
onto [0, 1]. In similar fashion, cos x is strictly decreasing and one-one from [0, %]
onto [0, 1]. This proves (a).

Conclusion (b) is immediate from the series expansions of sinx and cos x.
Conclusion (c) follows from Corollary 1.43 and the facts that sin% = 1 and
cos% = 0. Conclusion (d) follows by applying (c) twice, and conclusion (e)
follows by applying (d) twice. O

Corollary 1.45. The function ¢'*, with x real, has |e¢’*| = 1 for all x, and
X +— €™ is one-one from [0, 277) onto the unit circle of C, i.e., the subset of
z € C with |Z| =1.

PROOF. We have |cosx + isinx|? = cos?x + sin>x = 1 and therefore
le*| = 1. If ¢ = ¢ with x; and x, in [0, 277), then /¥ =) = [ with
t = x; — xp in (—2m,27). Socost = 1 and sint = 0. From Proposition 1.44
we see that the only possibility for ¢t € (—2n,2m) ist = 0. Thus x; —x, =0,
and x > ¢'* is one-one.

Now let x + iy have x> 4+ y? = 1. First suppose that x > 0 and y > 0. Since
0 < y < 1, it follows that there exists ¢t € [0, Z] with sint = y. For this ¢,
the numbers x and cos ¢ are both > 0 and have square equal to 1 — y2. Thus
x = cost and e’ = x + iy. For a general x + iy with x> + y?> = 1, at least
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one of the complex numbers i” (x + iy) with 0 < n < 3 has real and imaginary
parts > 0. Then i"(x + iy) = €'’ for some 7. Since i = cos 5 +isin = '™/2,
we see that x + iy = e/’e™"7/2 = ¢!=in7/2 From ' '+2™) = ¢!’ we can adjust
it — inm/2 additively by a multiple of 27ri so that the result i¢’ lies in [0, 277),
and then ¢!’ = x + iy, as required. O

Corollary 1.46.

(a) The function sin x carries (—%, %) onto (—1, 1), has everywhere-positive
derivative, and has a differentiable inverse function arcsinx carrying (—1, 1)
one-one onto (—7%, 5). The derivative of arcsinx is 1/+/1 — x2.

(b) The function tanx = (sinx)/(cosx) carries (=%, 5) onto (—00, +00),
has everywhere-positive derivative, and has a differentiable inverse function

arctan x carrying (—oo, +00) one-one onto (—Z, %). The derivative of arctan x is

1/(1+x2),and [ (1 +x2)~"dx = n/2.

PROOF. From Proposition 1.44 we see that %(sinx) = cos x and %(tan X) =
(cosx)™2. The first of these is everywhere positive because of (a) and (b)
in the proposition, and the second is everywhere positive by inspection.
The image of sin x is (—1, 1) by (a) and (b) in the proposition, and also the image
of tanx is (—o0, 400), again by (a) and (b). Application of the proposition in
Section A3 of Appendix A yields all the conclusions of the corollary except the
formula for f_ll (1+x2)~!dx. This integral is given by arctan 1 — arctan(—1) by
Theorem 1.32. Sincetan(w/4) = sin(;r/4)/ cos(ir/4), (c) in the proposition gives

tan(r/4) = 1, and hence arctan 1 = /4. In addition, tan(—7w/4) = Z;’;((:’;% =

i 1 _
—sg;((fr//j)) = —1, and hence arctan(—1) = —r /4. Therefore [ (1+x?)~'dx =

(/4) — (—7/4) = 7/2. O

A power series, even a Taylor series, may have any radius of convergence in
[0, 400]. Even if the radius of convergence is > 0, the series may not converge
to the given function. For example, Problems 20-22 at the end of the chapter ask
one to verify that the function

e 17 if x #0,

f(x):{o ifx =0,

is infinitely differentiable, even at x = 0, and has f(0) = O for all n. Thus its
infinite Taylor series is identically 0, and the series evidently converges to f(x)
only for x = 0.

Because of Corollary 1.38, one is not restricted to a rote use of Taylor’s formula
in order to compute Taylor series. If we are interested in the Taylor expansion
of f about x = 0, any power series with a positive radius of convergence that
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converges to f on some open interval about x has to be the Taylor expansion of
f. A simple example is exz, whose derivatives at x = 0 are a chore to compute.
2, we obtain e = Y2 &7
for all x. Therefore this series must be the infinite Taylor series of ¢*’. Hereis a
more complicated example.

However, e = Y % for all u. If we put u = x
n=0 p!

EXAMPLE. Binomial series. Let p be any complex number, and put F(x) =
(1+x)? for —1 < x < 1. We can compute the n™ derivative of F by inspection,
and we obtain F™(x) = p(p —1)---(p — n + 1)(1 4+ x)?~". Therefore the
infinite Taylor series of F' about x = 0 is

ip(p—l)~-~(p—n+1)xn
o n! ’

This series reduces to a polynomial if p is a nonnegative integer, and the series
is genuinely infinite otherwise. The ratio test shows that the series converges for
|x|] < 1;let f(x) be its sum for x real. The remainder term R, (0, x) is difficult to
estimate, and thus the relationship between the sum f (x) and the original function
(1 4+ x)? is not immediately apparent. However, we can use Corollary 1.38 to
obtain

o0

f/(x)=an(p_1)”'(p_n+l)x”*‘=Zp(p_1)”'(p_”)xn
n=0

n! n!

n=1

for |x| < 1. We compute (1 + x) f'(x) by multiplying the first series by x, the
second series by 1, and adding. If we write the constant term separately, the result
is

A+ f ) =p+)

n=I

p(p—1)'--(p—n+1)[n+(p—n)]x,,:pf(x).

n!
Therefore

d

A+ W] =—pU+077 f@) + T +077f/(x)

=1+x)"" =pfx)+ 1A +x)f(x)]=0,

and (1 + x)~? f(x) has to be constant for |[x| < 1. From the series whose sum is
f(x), we see that f(0) = 1, and hence the constant is 1. Thus f(x) = (1 + x)?,
and we have established the binomial series expansion

(1+x)17:Zp(p_l)""l'(p_n+1)xn
n=0 .

for—1 <x < 1.
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8. Summability

Summability refers to an operation on a sequence of complex numbers to make it
more likely that the sequence will converge. The subject is of interest particularly
with Fourier series, where the ordinary partial sums may not converge even at
points where the given function is continuous.

Let {s,},>0 be a sequence in C, and define its sequence of Cesaro sums, or
arithmetic means, to be given by

_Sot S A A8,
B n+1

n

forn > 0. Iflim, 0, = o exists in C, we say that {s,, } is Cesaro summable to the
limit o. For example the sequence with s, = (—1)" for n > 0 is not convergent,
but it is Cesaro summable to the limit O because o, is O for all odd n and is n—Jlrl
for all even n.

Theorem 1.47. If a complex sequence {s,},>0 is convergent in C to the limit
s, then {s,} is Cesaro summable to the limit s.

REMARK. The argument is a 2¢ proof, and two things are affecting o,,. For k
small and fixed, the contribution of s to o;, is sz /(n + 1) and is tending to 0. For
k large, any sy, is close to s, and the average of such terms is close to s.

PROOF. Lete > 0 be given, and choose N; suchthatk > N; implies |s; —s| <
€. If n > Ny, then

_ (SO_S)+"'+(SN1_S)+(SN1+1_S)+"'+(sn_s)

o, — S )
n+1 n+1
so that
lsol + -+ lsy |+ (N1 +Dis| n— N
o, — 5] < + €
n+1 n+1
[sol 4+ -+« =+ lsn, | + (N1 + Ds|
= +€
n+1

The numerator of the first term is fixed, and thus we can choose N > N, large
enough so that the first term is < € whenever n > N. If n > N, then we see that
|o, — s| < 2€. Since € is arbitrary, the theorem follows. O

Next let {a,},>0 be a complex sequence, and let {s,},>0 be the sequence of
partial sums with s, = > ;_, ax. Form the power series o, = Y oo a,r". We
say that the sequence {s,} of partial sums is Abel summable to the limit s in C
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if limy41 0, = s, i.e., if for each € > 0, there is some ro such thatrg < r < 1
implies that |0, — s| < €. For example, take a; = (—1)¥, so that s, equals 1 ifn
is even and equals O if n is odd. The sequence {s,} of partial sums is divergent.
The r™ Abel sum o, is given by the geometric series Y o (—D*rk with sum
1/(14r). Letting r increase to 1, we see that {s, } is Abel summable with limit %

Theorem 1.48 (Abel’s Theorem). Let {a,},>0 be a complex sequence, and
let {s,},>0 be the sequence of partial sums with s, = ZZZO ar. If {sp}nso0 18
convergent in C to the limit s, then {s,} is Abel summable to the limit s.

REMARK. The proof will proceed along the same lines as in the previous case.
It is first necessary to express the Abel sums o, in terms of the s;’s.

PROOF. Since {s,} converges, {s,} and {a,} are bounded, and thus Z;’lio S
and Z/fio agrk are absolutely convergent for 0 <r < 1. With s_; = 0, write

o oo (e.¢] oo
o, = E ayr" = E (Sp — Sp—p)r" = E spr" — E Sur !
n=0 n=0 n=0 n=0

(o) N 00
=({1-r) Zs,,r" =({1-r) Zrksk + Z (1 —r)rksg.
n=0 k=0

k=N+1
Let € > 0 be given, and choose N such that k > N implies |s; — s| < €. Then

N 00
o —sl < (=) (sl +1sh+ Y (1 =r)rflse —s]
k=0

k=N+1

N 00
A=Y sl +lsh+(A=r) D r¥)e
k=0

k=N+1
N
<1 =r)) (sl + s +e.
k=0

With N fixed, the coefficient of (1 — r) in the first term is fixed, and thus we can
choose ry close enough to 1 so that the first term is < € wheneverrg <r < 1. If
ro <r < 1,weseethat|o, —s| < 2¢. Since € is arbitrary, the theorem follows. [J

EXAMPLE. For |x| < 1, the geometric series Y - ,(—1)"x" converges and
has sum (1 + x)~!. The Fundamental Theorem of Calculus gives log(1 + x) =

o %Hdt =[5 Yooey (=1)"e"dt for |x| < 1, and Theorem 1.31 allows us to

interchange sum and integral as long as |x| < 1. Consequently

0 n,.n+l

(=1)rx"+

log(1+x) =) ~———
= n+1
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for |x| < 1. The sequence of partial sums on the right converges for x = 1 by
the Leibniz test, and Theorem 1.48 says that the Abel sums must converge to
the same limit. But the Abel sums have limit lim,4; log(1 + x) = log 2, since
log(1 + x) is continuous for x > 0. Thus Abel’s Theorem has given us a rigorous
proof of the familiar identity

=

o

-1
Z( ) = log 2.
—n+l

Theorems 1.47 and 1.48, which say that one kind of convergence always
implies another, are called Abelian theorems. Converse results, saying that the
second kind of convergence implies the first under an additional hypothesis, are
called Tauberian theorems. These tend to be harder to prove. We give two
examples of Tauberian theorems; the first one will be applied immediately to
yield an important special case of the main theorem of Section 9; the second one
will be used in Chapter VI to prove a deep theorem about pointwise convergence
of Fourier series.

Proposition 1.49. Let {a,},>0 be a numerical sequence with all terms > 0,
and let {s,},>0 be the sequence of partial sums with s, = ZZZO a. If {sp}u>0 is
Abel summable in R to the limit s, then {s,} is convergent to the limit s.

PROOF. Let {r;};>0 be a sequence increasing to the limit 1. Since anr;l >0is
nonnegative and since it is monotone increasing in j for each n, Corollary 1.14
applies and gives lim; _ 2 a,rf = 37, lim; a,r}, the limits existing in R*.
The left side is the (finite) limit s of the Abel sums, and the right side is lim s,
which Corollary 1.14 is asserting exists. ([l

EXAMPLE. The binomial series expansion in Section 7 shows, for any complex
p,that (1 —r)? is given for —1 < r < 1 by the absolutely convergent series

o0 1) (p — 1
(1—r)":1+2=;(—1)"p(p PP D

For p real with 0 < p < 1, inspection shows that all the coefficients in the sum
on the right are < 0. Therefore

1_(1_r)p:i(_1)n+lp(p—l)--'(p—n+1)r,1 )

|
=i n.

has all coefficients > 0if 0 < p < 1. For 0 < r < 1, the sum of the series is
1 — (1 —r)? and is > 0. The fact that lim,4; [1 — (1 —r)”] = 1 means that the
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sequence of partial sums s, = Y j_; (—1)**! %W is Abel summable
to 1. Proposition 1.49 shows that the series (x) is convergent with sum 1 atr = 1,
and the Weierstrass M test shows that () converges uniformly for —1 <r <1

tol — (1 —r)P. If we now take p = %, we have

(1 _’,)1/2 =1- i(_l)n—kl %(_%)(_%) %—n) o

|
=1 n:

— i (_1)n+1 %(_%)(—%) - (% —n)
n=1

n!

Py MDD G,
n=1

n!

o) Le_Lye3y... (3 _
_ Z(_l)n—H 2(=32)(=3) -G —n) (1=,
n=1

n!

the series on the right being uniformly convergent for —1 < r < 1. Putting
r = 1 — x? therefore gives

3 _

o) Le_1ye__3y...
|x| :\/;:Z(_l)n-i_l 2( 2)( 2) 2 n) (1_(1_x2)n)’
n=1

n!

the series on the right being uniformly convergent for —1 < x < 1. Consequently
|x| is the uniform limit of a sequence of polynomials on [—1, 1], and all these
polynomials are in fact 0 at x = 0.

Proposition 1.50. Let {a,},>0 be a complex sequence, and let {s,},>0 be the
sequence of partial sums with s, = >y _, ax. If {s,} is Cesaro summable to the
limit s in C and if the sequence {na,} is bounded, then {s,} is convergent and the
limit is s. The rate of convergence depends only on the bound for {na,} and the
rate of convergence of the Cesaro sums.

REMARK. In our application in Chapter VI to pointwise convergence of Fourier
series, the sequence of partial sums will be of the form {s, (x)}, depending on a
parameter x, and the statement about the rate of convergence will enable us to
see that the convergence of {s,(x)} is uniform in x under suitable hypotheses.

PROOF. Let {s,} be the sequence of partial sums of {a,}, and choose M such
that |na,| < M for all n. The first step is to establish a useful formula for
s, — o, Let m be any integer with 0 < m < n. We start from the trivial identity
—(n—m)o, = (m+ 1)o, — (n+ 1)0,, add (n — m)s, to both sides, and regroup
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as

(n_m)(sn _Un) = (m+1)0n —8S0— - — Sy + (n_m)sn —Sm4l T Sp
n

= (m+D oy —0om)+ Y (52— 5)).

j=m+l1
Dividing by (n — m) yields
m+1 1 1
Sp — Op = n—m (Un _O'm)+m Z (Sn_sj)7

Jj=m+1

which is the identity from which the estimates begin.
Form 4+ 1 < j < n, we have

50 = 51 = Janl+ el - hagar] = 2 e
MM M eI em 2 DY
j+1  j+1 Jj+1 Jj+1 m+2
Substituting into our identity yields
m+1 n—m-—1)M
Isn —oul < o |Gn_Um| m——|—2

Let € > 0 be given, and choose N such that |0, — 5| < €% whenever k > N.
We may assume that € < % and N > 4. With € fixed and with »n fixed to be
> 2N, define m to be the unique integer with

n—e

m <

<m+ 1.

€
Then0 < m < n, and our inequality for |s, — o, | applies. From the left inequality
m < ﬁ defining m, we obtain m + me <n — € and hence (m + 1)e <n —m

and % < e~!. From the right inequality T5¢ < m + 1 defining m, we obtain

n—e<m+1+em—+eandhencen —m —1 < e(m + 2) and
Thus our main inequality becomes

n—m—1
m+2

< €.

|sn _Un| = 67I|O_n _0n1| +M6-

To handle o,,, we need to bound m below. We have seenthatn —m — 1 <
e(m + 2), and we have assumed that € < % Thenn —m —1 < %(m +2), and

this simplifies tom > 2 — %, whichis > % if n > 8, thus certainly if N > 4. In

3
other words, N > 4 and n > 2N makes m > % > N. Therefore |o,, — s| < €2,

and |0, — o,,| < 2€2. Substituting into our main inequality, we obtain
IS0 — 0| < €126 + Me = (M + 2)e.

Since € is arbitrary, the proof is complete. O
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9. Weierstrass Approximation Theorem

We saw as an application of Proposition 1.49 that the function |x| on [—1, 1] is the
uniform limit of an explicit sequence {P,} of polynomials with P,(0) = 0. This
is a special case of a theorem of Weierstrass that any continuous complex-valued
function on a bounded interval [a, b] is the uniform limit of polynomials on the
interval.

The device for proving the Weierstrass theorem for a general continuous
complex-valued function is to construct the approximating polynomials as the
result of a smoothing process, known as the use of an “approximate identity.”
The idea of an approximate identity is an important one in analysis and will occur
several times in this book. If f is the given function, the smoothing is achieved
by “convolution”

/f(x — Do) dt

of f with some function ¢, the integrals being taken over some particular intervals.
The resulting function of x from the convolution turns out to be as “smooth” as
the smoother of f and ¢. In the case of the Weierstrass theorem, the function
¢ will be a polynomial, and we shall arrange parameters so that the convolution
will automatically be a polynomial.

To see how a polynomial f f(x — t)p(t) dt might approximate f, one can
think of ¢ as some kind of mass distribution; the mass is all nonnegative if
¢ > 0. The integration produces a function of x that is the “average” of translates
x — f(x—t)of f,theaverage being computed according to the mass distribution
¢. If ¢ has total mass 1, i.e., total integral 1, and most of the mass is concentrated
near t = 0, then f is being replaced essentially by an average of its translates,
most of the translates being rather close to f, and we can expect the result to be
close to f.

For the Weierstrass theorem, we use a single starting ¢, at stage 1, namely
c1(1 — x?) on [—1, 1] with ¢; chosen so that the total integral is 1. The graph of
¢ is a familiar inverted parabola, with the appearance of a bump centered at the
origin. The function at stage 7 is c,(1 — x2)", with ¢, chosen so that the total
integral is 1. Graphs for n = 3 and n = 30 appear in Figure 1.1. The bump near
the origin appears to be more pronounced at n increases, and what we need to do
is to translate the above motivation into a proof.

Lemma 1.51. If ¢, is chosen so that ¢, fll (1 =x®)"dx = 1,thenc, <eyn
for n sufficiently large.
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PROOF. We have

=" —x)rdx > fj{/jz (A —x)mdx =2 [V (1 = x2)" dx

>2 [V (1= bynax =201 — Ly /.
Since (1 — %)" — e~ !, we have (1 — %)” > %e‘l for n large enough (actually

for n > 2). Therefore ¢, ! > e~!//n for n large enough, and hence ¢, < ey/n
for n large enough. This proves the lemma. g

n=3 n =730

FIGURE 1.1. Approximate identity. Graphs of ¢, (1 — x?)" forn = 3
and n = 30 with different scales used on the vertical axes.

Let ¢, (x) = ¢,(1—x%)" on[—1, 1], with ¢, as in the lemma. The polynomials
¢, have the following properties:

(1) @n(x) =0,
i) [ eu(r)dx =1,
(iii) forany § > 0, sup {p,(x) | 6 < x < 1} tends to O as n tends to infinity.

Lemma 1.51 is used to verify (iii): the quantity
sup {@,(x) | 8 <x <1} = ¢, (1 — 8%)"

tends to 0 because lim, «/n(1 — 82)" = 0. A function with the above three
properties will be called an approximate identity on [—1, 1].

Theorem 1.52 (Weierstrass Approximation Theorem). Any complex-valued
continuous function on a bounded interval [a, b] is the uniform limit of a sequence
of polynomials.

PROOF. In order to arrange for the convolution to be a polynomial, we need
to make some preliminary normalizations. Approximating f(x) on [a, b] by
P (x) uniformly within € is the same as approximating f(x + a) on [0, b — a]
by P(x + a) uniformly within €, and approximating g(x) on [0, c] uniformly by



9. Weierstrass Approximation Theorem 61

Q(x) is the same as approximating g(cx) uniformly by Q(cx). Thus we may
assume without loss of generality that [a, b] = [0, 1].

If o : [0,1] — C is continuous and if r is the function defined by r(x) =
h(x) — h(0) — [h(1) — h(0)]x, then r is continuous with r(0) = r(1) = 0.
Approximating /(x) on [0, 1] uniformly by R(x) is the same as approximating
r(x) on [0, 1] uniformly by R(x) — h(0) — [#(1) — h(0)]x. Thus we may assume
without loss of generality that the function to be approximated has value 0 at 0
and 1.

Let f : [0, 1] — C be a given continuous function with £(0) = f(1) = 0; the
function f is uniformly continuous by Theorem 1.10. We extend f to the whole
line by making it be 0 outside [0, 1], and the uniform continuity is maintained.
Now let ¢, be the polynomial above, and put P,(x) = f_ll fx —t)e,(t)dt.

Let us see that P, is a polynomial. By our definition of the extended f, the
integrand is O for a particular x € [0, 1] unless# isin [x — 1, x] as well as [—1, 1].
We change variables, replacing ¢ by s + x and making use of Theorem 1.34, and
the integral becomes P,(x) = f f(—s)@n(s + x) ds, the integral being taken for
sin[—1,0]N[—1—x, 1 —x]. Since x is in [0, 1], the condition on s is that s is in
[—1,0]. Thus P,(x) = ff)l f (=)@, (s +x)ds. In this integral, ¢, (x) is a linear

combination of monomials x*, and x* itself contributes fi)l f(=s)(x + s)kds,
which expands out to be a polynomial in x. Thus P,(x) is a polynomial in x.
By property (ii) of ¢,, we have

1 1
Pu(x) = f(x) Z/lf(x—t)%(t)dt—f(X) Z/l[f(x—t)—f(X)]fﬂn(t)dt-

Then property (i) gives

1

| Pa(x) — f ()] 5/1 If(x = 1) = f)|@a(t) dt

s -5 pl
- /3 FGe=0) = FCOl a0y di + (f1+/8 )If =0 = fl a0 dr,
and two further uses of property (ii) show that this is

<sup1f =0 = f@I+4( swp 1FOI)( swp a0
yelb,

|7]<8 s<lr|=1

Given € > 0, we choose some § of uniform continuity for f and €, and then the
first term is < €. With § fixed, we use property (iii) of ¢, and the boundedness
of f, given by Theorem 1.11, to produce an integer N such that the second term
is < € forn > N. Then n > N implies that the displayed expression is < 2e.
Since € is arbitrary, P, converges uniformly to f. O
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10. Fourier Series

A trigonometric series is a series of the form Y oo c,e'™ with complex coef-
ficients. The individual terms of the series thus form a doubly infinite sequence,
but the sequence of partial sums is always understood to be the sequence {sy}%_,

with sy (x) = ZQ’:_ v Cn€™ . Such a series may also be written as
ap >
> + Z (a, cosnx + by, sinnx)
n=1

by putting
€™ = cosnx + i sinnx

Cinx o forn > 0,
e =cosnx —isinnx

co = Sap, ¢y =L(a,—iby), and c_, =L@, +ib,) forn>0.

Historically the notation with the a,,’s and b,,’s was introduced first, but the use of
complex exponentials has become quite common. Nowadays the notation with
a,’s and b,’s tends to be used only when a function f under investigation is
real-valued or when all the cosine terms are absent (i.e., f is odd) or all the sine
terms are absent (i.e., f is even).

Power series enable us to enlarge our repertory of explicit functions, and the
same thing is true of trigonometric series. Just as the coefficients of a power
series whose sum is a function f have to be those arising from Taylor’s formula
for f, the coefficients of a trigonometric series formed from a function have to
arise from specific formulas. Let us run through the relevant formal computation:
First we observe that the partial sums have to be periodic with period 2. The
question then is the extent to which a complex-valued periodic function f on the
real line can be given by a trigonometric series. Suppose that

o
fx) = Z cpe'™r.
n=—0oo
Multiply by e~/** and integrate to get
1 7 i 1 T X . ik
I —lxd — tnx—zxd‘
o /n f)e X ) n:Z_ooc,,e e X

If we can interchange the order of the integration and the infinite sum, e.g., if the
trigonometric series is uniformly convergent to f (x), the right side is

e

> 1 T . > 1 .
= Z Cp — eIk gx = Z Chn — Y gy = ¢
2 J_ W 27

n=—0oo -7
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because
1 g

21 )

1 ifm =0,

&MY dx = { )
0 if m #£ 0.

Let f be Riemann integrable on [—m, 7], and regard f as periodic on R. The

trigonometric series Y oo c,e™ with

1 T .
Cp = —/ fx)e "™ dx
27 J o

is called the Fourier series of /. We write

00 N

fx)~ Z cpe™ and sy(fix) = Z cpe™.

n=—0o0 n=—N

The numbers ¢, are the Fourier coefficients of f, and the functions sy (f; x) are
the partial sums of the Fourier series. The symbol ~ is to be read as “has Fourier
series,” nothing more, at least initially. The formulas for the coefficients when
the Fourier series is written with sines and cosines are

b

a, = — f(x)cosnxdx forn > 0,
—T
T

b, = — f(x)sinnx dx forn > 1.
—7T

In applications one encounters periodic functions of periods other than 2. If
£ is periodic of period 21, then the Fourier series of f is f(x) ~ Y 00 c¢,ei"™*/!
with ¢, = 21)~! fil F(x)e~ "/l dx. The formula for the series written with
sines and cosines is f(x) ~ ao/2+Y o (ay cos(nmx /1) +by sin(nmwx /1)) with
an = 17" 1, f(x)cosmmx/l)dx and b, = 7" [1, f(x)sin(nwx /1) dx. In the
present section of the text, we shall assume that our periodic functions have period
2.

The result implicit in the formal computation above is that if f(x) is the sum
of a uniformly convergent trigonometric series, then the trigonometric series is
the Fourier series of f, by Theorem 1.31.

We ask two questions: When does a general Fourier series converge? If the
Fourier series converges, to what extent does the sum represent f? We begin
with an illuminating example that brings together a number of techniques from
this chapter.
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EXAMPLE. As in the example following Theorem 1.48, we have

log (——) = x + 1a? 4 13 for — 1
g - =X+ 5X"+3x7 4 or — 1 <x<1.

We would like to extend this identity to complex z with |z] < 1 but do not want
just now to attack the problem of making sense out of log as a function of a
complex variable. What we do is apply exp to both sides and obtain an identity
for which both sides make sense when the real x is replaced by a complex z:

1
exp(z+%z2+%23+"'):1—_z for |z] < 1.

In fact, this identity is valid for z complex with |z] < 1, and Problems 30-35 at
the end of the chapter lead to a proof of it using only real analysis.> Corollary
1.45 allows us to write z = re'® and z + 122 + 12° + - - - = pe'?. Equating real
and imaginary parts of the latter equation gives us

o0

> 7" cos nd 7" sin né
pcosgo:Zi and psin<p=27.

n=1 n n=1 h

We shall compute the left sides of these displayed equations in another way. We
have

eP S9SN — exp(p cos + ip sing) = exp(pe’?) = (1 —z)~!
and therefore also e? 3¢ ¢~#sin¢ — (1 — 7)~!. Thus
e = (1-) ' (1-2) " = (1—re®) ' (1—re )~ = (1-2r cos 0 +r?) "
Taking log of both sides gives 2o cos ¢ = log ((1 — 2rcosf + rz)’l), and thus

we have N
1 r" cos né
1
e )~
2708 1 —2rcos6 +r2 ,12:; n ()

Handling p sin¢ is a little harder. From e”%¢/?si"¢ — (1 — z)~! we have

ersing — (1 )"l =z = (1 —2)/|1 —z] = l—llrjgff’ +i’|ff‘;|’, and hence

cos(psing) = (1 —rcosh)/|1 —z| and sin(psing) = (rsinbh)/|1 — z|.

Thus tan(p sin ¢) = r sinf /(1 —r cos#). Since 1 —r cos b is > 0, cos(p sin ¢) is
> 0, and p sin ¢ = arctan ((r sinf)/(1 —r cos 9)) + 2w N (r, 0) for some integer

3 A proof using elementary complex analysis appears as an example in Section B8 of Appendix
B and is considerably shorter.
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N(r, 8) depending on r and 6. Hence

) > r"sinnd
arctan ((r sin@)/(1 —r cos 0)) +2aN(r, 0) = Z Y
n=1
For fixed r, the first term on the left is continuous in 6, and the series on the
right is uniformly convergent by the Weierstrass M test. By Theorem 1.21 the
right side is continuous in 8. Thus N(r, ) is continuous in 6 for fixed r; since
N(r,0) =0, N(r,0) = 0 for all r and 6. We conclude that

rsinf > r"sinnd
t. _ ) = _
are an(l —rcose) ; n ()

Problem 15 at the end of the chapter observes that the partial sums Zf,v:l cosnf

and 2,11\1:1 sinnf are uniformly bounded on any sete < 6 < w —e if e > 0.
Corollary 1.19 therefore shows that the series

o0 o0 .
Z cosné and Z sin n6

n=1 n n=1 n
are uniformly convergent fore < 0 < m —e if e > 0. Abel’s Theorem (Theorem
1.48) shows that each of these series is therefore Abel summable with the same
limit. We can tell what the latter limits are from (%) and (%), and thus we
conclude that

o0

1 cos nb
1
o (5—) -
283 0 cos o ; n
. 9 o0 . 0
and arctan (L) = Z o )
1 —cos@ ~ n

The sum of the series with the cosine terms is unbounded near &6 = 0, and
Riemann integration is not meaningful with it. We shall not be able to analyze
this series further until we can treat the left side in Chapter VI by means of
Lebesgue integration. The sum of the series with the sine terms is written in a
way that stresses its periodicity. On the interval [—m, ], we can rewrite its left
side as %(—71 —0) for—m <60 <0,0ford =0, and %(n —0)for0 <0 <m.
The expression for the left side is nicer on the interval (0, 2r), and there we have
0o
lar-0)=3" smn"9 for0 < 6 < 27,

n=1

The function %(n — 0) is bounded on (0, 277), and we can readily compute its
Fourier coefficients from the formula b, = 7! 02” %(n — 0)sinnf d6, using
integration by parts (Corollary 1.33). The result is that b, = 1/n. Hence the
displayed series is the Fourier series. Graphs of some of the partial sums appear

in Figure 1.2.
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FIGURE 1.2. Fourier series of sawtooth function. Graphs of
Y iy (sinkx)/k forn = 3, 5, 10, 30.

The sawtooth function in the above example has a discontinuity, and yet its
Fourier series converges to it pointwise. The recognition of the remarkable
potential that Fourier series have for representing discontinuous functions dates
to Joseph Fourier himself and caused many of Fourier’s contemporaries to doubt
the validity of his work.

Although the above Fourier series converges to the function, it cannot do so
uniformly, as a consequence of Theorem 1.21. In any such situation the Fourier
coefficients cannot decrease rapidly, and a decrease of order 1/# is the best that
one gets for a nice function with a jump discontinuity.

This example points to a general heuristic principle contrasting how power
series and trigonometric series behave: whereas Taylor series converge very
rapidly and may not converge to the function, Fourier series are inclined to
converge rather slowly and they are more likely to converge to the function.

We come to convergence results in a moment. First we establish some ele-
mentary properties of them. Taking the absolute value of ¢, in the definition of

Fourier coefficient, we obtain the trivial bound |c,| < # ffn | f(x)|dx.

Theorem 1.53. Let f be in R[—m, m]. Among all choices of d_y, ..., dy,
the expression
1 b

2
dx
21 J_,

N
fO)= ) dpe™
n=—N

is minimized uniquely by choosing d,, for all n with [n| < N, to be the Fourier
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. T 3 .. .
coefficient ¢, = % f_ . J(x)e”"" dx. The minimum value is

= et - Z a2

PROOF. Putd, = ¢, + ¢,. Then
inx |2
= [T ) = 0Ly due™ | dx
= [T f@Pdx — £ 2Re YNy [T f(0)em™ dx
+ %ff ZanfN dmdnez(m n)x dx
L F@Pdx —2Re N cudy + N 1dal?
- (ﬁ ST 1f P dx) = (23,2 y leal +2Re 30y cufn)
+ (Z”__N |C”|2 +2Re Zn—— Cn€p +Zn=—N l&a] )

=2 [T AfOP =0y el + X0y el
The result follows. O

Corollary 1.54 (Bessel’s inequality). Let f be in R[—m, ], and let f(x) ~
3% cne™. Then

n=—oo
ad 1
> lal=—| f(x)| dx.
n=—oo
In particular, Z 0o lCn |? is finite.

REMARK. In terms of the coefficients a, and b,, the corresponding result is

o0

W+Z (P + 10,7 = — [ 1700P s
n 7). .

PROOF. Theorem 1.53 shows that the minimum value of a certain nonnegative
quantity dependlng on N is 5- f | f(x)|>dx — Zn_ N |ca|?. Thus, for any N,

Zﬁ’:_ N lea? < 271 S x)|*dx. Letting N tend to infinity, we obtain the
corollary. O

Corollary 1.55 (Riemann-Lebesgue Lemma). If f is in R[—m, 7] and has
Fourier coefficients {c,}3° __, then limy,|o ¢, = 0.

REMARK. This improves on the inequality |c,| < E . |f(x)|dx observed
above, which shows, by means of an explicit estimate, that {c,} is a bounded
sequence.

PROOF. This is immediate from Corollary 1.54. O
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We now turn to convergence results. First it is necessary to clarify terms like
“continuous” and “differentiable” in the context of Fourier series of functions
on [—m, w]. Each term of a Fourier series is defined on all of R and is periodic
with period 27 and is really given as the restriction to [—, ] of this periodic
function. Thus it makes sense to regard a general function in the same way if
one wants to form its Fourier series: a function f is extended to all of R so as
to be periodic with period 27, and if we consider f on [—m, ], it is really the
restriction to [—r, 7] that we are considering.

In particular, it makes sense to insist that f(—m) = f(x); if f does not
have this property initially, one or both of these endpoint values will have to be
adjusted, but that adjustment will not affect any Fourier coefficients. Similarly
continuity of f will refer to continuity of the extended function on all of R, and
similarly for differentiability.

That being said, let us take up the matter of integration by parts for the functions
we are considering. The scope of integration by parts in Corollary 1.33 was limited
to a pair of functions f and g that have a continuous first derivative. In the context
of Fourier series, it is the periodic extensions that are to have these properties,
and then the integration-by-parts formula simplifies. Namely,

s

[rwse]” = [ rwseds

fg' (x)dx

— [ fl)gx)dx,

i.e., the integrated term drops out because of the assumed periodicity.

The simplest convergence result for Fourier series is that a periodic function (of
period 277) with two continuous derivatives has a uniformly convergent Fourier
series. To prove this, we take n # 0 and use the above integration-by-parts
formula twice to obtain

g

1T y 11 o
en=— | fo)e ™ dx = ——(—_) F(x)e ™ dx
2 J_, 2 \—in/ J_,

1 1 2 g —inx
=5.(=) / fle™ dx.
-7

Then |c,e™| = |c,| < C/n?, where C = ﬁ ffﬂ | f”(x)| dx, and the Fourier

series converges uniformly by the Weierstrass M test. The argument does not say

that the convergence is to f, but that fact will be proved in Theorem 1.57 below.
Adjusting the proof just given, we can prove a sharper convergence result.

Proposition 1.56 . If f is periodic (of period 27r) and has one continuous
derivative, then the Fourier series of f converges uniformly.
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PROOF. As in the above argument, ¢, = —%(}M) ffﬂ f/(x)e™™ dx, and
this equals % d,, where d,, is the n™ Fourier coefficient of the continuous function
f’. In the computation that follows, we use the classical Schwarz inequality (as
in Section AS of Appendix A) for finite sums and pass to the limit in order to get
the first inequality, and then we use Bessel’s inequality (Corollary 1.54) to get

the second inequality:

Z lenl = Z linc,| ﬁ = Zﬁ dy| < (Z%)m(Z |dn|2)1/z

n#0 n#0 n#0 n#0 n#0
1N\1/2/1 T 12
<(Y' =) (= ()P dx) "
(L) (55 1reras

The right side is finite, and the proposition follows from the Weierstrass
M test. g

The fact that the convergence in Proposition 1.56 is actually to f will follow
from Dini’s test, which is Theorem 1.57 below. We first derive some simple
formulas. The Dirichlet kernel is the periodic function of period 2w defined by

N : 1
: sin ((N + 5)x
Dy(x) = Z el — (( : 2) )’
N sin 5.x
the second equality following from the formula for the sum of a geometric series.
For a periodic function f of period 27, the partial sums of the Fourier series of

f are given by
N

sn(f5x) = Z (L i f(t)e_i"’dt)ei"x

Y 21 J_,

1 " N in(x—r)
- ¢ in(x=1) 1y
[0 2

= L f@®)Dy(x —1t)dt

2 J_,
1 x+m
= —/ f(x—s)Dy(s)ds
2n xX—m
= i ! fx—t)Dy(1)dt,
27 J_»

the last two steps following from the changes of variables # +— x + s (Theorem
1.34) and s + —s (Proposition 1.30h) and from the periodicity of f and Dy.
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FIGURE 1.3. Dirichlet kernel. Graph of Dy for N = 30.

This is the kind of convolution integral that occurred in the previous section.
Term-by-term integration shows that % ff . Dn(x)dx = 1. However, Dy is not
an approximate identity, not being everywhere > 0. Figure 1.3 shows the graph
of Dy for N = 30. Although Dy (x) looks small in the graph away from x = 0,
itis small only as a percentage of Dy (0); Dy (x) does not have limy Dy (x) equal
to 0 for x # 0. Thus Dy (x) fails in a second way to be an approximate identity.
The failure of Dy to be an approximate identity is what makes the subject of
convergence of Fourier series so subtle.

Theorem 1.57 (Dini’s test). Let f : R — C be periodic of period 27 and
Riemann integrable on [—m, ]. Fix x in [—m, ]. If there are constants § > 0
and M < 400 such that

lfx+1) — f)l=Mlr]  forr] <,

then limy sy (f; x) = f(x).

REMARK. This condition is satisfied if f is differentiable at x. Thus the
convergence of the Fourier series in Proposition 1.56 is to the original function
f. By contrast, the Dini condition is not satisfied at x = 0 for the continuous
periodic extension of the function f(x) = |x|!/? defined on (—m, ].

PROOF. With x fixed, let
fx—1)— f(x)

gt) = sint/2
0 fort = 0.

for0 < |t| < m,

Proposition 1.30d shows that (sin 7 /2)~! is Riemann integrable on € < |¢| < 7 for
any € > 0, and hence so is g(z). Since g(¢) is bounded near r = 0, Lemma 1.28
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shows that g(¢) is Riemann integrable on [—m, 7r]. Since % ffn Dy(x)dx =1,
we have

sn(f3x) — f(x)

dt —— | £ dt

1 1
sin 5t 27 J_ . sin 5t

_ % _” Fron S (N + 1) 1 /” sin (N + 1)7)

b4

_ ! in((N + )t)d
=5 _ng(t)sm(( +§)t) t

1 (7 1 ("
= o /_” [g(t)cos L] sinNrdr + ) [g(t) sin §] cos Nt dt,
and both terms on the right side tend to 0 with N by the Riemann-Lebesgue
Lemma (Corollary 1.55). O

Dini’s test (Theorem 1.57) has implications for “localization” of the conver-
gence of Fourier series. Suppose that f = g on an open interval /, and suppose
that the Fourier series of f converges to f on /. Then Dini’s test shows that
the Fourier series of f — g converges to 0 on /, and hence the Fourier series of
g converges to g on /. For example, f could be a function with a continuous
derivative everywhere, and g could have discontinuities outside the open interval
I. For f, the proof of Proposition 1.56 shows that »_ |¢,| < +oo. But for g,
the Fourier series cannot converge so rapidly because the sum of a uniformly
convergent series of continuous functions has to be continuous. Thus the two
series locally have the same sum, but their qualitative behavior is quite different.

Next let us address the question of the extent to which the Fourier series of f
uniquely determines f. Our first result in this direction will be that if f and g
are Riemann integrable and have the same respective Fourier coefficients, then
f(x) = g(x) at every point of continuity of both f and g. It may look as if some
sharpening of Dini’s test might apply just under the assumption of continuity of
the function, and then this uniqueness result would be trivial. However, as we
shall see in Chapter XII, the Fourier series of a continuous function need not
converge to the function at particular points, and there can be no such sharpening
of Dini’s test. Instead, we shall handle the uniqueness question in a more indirect
fashion.

The technique is to use an approximate identity, as in the proof of the Weier-
strass Approximation Theorem in Section 9. Although the partial sums of the
Fourier series of a continuous function need not converge at every point, the
Cesaro sums do converge. To get at this fact, we shall examine the Fejér kernel

1 N
Kn() = 57 D Dal).
n=0
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The N™ Cesaro sum of s, (f; x) is given by % ffﬂ Kn(x —1t) f(t) dt because
I SPyPAR. XNj]/”m 010 dr
I —— n ; T —— ~_ (X —
R R VS AL v

= L/ﬂ Ky(x —1)f(t)dt.
27 ) _»

The remarkable fact is that the Fejér kernel is an approximate identity even though
the Dirichlet kernel is not, and the result will be that the Cesaro sums of a Fourier
series converge in every way that they have any hope of converging.

Lemma 1.58. The Fejér kernel is given by

1 1—cos(N+1)x
N +1 l—cosx

PROOF. We show by induction on N that the values of Ky (x) in the definition
and in the lemma are equal. For N = 0, we have Ko(x) = Do(x) =1 = %
as required. Assume the equality for N — 1. Then

Ky (x) =

N
(N +DKy(x) =) Dyx) = NKy-1(x) + Dy(x)
n=0

1 —cosNx n sin ((N + %)x) sin %x
1 ’ 1

1 —cosx sin 73X sin 7%

by induction

1 — cos Nx + 2sin (N + $)x) sin 3x
1 —cosx
1 —cos Nx — [ cos ((N—I—%)x—l—%x) — cos ((N—l—%)x—%x)]

1 —cosx

1 —cos(N + 1)x
1 —cosx
as required. O

In line with the definition of approximate identity in Section 9, we are to show

that Ky (x) has the following properties:
() Ky(x) >0,

(i) 5 /7, Kn()dx =1,

(iii) forany & > 0, sup;<|, <, Kn(x) tends to 0 as N tends to infinity.
Property (i) follows from Lemma 1.58, since cosx < 1 everywhere; prop-
erty (ii) follows from the definition of Ky (x) and the linearity of the integral,

1

since 5 ffﬂ D, (x) dx = 1for all n; and property (iii) follows from Lemma 1.58,

since 1 —cos(N 4 1)x < 2everywhereand 1 —cosx > 1—cosdifé < |x| < m.
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Theorem 1.59 (Fejér’s Theorem). Let f : R — C be periodic of period 27
and Riemann integrable on [—m, 7 ]. If f is continuous at a point xq in [—7, 7],
then

Jim FEOKn (0 —x)dx = F(x0).

If f is uniformly continuous on a subset E of [—m, 7], then the convergence is
uniform for xy in E.

PROOF. Choose M such that | f(x)| < M for all x. By (ii) and then (i),
1 T
5w | KNG — ) dx = f)
T J-n
1 T
~ |3z [ 1700 = 0K~ x)dx
T J-n

1 T
5= Lf () = f(x0)|Kn(x0 — x)dx

<
T 2n ) 5
1
< — [f(x) — f(x0)|Kn(xo — x)dx
27 Jix—xo128
1
— 2M ( sup KN(I)> dx
27 Js<ix—xol<n s<|r|<x
1
=5 [f(x) — f(x0)|[Kn(xo —x)dx +2M sup Kny(1).
T Jlx—xol<8 s<lt|=m

Given € > 0, choose some § for € and continuity of f at xo or for € and
uniform continuity of f on E. In the first term on the right side, we then have
| f(x) — f(x0)] < € on the set where |[x — x9| < §. Thus use of (i) and (ii) shows
that the above expression is
<€e+4+2M sup Ky(t).
d<lt|=m
With § fixed, property (iii) shows that the right side is < 2¢ if N is sufficiently
large, and the theorem follows. g

Corollary 1.60 (uniqueness theorem). Let f : R - Candg : R - C
be periodic of period 27 and Riemann integrable on [—m, w]. If f and g have
the same respective Fourier coefficients, then f(x) = g(x) at every point of
continuity of both f and g.

REMARK. The fact that f and g have the same Fourier coefficients means that
s,(f; x) = s,(g; x) for all n, hence that

L / Da(x — 1) F () dt = — / Dy (x — Ng(t) dt
2 - 27 -
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for all n. Then the same formula applies with D, replaced by its Cesaro sums
Ky.

PROOF. Apply Theorem 1.59 to f — g at a point xy of continuity of both f
and g. O

Our second result about uniqueness will improve on Corollary 1.60, saying
that any Riemann integrable function with all Fourier coefficients O is basically
the O function—at least in the sense that any definite integral in which it is a factor
of the integrand is 0. We shall prove this improved result as a consequence of
Parseval’s Theorem, which says that equality holds in Bessel’s inequality. The
proof of Parseval’s Theorem will be preceded by an example and some lemmas.

Theorem 1.61 (Parseval’s Theorem). Let f : R — C be periodic of period
27 and Riemann integrable on [—m, ]. If f(x) ~ Ziooo cp e, then

Jlim_ %/_ |f(x) —sy(f:x)[Pdx =0

and
o0

1 b
— | If@Pdx= ) lel”

2 J . M
REMARK. In terms of the coefficients a, and b,,, the corresponding result is

o0

1/ FoPdr = SN (a2 4 b2)
7)., ) n nl ).

n=1

EXAMPLE. We saw near the beginning of this section that the periodic function
X sinnx
f givenby f(x) = %(JT —x)on (0, 2m) has f(x) ~ )
n=1
of Parseval’s Theorem as in the remark, but with the interval (0, 27) replacing

the interval (—m, ), says that Z L — % fozn |%(n — )c)|2 dx. The right side

n=1 2 —

15_471/ x2dx = 2B — 12 Thys

4

. The formulation

> 1
z—f”—-

This formula was discovered by Euler by other means before the work of Fourier.
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For the purposes of the lemmas and the proof of Parseval’s Theorem, let us
introduce a “Hermitian inner product™ on R[—, ] by the definition

1 [ B
(f,8), = Z/ fx)gx)dx,

as well as a “norm” defined by

1 T 1/2
171 = 0. = (5 [ 170P )

and a “distance function” defined by

1 [ , o \12
) =1f =gl = (5 [ 1700~ goPdx) "

The role of the function d, will become clearer in Chapter II, where “distance
functions” of this kind will be studied extensively.

Lemma 1.62. If f is in R[—m, ] and ffﬂ |f(x)|*dx = 0, then
[T 1f()ldx =0andalso [ f(x)g(x)dx =0forall g € R[—7, ].

PROOF. Write M = sup,¢_, - |f(x)], and let € > O be given. Choose a
partition P = {x;}_, with U(P, | f|>) < €, i.e.,

n

S (s 1 @PR)an <€

i=1  XElxi—1,xi]

Divide the indices from 1 to » into two subsets, A and B, with

A={i| sup |f(x)|26} and B =i

X€[xi—1,X]

sup [ £()] <e}.

X€[xi—1,x:]

The sum of the contributions fromindicesi € Ato U (P, | f|?)is> €Y ;.4 Axi,
and thus ), , Ax; < €. Hence Y, (SUp,cr,_, o1 |/ (X)) Ax; < Me. Also,
i (SUPcepr 1 | F (X)) Ax; < 2me. Therefore U(P, | f]) < 2m + M)e.
Since € is arbitrary, ff . | f(x)]dx = 0. This proves the first conclusion.

For the second conclusion it follows from the boundedness of |g|, say by M’,

that | /7 f()g@)dx| < & [T 1F()lIg()dx < M’ [T |f(x)ldx = 0. O

4The term “Hermitian inner product” will be defined precisely in Section IT.1. The form (f, &)
comes close to being one, but it fails to meet all the conditions because (f, f), = 0 is possible
without f = 0.
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Lemma 1.63 (Schwarz inequality). If f and g are in R[—m, ], then

I(f, 82 < I f12lgll,-

REMARK. Compare this result with the version of the Schwarz inequality in
Section A5 of Appendix A. This kind of inequality is put into a broader setting
in Section II.1.

PROOF. If | g|l, = 0, then Lemma 1.62 shows that ( f, g), = 0 forall f. Thus
the lemma is valid in this case. If ||g||, # O, then we have

0<|f—llgl(f @ gls = (f — el (. )8 f — lgly(f, ), 8),
= 1 F13-21gl5°1(f, &), +lIgl5*1Cf )11 g3 = 1 FI5—lIgl5 %I £, &)1,

and the lemma follows in this case as well. O

Lemma 1.64 (triangle inequality). If f, g, and & are in R[—m, 7], then
dry(f, h) < dr(f, g) +da(g, h).

PROOF. For any two such functions F and G, Lemma 1.63 gives

IF +Gl3=(F+G,F+G),=(F,F),+ (F,G), + (G, F), + (G, G),
= |F|2 +2Re(F, G), + |G|3
< IFI3 4+ 2IFI,IGl, + IGI5 = (IFll, + I1Gl,)*

Taking the square root of both sides and substituting F = f —gand G = g — h,
we obtain the lemma. g

Lemma 1.65. Let f : R — Cbe periodic of period 27 and Riemann integrable
on [—m, ], and let ¢ > O be given. Then there exists a continuous periodic
g : R — Cof period 27 such that || f — g|l, < e.

PROOF. Because of Lemma 1.64, we may assume that f is real-valued and is
not identically 0. Define M = sup,¢_, - |/ ()| > 0, let € > 0 be given, and
let P = {x;}}_, be a partition to be specified. Using P, we form the function g

defined by
X; — t—Xi—1

t
- fiz) + Ax,

gt) = fx) forx;—; <t <ux.

The graph of g interpolates the points (x;, f(x;)), 0 <i < n, by line segments.
Fix attention on a particular [x;_;, x;], and let I = infiey, , ) f() and S =
SUP ey, J (1). Fort € [xi_y,x;], we have I < g(r) < S. At a single
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point ¢ in this interval, f(z) > g(¢) implies I < g(t) < f(t) < §, while
g() = f(¢t) implies I < f(t) < g(t) < S. Thus in either case we have
| f(t) — g(t)] < S — I. Taking the supremum over ¢ in the interval and summing
oni,weobtain U(P,|f —g|) <U(P, f)—L(P, f).

Since | f — g> = | f — gl|f — g|, we have
sup |f() =g < sup [f() =g sup |f(@)—g®)

telxi—1,x;] telx;i—1,x;] texi—1,x;]
<2M sup |[f(1) —g®)l
telxi—1,x;]

for 1 <i <n. Summingoni gives U(P, |f —g|*) <2MU (P, f)—L(P, f)).
Now we can specify P;itis to be any partition for which U (P, f)—L(P, f) <
€2/(2M) and no Ax; is 0. Then

0< L [T 1f () —g@Pdr < L U(P.If —gP)
<M WP, f)—L(P, f) <€/Qm) < €2,
as required. .

PROOF OF THEOREM 1.61. Given € > 0, choose by Lemma 1.65 a con-
tinuous periodic g with || f — gll, < €. Write g(x) ~ Yoo _ che'™, and
put gn(x) = % ffﬂ Ky(x —1)g(t)dt, where Ky is the Fejér kernel. Fejér’s
Theorem (Theorem 1.59) gives sup,.¢(_ 1 [8(x) —gn(x)| < € for N sufficiently
large. Since any Riemann integrable 4 has ||h]l, < sup,¢(_, 1 [ (x)], we obtain
lg — gnll, < € for N sufficiently large. Fixing such an N and substituting from
the definition of K, we have

1 N1

gn(x) = N——I-l,;) E/—n D,(x —1)g(t)dt

—_
=
3

— Z Z CI/Cezkx: Z dnemx

for suitable constants d,. Theorem 1.53 and Lemma 1.64 then give

1 i 2 ul 2 172 N inx
G BT S R VR S §

n=—N

N .
<|f- 5 die™| =17 -gnl;
n=—N 2

=If—glly+ g —sgnll, <€+e=2e

and the result follows. O
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Corollary 1.66 (uniqueness theorem). Let f : R — C be periodic of period
27 and Riemann integrable on [—m, 7r]. If f has all Fourier coefficients 0, then
ST 1f@)ldx =0and [7_ f(x)g(x)dx = 0 for every member g of R[—7, 7].

PROOF. If f has all Fourier coefficients 0, then ffﬂ |f(x)]?dx = 0 by
Theorem 1.61. Application of Lemma 1.62 completes the proof of the corollary.
g

Itis natural to ask which sequences {c, } with > _ |c, |? finite are the sequences of
Fourier coefficients of some f € R[—m, 7]. To see that this is a difficult question,
one has only to compare the two series Y oo, n~ ' sinnx and Y o n~! cosnx
studied at the beginning of this section. The first series comes from a function in
R[—m, ], but a little argument shows that the second does not. It was an early
triumph of Lebesgue integration that this question has a elegant answer when
the Riemann integral is replaced by the Lebesgue integral: the answer when the
Lebesgue integral is used is given by the Riesz—Fischer Theorem in Chapter VI,
namely, any sequence with Y |c,|? finite is the sequence of Fourier coefficients
of a square-integrable function.

11. Problems

1. (a) Derive the archimedean property (Corollary 1.3) from the convergence of
bounded monotone increasing sequences (Corollary 1.6).
(b) Using (a), derive the least-upper-bound property (Theorem 1.1) from the
convergence of bounded monotone increasing sequences (Corollary 1.6).

2. According to Newton’s method, to find numerical approximations to ,/a when
a > 0, one can set xo = 1 and define x,, 1| = %(x,zl + a)/x, forn > 0. Prove
that {x,} converges and that the limit is 1/a.

3. Find limsupa, and liminfa, when a, is defined by a; = 0, ap, = %azn,l,
A1 = % + ay,. Prove that your answers are correct.

4. For any two sequences {a,} and {b,} in R, prove that limsup(a, + b,) <
lim sup a,, + lim sup b,,, provided the two terms on the right side are not +oco and
—o0 in some order.

5. Which of the following limits exist uniformly for 0 < x < 1: (i) lim,_ o0 X",
(1) limy—s 00 X /0, (iii) lim,— 00 Y 54 xK/k? Supply proofs for those that do
converge uniformly. For the other ones, prove anyway that there is uniform
convergence on any interval 0 < x < 1 — ¢, where € > 0.

6. Let a,(x) = (=1)"x"(1 — x) on [0, 1]. Show that Zzozoan(x) converges
uniformly and that Y2 |a, (x)| converges pointwise but not uniformly.
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11.
12.

13.

14.

15.

16.

11. Problems 79

(Dini’s Theorem) Suppose that f, : [a,b] — R is continuous and that
fi < fo < f3 <---. Suppose also that f(x) = lim f,(x) is continuous and
is nowhere +o00. Use the Bolzano—Weierstrass Theorem (Theorem 1.8) to
prove that f,, converges to f uniformly fora < x < b.

Prove that

x3 xS X7 x9 xll x13 xlS

yts Tt T T s S

for all x > 0.

Let f : (—o0, +00) — R be infinitely differentiable with | £ (x)| < 1 for all
n and x. Use Taylor’s Theorem (Theorem 1.36) to prove that

£
fo =y / ,( )
n=0 .

n

for all x.

(Helly’s Selection Principle) Suppose that {F,} is a sequence of nonde-
creasing functions on [—1, 1] with 0 < F,,(x) < 1 for all n and x. Using a
diagonal process twice, prove that there is a subsequence { F;,, } that converges
pointwise on [—1, 1].

Prove that the radius of convergence of ) >, a,x" is 1/limsup ¥/[a,|.

Find a power series expansion for each of the following functions, and find the
radius of convergence:
@ /(1 —x)?=Z0-x""
(b) log(1 —x) = — [ &,
© 1/0+x?),
— (*r_d
(d) arctanx = [ ﬁ

Prove, along the lines of the proof of Corollary 1.46a, that cos x has an inverse
function arccos x defined for —1 < x < 1 and that the inverse function is
differentiable. Find an explicit formula for the derivative of arccosx. Relate
arccos x to arcsinx when —1 < x < 1.

State and prove uniform versions of Abel’s Theorem (Theorem 1.48) and of the
corresponding theorem about Cesaro sums (Theorem 1.47), the uniformity being
with respect to a parameter x.

Prove that the partial sums ny: 1 cosnf and Zfzvz | sinn@ are uniformly bounded

onany sete <0 < 2m —eife > 0.
Verify the following calculations of Fourier series:

4 & sin(2n — 1
+1 forO<x<m }hasf(x)~—zsm(n )x.

@) f(x):{—l for — 7 <x <0 pe S
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—IiTa o 00 inx
(b) f(x) =7 on (0,2m)has f(x) ~ " 3 £ provided
T n+ao

n=—0oo

« is not an integer.

17. Combining Parseval’s Theorem (Theorem 1.61) with the results of Problem 16,

prove the following identities:
2

> 1 T > 1 T
@2 G = ® > rer =

=l sin” o

2

Problems 18-19 identify the continuous functions f : R — C with f(x)f(y) =
f(x + y) forall x and y as the O function and the functions f(x) = ¢*, using two
different kinds of techniques from the chapter.

18. Put F(x) = f(;c f () dt. Find an equation satisfied by F, and use it to show that
f is differentiable everywhere. Then show that f/(y) = f’(0) f (y), and deduce
the form of f.

19. Proceed without using integration. Using continuity, find xo > 0 such that the
expression | f (x) — 1] is suitably small when |x| < |xg|. Show that f (2 kxp) is
then uniquely determined in terms of f(xg) for all K > 0. If f is not identically
0, use xq to define c. Then verify that f(x) = ¢* for all x.

Problems 20-22 construct a nonzero infinitely differentiable function f : R — R
having all derivatives equal to O at one point.

20. Let P(x) and Q(x) be two polynomials with Q not the zero polynomial. Prove
that

. P(x) —1/x% _
Jmowme T =0

21. With P and Q as in the previous problem, use the Mean Value Theorem to prove
that the function g : R — R with

P —1/x?
glx) = { om ¢ " for x # 0,
0 forx =0,

has g’(0) = 0 and that g’ is continuous.
22. Prove that the function f : R — R with

e~ 1% for x #0,

f(x)z{o for x = 0,

is infinitely differentiable with derivatives of all orders equal to 0 at x = 0.

Problems 23-26 concern a generalization of Cesaro and Abel summability. A
Silverman-Toeplitz summability method refers to the following construction: One
starts with a system {M;;}; j>o of nonnegative real numbers with the two properties
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that (i) _; M;; = 1foralli and (ii) lim;, c M;; = O forall j. The method associates

to a complex sequence {s,},>0 the complex sequence {t,},>0 with#; = > >0 M;js;

as if the process were multiplication by the infinite square matrix {M;;} on infinite

column vectors.

23. Prove that if {s,} is a convergent sequence with limit s, then the corresponding
sequence {f,} produced by a Silverman—Toeplitz summability method converges
and has limit s.

24. Exhibit specific matrices {M;;} that produce the effects of Cesaro and Abel
summability, the latter along a sequence r; increasing to 1.

25. Let r; be a sequence increasing to 1, and define M;; = (j + D) (1 = rp)3.
Show that {M;;} defines a Silverman—Toeplitz summability method.

26. Usingthe system {M;;} in the previous problem, prove the following: if abounded
sequence {s,} is not necessarily convergent but is Cesaro summable to a limit o,
then {s,,} is Abel summable to the same limit o.

Problems 27-29 concern the Poisson kernel, which plays the same role for Abel sums
of Fourier series that the Fejér kernel plays for Cesaro sums. For 0 < r < 1, define
the Poisson kernel P, () to be the r" Abel sum of the Dirichlet kernel D, () =
1+, (€% + ¢~%%)  In the terminology of Section 8 this means that ag = 1 and
ay = e'*? 4+ ¢79 for k > 1, so that the sequence of partial sums Y ko ax is exactly
the sequence whose n™ term is D,,(0). The r Abel sum Z;’lio a,r" is therefore the
expression
o
PO)= Y rhein

n=—00
27. For f in R[—m, 7], verify that the ¥ Abel sum of s,(f; 6) is given by the

expression 5 [*_ P.(0 — ¢) f () d.
1—r2

28. Verify that P,() = —————.
erify that £ (6) 1 —2rcosf +r?

properties:
@) P-(f) =0,

(i) o 7, Pr(6)d6 = 1,
(iii) forany § > 0, sups g <, Pr () tends to 0 as r increases to 1.

Deduce that P.(0) has the following

29. Let f : R — C be periodic of period 27 and Riemann integrable on [—7, 7].
(a) Prove thatif f is continuous at a point 6y in [—m, 7], then

hmi/mB%—wﬂ@w=f%)
27 J_»

(b) Prove that if f is uniformly continuous on a subset E of [—m, 7], then the
convergence in (a) is uniform for 6y in E.
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Problems 30-35 lead to a proof without complex analysis (and in particular without
the complex logarithm) that exp (z + %ZZ + %13 + - ) = 1/(1 — z) for all complex
z with |z| < 1. (For the easy proof via elementary complex analysis, see Section B8
of Appendix B.)

30.

31.

32.

33.

34.

35.

Suppose that R > 0, that f;(x) = Z;io cn kX" s convergent for |x| < R, that
cnk > 0 for all n and k, and that lim_, o fx(x) = f(x) uniformly for |x| < r
whenever r < R. Prove for each r < R that some subsequence { f,} of { fi} has
lim;_ oo fk’l (x) existing uniformly for |x| < r.

In the setting of the previous problem, prove that f is infinitely differentiable for
x| < R.

In the setting of the previous two problems, use Taylor’s Theorem to show that
f(x) is the sum of its infinite Taylor series for |x| < R.

If0 < r < 1, prove for |z| < r that |2V + 772V ™+ | <rV/(1—r),and
deduce that exp (32" + 772"V F! 4 -+ - ) converges to I uniformly for |z] < r.
Why is it true that if a power series Y oo, ¢,z" with complex coefficients sums
to O for all real z with |z| < R, then it sums to O for all complex z with |z| < R?

Prove that exp (z+%zz+%z3+~ ) = 1/(1 — z) for all complex z with |z| < 1.



CHAPTER 11

Metric Spaces

Abstract. This chapter is about metric spaces, an abstract generalization of the real line that allows
discussion of open and closed sets, limits, convergence, continuity, and similar properties. The usual
distance function for the real line becomes an example of a metric. The other notions are defined in
terms of the metric. The advantage of the generalization is that proofs of certain properties of the
real line immediately go over to all other examples.

Section 1 gives the definition of metric space and open set, and it lists a number of important
examples, including Euclidean spaces and certain spaces of functions.

Sections 2 through 4 develop properties of open and closed sets, continuity, and convergence of
sequences that are simple generalizations of known facts about R.

Section 5 shows how a subset of a metric space can be made into a metric space so that the
restriction of a continuous function from the whole space to the subset remains continuous. It also
shows that three natural metrics for the product of two metric spaces lead to the same open sets,
continuous functions, and convergent sequences.

Section 6 shows that any metric space is “Hausdorff,” “regular,” and “normal,” and it goes on to
exhibit three different countability hypotheses about a metric space as equivalent. A metric space
with these properties is called “separable.”

Section 7 concerns compactness and completeness. A metric space is defined to be “compact”
if every open cover has a finite subcover. This property is equivalent to the condition that every
sequence has a convergent subsequence. The Heine—Borel Theorem says that the compact sets of
R" are exactly the closed bounded sets. A number of the results early in Chapter I that were proved
by the Bolzano—Weierstrass Theorem in the context of the real line are seen to extend to any compact
metric space. A metric space is “complete” if every Cauchy sequence is convergent. A metric space
is compact if and only if it is complete and “totally bounded.”

Section 8 concerns connectedness, which is an abstraction of the property of an interval of the
line that accounts for the Intermediate Value Theorem.

Section 9 proves a fundamental result known as the Baire Category Theorem. A sample con-
sequence of the theorem is that the pointwise limit of a sequence of continuous complex-valued
functions on a complete metric space must have points where it is continuous.

Section 10 studies the spaces of real-valued and complex-valued continuous functions on a
compact metric space. A generalization of Ascoli’s Theorem from the setting of Chapter I provides a
characterization of compact sets in either of these spaces of continuous functions. A generalization of
the Weierstrass Approximation Theorem, known as the Stone—Weierstrass Theorem, gives sufficient
conditions for a subalgebra of either of these spaces of continuous functions to be dense. One
consequence is that these spaces of continuous functions are separable.

Section 11 constructs the “completion” of a metric space out of Cauchy sequences in the given
space. The result is a complete metric space and a distance-preserving map of the given metric space
into the completion such that the image is dense.
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1. Definition and Examples

Let X be a nonempty set. A function d from X x X, the set of ordered pairs of
members of X, to the real numbers is a metric, or distance function, if

(i) d(x,y) > 0 always, with equality if and only if x = y,

(i) d(x,y) =d(y,x) forall x and y in X,

(i) d(x,y) <d(x,z) +d(z,y) forall x, y, and z, the triangle inequality.
In this case the pair (X, d) is called a metric space.

The real line R! with metric d(x, y) = |x — y| is the motivating example.
Properties (i) and (ii) are apparent, and property (iii) is readily verified one case
at a time according as z is less than both x and y, z is between x and y, or z is
greater than both x and y.

We come to further examples in a moment. Particularly in the case that X is
a space of functions, a space may turn out to be almost a metric space but not to
satisfy the condition that d(x, y) = 0 implies x = y. Accordingly we introduce
a weakened version of (i) as

(i) d(x,y) > 0andd(x, x) =0 always,
and we say that a function d from X x X to the real numbers is a pseudometric
if (i), (ii), and (iii) hold. In this case, (X, d) is called a pseudometric space.

Let (X, d) be a pseudometric space. If r > 0, the open ball of radius r and
center x, denoted by B(r; x), is the set of points at distance less than r from x,

namely
B(rix) ={ye X |dx,y) <r}.

The name “ball” will be appropriate in Euclidean space in dimension three, which
is part of the Example 1 below, and “ball” is adopted for the corresponding notion
in a general pseudometric space.

A subset U of X is open if for each x in U and some sufficiently small » > 0,
the open ball B(r; x) is contained in U. For the line the open balls in the above
sense are just the bounded open intervals, and the open sets in the above sense
are the usual open sets in the sense of Chapter L.

Lemma 2.1. In any pseudometric space (X, d), every open ball is an open set.
The open sets are exactly all possible unions of open balls.

PROOF. Let an open ball B(r; x) be given. If y isin B(r; x), then the open ball
B(r —d(x,y), y) has center y and positive radius; we show that it is contained
in B(r; x). In fact, if z is in B(r — d(x, y), y), then the triangle inequality gives

d(x,z) <d(x,y) +d(y,2) <d(x,y) + —dx,y)) =r,

and the containment follows.
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For the second assertion it follows from the definition of open set that every
open set is the union of open balls. In the reverse direction, let U be a union of
open balls. If y is in U, then y lies in one of these balls, say in B(r; x). We have
just shown that some open ball B(s; y) is contained in B(r; x), and B(r; x) is
contained in U. Thus B(s; y) is contained in U, and U is open. O

EXAMPLES.

(1) Euclidean space R”. Fix an integer n > 0. Let R" be the space of
all n-tuples of real numbers x = (xi, ..., x,). We define addition of n-tuples
componentwise, and we define scalar multiplication by cx = (cxy, ..., cx,) for
real c. Following the normal convention in linear algebra, we identify this space
with the real vector space, also denoted by R", of all n-component column vectors

X1
of real numbers x = | : |. Generalizing the notion of absolute value when
Xn
1/2 . .
n=1,welet|x| = (Z;’:lsz)  forx = (x1, ..., x,) in R". The quantity |x]|

is the Euclidean norm of x. The Euclidean norm satisfies the properties

(a) |x| = 0 always, with equality if and only if x equals the zero tuple
0=1(0,...,0),

(b) |cx| = |c||x]| for all x and for all real c,

(©) |x 4+ y| <|x|+ |y| forall x and y.

Properties (a) and (b) are apparent, but (c) requires proof. The proof makes use
of the familiar dot product, given by x - y = 2,7:1 xjyjiftx = (x1,...,%,)
and y = (31, ..., yn). In terms of dot product, the Euclidean norm is nothing
more than |x| = (x - x)!/2. The dot product satisfies the important inequality
|x - y] < |x]||y], known as the Schwarz inequality and proved for this context in
Section A5 of Appendix A at the end of the book. A more general version of the
Schwarz inequality will be stated and proved in Lemma 2.2 below. The Schwarz
inequality implies (c) above because we then have

X +yP=@+y) x4+ =x-x+2(x-y)+y-y
= [x]? +2(x - y) + [y1* < [x]* +20x]|y] + [y1* = (x| + [y])>

We make X = R” into a metric space (X, d) by defining
d()C, y) = |x - y|
Properties (i) and (ii) of a metric are immediate from (a) and (b), respectively;

property (iii) follows from (c) in the form |a + b| < |a| + |b]| if we substitute
a=x—zand b = z —y. Forn = 1, this example reduces to the line as
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discussed above. For n = 2, open balls are geometric open disks, while for
n = 3, open balls are geometric open balls. For any 7, the open sets in the metric
space coincide with the open sets as defined in calculus of several variables.

(2) Complex Euclidean space C". The space C of complex numbers, with
distance function d(z, w) = |z — w] as in Section L.5, can be seen in two ways to
be a metric space. One way was carried out in Section 1.5 and directly uses the
properties of the absolute value function |z| in Section A4 of Appendix A. The
other way is to identify z = x + iy with the member (x, y) of R?, and then the
absolute value |z| equals the Euclidean norm |(x, y)| in the sense of Example 1;
hence the construction of Example 1 makes the set of complex numbers into a
metric space. More generally the complex vector space C" of n-tuples

Z:(Zl’---7zn):(-xlv--~7xn)+i(yls-~-vyn):x+iy

becomes a metric space in two equivalent ways. One way is to define the norm

2l = (X)) Iz ) V2 a5 a generalization of the Euclidean norm for R”; then we
put d(z, w) = |z — w|. The argument that d satisfies the triangle inequality is a
variant of the one for R"”: The object for C" that generalizes the dot product for

R" is the Hermitian inner product
n
@w) = (@10 2 WL wy)) = D 2.
j=1

The Euclidean norm is given in terms of this expression by |z| = (z, z)'/?, and the
version of the Schwarz inequality in Section A5 of Appendix A is general enough
to show that |(z, w)| < |z||w]|. The same argument as for Example 1 shows that the
norm satisfies the triangle inequality, and then it follows that d satisfies the triangle
inequality. The other way to view C" as a metric space is to identify C" with R*"
by (z1, ..., 20) = (X1, ..., Xu, Y1, - . ., Y») and then to use the metric on R*" from
Example 1. This is the same metric, since Y_7_, |z;> = Y7_ x7 + Y7, y7.
We still get the same metric if we instead use the identification (zy, ..., z,) >
(X1, Y15 - - - » Xn, Yn). With either identification the Hermitian inner product (z, w)
for C" corresponds to the ordinary dot product for R*".

(3) System R* of extended real numbers. The function f(x) = x/(1 + x)
carries [0, 400) into [0, +1) and has g(y) = y/(1 — y) as a two-sided inverse.
Therefore f is one-one and onto. We can extend f so that it carries (—o0, +00)
one-one onto (—1, 4+1) by putting f(x) = x/(1 4 |x|). We can extend f further
by putting f(—o0) = —1 and f(4+o00) = +1, and then f carries [—o0, +0o0],
i.e., all of R*, one-one onto [—1, 4+1]. The function f is nondecreasing on
[—00, +00]. For x and x” in R*, let

d(x,x") =1f(x) = f(N].
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We shall show that d is a metric. By inspection, d satisfies properties (i) and (ii)
of a metric, and we are to prove the triangle inequality (iii), namely that

dx,x") <d(x,x")+dx", x").

The critical fact is that f is nondecreasing. Since d satisfies (ii), we may assume
that x < x’, and then

d(x,x") = f(x) = f(x).

We divide the proof into three cases, depending on the location of x” relative to
x and x’. The first case is that x” < x, and then

dx, x") +d(x", x") = f(x) = f&") + f(x) = fF&).

Thus the question is whether

FO = FO0) < F@) — £+ @) — £,
hence whether ,
2F(x") <2f(x).

This inequality holds, since f is nondecreasing. The second case is that x <
x” < x’, and then

dx,x") +d(x",x") = fG&") = fO) + f(&) — fG&) = f(N) = f0).

Hence equality holds in the triangle inequality. The third case is that x’ < x”,
and then

dx, x") +d(x",x") = f(") — f) + f&7) = fF(D.

The triangle inequality comes down to the question whether

2f(x") ; 2f£(x").

This inequality holds, since f is nondecreasing. We conclude that (R*, d) is a
metric space. It is not hard to see that the open balls in R* are all intervals (a, b),
[—o0, b), (a, +oc], and [—00, +00] with —00 < a < b < +00. Each of these
open balls in R* intersects R in an ordinary open interval, bounded or unbounded.
The open sets in R therefore coincide with the intersections of R with the open
sets of R*.
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(4) Bounded functions in the uniform metric. Let S be a nonempty set, and
let X = B(S) be the set of all “scalar”’-valued functions f on S that are bounded
in the sense that | f(s)| < M for all s € S and for a constant M depending on
f. The scalars are allowed to be the members of R or the members of C, and
it will ordinarily make no difference which one is understood. If it does make a
difference, we shall write B(S, R) or B(S, C) to be explicit about the range. For
f and g in B(S), let

d(f,8) =sup|f(s) —g(s)l.
ses

It is easy to verify that (X, d) is a metric space. Let us not lose sight of the fact
that the members of X are functions. When we discuss convergence of sequences
in a metric space, we shall see that a sequence of functions in this X converges if
and only if the sequence of functions converges uniformly on S.

(5) Generalization of Example 4. We can replace the range R or C of the
functions in Example 4 by any metric space (R, p). Fix a point ry in the range
R. A function f : S — R is bounded if p(f(s), o) < M for all s and for some
M depending on f. This definition is independent of the choice of ry because p
is assumed to satisfy the triangle inequality. If we let X be the space of all such
bounded functions from S to R, we can make X into a metric space by defining

d(f, g) = supscs p(f(5), 8(s)).

(6) Sequence space £2. This is the space of all sequences {c,};2 _ . of scalars
with 3" |¢,|? < 00. A metric is given by

ddden tdh = (3 lea—d,)

n=—0oo

In the case of complex scalars, this example arises as a natural space containing
all systems of Fourier coefficients of Riemann integrable functions on [—r, 7],
in the sense of Chapter I. Proving the triangle inequality involves arguing as in
Examples 1 and 2 above and then letting the number of terms tend to infinity.

The role of the dot product is played by ({c,.}, {d,}) = ZOO cnd,.

n=—oo
(7) Indiscrete space. If X is any nonempty set and if d(x, y) = O for all x
and y, then d is a pseudometric and the only open sets are X and the empty set
@. If X contains more than one element, then d is not a metric.

(8) Discrete metric. If X is any nonempty set and if

1 ifx #y,

d(x’y):{o ifx =y

then d is a metric, and every subset of X is open.
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(9) Let S be a nonempty set, fix an integer n > 0, and let X be the set of
n-tuples of members of S. For n-tuples x = (xy,...,x,) and y = (y1, ..., Yn),
define

dix,y) =#Jj | x; # yi},

the number of components in which x and y differ. Then (X, d) is a metric space.
The proof of the triangle inequality requires a little argument, but we leave that
for Problem 1 at the end of the chapter. Every subset of X is open, just as with
the discrete metric in Example 8.

(10) Hedgehog space. Let X be R2, and single out the origin for special
attention. Let d be the metric of Euclidean space, and define

d(x,y) if x and y are on the same ray from O,
d(x,0)4+d(0,y) otherwise.

Then p is a metric. Every open set in (X, d) is open in (X, p), but a set like the
one in Figure 2.1 is open in (X, p) but not in (X, d).

p(x,y) ={

FIGURE 2.1. An open set centered at the origin in the hedgehog space.

(11) Hilbert cube. Let X be the set of all sequences {x,,},,>1 of real numbers
satisfying 0 < x,, < 1 for all m, and put

d({xn}, lym}) =D 27" X — Y.
m=1

Then (X, d) is a metric space. To verify the triangle inequality, we can argue as
follows: Let {x,,}, {ym}, and {z,,} be in X. For each m, we have
27" xm = yml = 27" X = 2| + 27" (2w — yml-

Thus
N N N
D 2w =yl £ 27w =zl + Y 27" 2w — Yl
m=1 m=1 m=1

o)
27" X = 2wl + Y 27" 2w — Yl

1 m=1

M2

=

m

for each N. Letting N tend to infinity yields the desired inequality.
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(12) L' metric on Riemann integrable functions. Fix a nontrivial bounded
interval [a, b] of the line, let X be the set of all Riemann integrable complex-
valued functions on [a, b] in the sense of Chapter I, and define

b
di(f.g) = / () — g()] dx

for f and g in X. Then (X, d;) is a pseudometric space. It can happen that
fab | f(x) — g(x)|dx = 0 without f = g; for example, f could differ from g at
a single point. Therefore d; is not a metric.

(13) L? metric on complex-valued R[—m, w]. This example arose in the
discussion of Fourier series in Section 1.10, and it was convenient to include a
factor % in front of integrals. Let X = R[—m, 7], and define

1 [~ 12
df) = (5 [ 1700 = gmpax) "

Then (X, d») is a pseudometric metric space. The triangle inequality was proved
in Lemma 1.64 using the version of the Schwarz inequality in Lemma 1.63; that
version of the Schwarz inequality needed a special argument given in Lemma
1.62 in order to handle functions f whose norm satisfies || £, = 0.

The constructions of metric spaces in Examples 1, 2, 6, and 13 are sufficiently
similar to warrant abstracting what was involved. We start with a real or complex
vector space V, possibly infinite-dimensional, and with a generalization (-, -)
of dot product. This generalization is a function from V x V to R in the case
that V is real, and it is a function from V x V to C in the case that V is complex.
We shall write the scalars as if they are complex, but only real scalars are to be
used if the vector space is real. The function is written (-, -) and is assumed to
satisfy the following properties:

(i) itis linear in the first variable, i.e., (x| + x2, y) = (x1, y) + (x2, y) and
(ex,y) =c(x,y),
(i1) it is conjugate linear in the second variable, i.e., (x,y; + y2) =
(x, y1) + (x, y2) and (x, cy) = c(x, y),
(iii) itis symmetric in the real case and Hermitian symmetric in the complex
case, i.e., (y, x) = (x,—y),

(iv) itis definite, i.e., (x,x) > 0if x £ 0.

The form (-, -) is called an inner product if V is real or complex and is often
called also a Hermitian inner product if V is complex; in either case, V with the
form is called an inner-product space. Two vectors x and y with (x, y) = 0 are
said to be orthogonal; the notion of orthogonality generalizes perpendicularity
in the case of the dot product.
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For either kind of scalars, we define ||x|| = (x, x)'/?, and the function || - ||
is called the associated norm. We shall see shortly that a version of the Schwarz
inequality is valid in this generality, the proof being no more complicated than
the one in Section A5 of Appendix A.

In many cases in practice, item (iv) is replaced by the weaker condition that

@iv") (-, -) is semidefinite, i.e., (x, x) > 0 if x £ 0.

This was what happened in Example 13 above. In order to have a name for
this kind of space, let us call V with the semidefinite form (-, -) a pseudo
inner-product space. It is still meaningful to speak of orthogonality. It is still
meaningful also to define ||x|| = (x, x)!'/?, and this is called the pseudonorm for
the space. The Schwarz inequality is still valid, but its proof is more complicated
than for an inner-product space. The extra complication was handled by Lemma
1.62 in the case of Example 13 in order to obtain a little extra information; the
general argument proceeds along different lines.

Lemma 2.2 (Schwarz inequality). Let V be a pseudo inner-product space with
form (-, -). If x and y are in V, then |(x, y)| < ||x]|/||y].

PROOF. First suppose that || y|| # 0. Then
_ 2 _ _
0 < [x —IvI2C, »y||” = (& = Iyl 72, »)y), & = Iyl &, »)y)
= [lx]I> = 201y 121G, P+ Iy 141G, P I = x> = Iy 173, v)12,

and the inequality follows in this case.
Next suppose that || y|| = 0. It is enough to prove that (x, y) = O for all x. If
¢ is a real scalar, we have

lx+eyl? = (x+ey, x+ey) = || x[[*+2Re(x, cy)+le* [y I* = x|*+2¢ Re(x, y).

The left side is > 0 as ¢ varies, but the right side can be < 0 unless Re(x, y) =
0. Thus we must have Re(x, y) = O for all x. Replacing x by ix gives us

Im(x, y) = —Rei(x, y) = —Re(ix, y), and this we have just shown is O for all
x. Thus Re(x, y) = Im(x, y) =0, and (x, y) = 0. Il
Proposition 2.3 (triangle inequality). If V is a pseudo inner-product space
with form (-, -) and pseudonorm || - ||, then the pseudonorm satisfies
(@) |lx| >0forallx € V,
(®) |lex]|| = |c|llx]|| for all scalars c and all x € V,

©) llx+yll <lxll +1ly| forall x and y in V.

Moreover, the definition d (x, y) = ||x — y|| makes V into a pseudometric space.
The space V is a metric space if the pseudo inner-product space is an inner-product
space.
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PROOF. Properties (a) and (b) of the pseudonorm are immediate, and (c) follows
because

Ix +yI* = (x +y, x +y) = (x,x) +2Re(x,y) + (v, y)
= [lx]I* + 2Re(x, y) + [y12 < x4+ 2l vl + Iy12 = Axl + lyD?.

Putting x = a —cand y = ¢ — b gives d(a,b) < d(a,c) + d(c,b), and
thus d satisfies the triangle inequality for a pseudometric. The other properties
of a pseudometric are immediate from (a) and (b). If the form is definite and
d(f,g) =0,then (f —g, f —g) = 0and hence the definiteness yields f —g = 0.

O

EXAMPLES, CONTINUED.

14) Let us take double integrals of continuous functions of nice subsets of R?
as known. (The detailed study of general Riemann integrals in several variables
occurs in Chapter III.) Let V be the complex vector space of all power series
F(z) = Zflozo cyz" with infinite radius of convergence. Since any such F(z)
is bounded on the open unit disk D = {z e C | lz] < 1}, the form (F, G) =
[ F (z)G(z) dx dy is meaningful and makes V into an inner-product space. The
proposition shows that V becomes a metric space with metric givenby d(F, G) =

([, IF@) — G2 dxdy)"”.

2. Open Sets and Closed Sets

In this section we generalize the Euclidean notions of open set, closed set,
neighborhood, interior, limit point, and closure so that they make sense for all
pseudometric spaces, and we prove elementary properties relating these metric-
space notions. In working with metric spaces and pseudometric spaces, it is often
helpful to draw pictures as if the space in question were R?, even computing
distances that are right for R2. We shall do that in the case of the first lemma but
not afterward in this section. Let (X, d) be a pseudometric space.

Lemma 2.4. If z is in the intersection of open balls B(r; x) and B(s; y),
then there exists some ¢ > 0 such that the open ball B(z; z) is contained in that
intersection. Consequently the intersection of two open balls is open.

REMARK. Figure 2.2 shows what B(¢; z) looks like in the metric space R>.

PROOF. Take t = min{r — d(x, z), s — d(y, z)}. If wis in B(¢; z), then the
triangle inequality gives

dx,w)<d(x,2)+dz,w) <dx,z2)+t<dx,2)+ F —d(x,2) =r,

and hence w is in B(r; x). Similarly w is in B(s; y). O
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FIGURE 2.2. Open ball contained in an intersection of two open balls.

Proposition 2.5. The open sets of X have the properties that

(a) X and the empty set @ are open,
(b) an arbitrary union of open sets is open,
(c) any finite intersection of open sets is open.

PROOF. We know from Lemma 2.1 that a set is open if and only if it is the
union of open balls. Then (b) is immediate, and (a) follows, since X is the union
of all open balls and & is an empty union. For (c), it is enough to prove that U NV
is open if U and V are open. Write U = J, By and V = (4 By as unions of
open balls. ThenU NV = Ua,ﬁ (By N Bg), and Lemma 2.4 shows that U NV
is exhibited as the union of open balls. Thus U N V is open. O

A neighborhood of a pointin X is any set that contains an open set containing
the point. An open neighborhood is a neighborhood that is an open set.! A
neighborhood of a subset E of X is a set that is a neighborhood of each point
of E. If A is a subset of X, then the set A’ of all points x in A for which A is
a neighborhood of x is called the interior of A. For example, the interior of the
half-open interval [a, b) of the real line is the open interval (a, b).

Proposition 2.6. The interior of a subset A of X is the union of all open sets
contained in A; that is, it is the largest open set contained in A.

PROOF. Suppose that U C A is open. If x is in U, then U is an open
neighborhood of x, and hence A is a neighborhood of x. Thus x is in A?, and A’
contains the union of all open sets contained in A. For the reverse inclusion, let
x be in A°. Then A is a neighborhood of x, and there exists an open subset U of
A containing x. So x is contained in the union of all open sets contained in A. [J

Corollary 2.7. A subset A of X is open if and only if A = A°.

A subset F of X is closed if its complement is open. Every closed interval of
the real line is closed. A half-open interval [a, b) on the real line is neither open
nor closed if a and b are both finite.

Some authors use the term “neighborhood” to mean what is here called “open neighborhood.””
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Proposition 2.8. The closed sets of X have the properties that

(a) X and the empty set & are closed,
(b) an arbitrary intersection of closed sets is closed,
(c) any finite union of closed sets is closed.

PROOF. This result follows from Proposition 2.5 by taking complements. In
(a), the complements of X and & are @ and X, respectively. For (b) and (c), we use
the formulas (), Fo)* = U, FS and (U, Fa)* = (), FS for the complements
of intersections and unions. ]

If A is a subset of X, then x in X is a limit point of A if each neighborhood
of x contains a point of A distinct from x. The closure?> A of A is the union of
A with the set of all limit points of A. For example, the limit points of the set
[a, b) U {b + 1} on the real line are the points of the closed interval [a, b], and
the closure of the set is [a, b] U {b + 1}.

Proposition 2.9. A subset A of X is closed if and only if it contains all its
limit points.

PROOF. Suppose A is closed, so that A is open. If x is in A€, then A° is
an open neighborhood of x disjoint from A, so that x cannot be a limit point of
A. Thus all limit points of A lie in A. In the reverse direction suppose that A
contains all its limit points. If x is in A€, then x is not a limit point of A, and
hence there exists an open neighborhood of x lying completely in A. Since x is
arbitrary, A€ is open, and thus A is closed. O

Proposition 2.10. The closure A of a subset A of X is closed. The closure
of A is the intersection of all closed sets containing A; that is, it is the smallest
closed set containing A.

PROOF. We shall apply Proposition 2.9. If x is given as a limit point of A,
we are to see that x is in A°!. Assume the contrary. Then x is not in A, and x
is not a limit point of A. Because of the latter condition, there exists an open
neighborhood U of x that does not meet A except possibly in x. Because of the
former condition, U does not meet A at all. Since x is a limit point of A, U
contains a point y of A Since U does not meet A, y has to be a limit point of
A. Since U is an open neighborhood of y, U has to contain a point of A, and
we have a contradiction. We conclude that x is in A°!, and Proposition 2.9 shows
that A9 is closed.

Any closed set F' containing A contains all its limit points, by Proposition
2.9, and hence contains all the limit points of A. Thus F 2 A, Since A°!

2Some authors write A instead of A°! for the closure of A.
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itself is a closed set containing A, it follows that A° is the smallest closed set
containing A. O

Corollary2.11. Asubset A of X isclosedifand only if A = A°'. Consequently
(AHl = A for any subset A of X.

Two remarks are in order. The first remark is that the proofs of all the results
from Proposition 2.6 through Corollary 2.11 use only that the family of open
subsets of X satisfies properties (a), (b), and (c) in Proposition 2.5 and do not
actually depend on the precise definition of “open set.” This observation will be
of importance to us in Chapter X, when properties (a), (b), and (c) will be taken
as an axiomatic definition of a “topology” of open sets for X, and then all the
results from Proposition 2.6 through Corollary 2.11 will still be valid.

The second remark is that the mathematics of pseudometric spaces can always
be reduced to the mathematics of metric spaces, and we shall normally therefore
work only with metric spaces. The device for this reduction is given in the
next proposition, which uses the notion of an equivalence relation. Equivalence
relations are taken as known but are reviewed in Section A6 of Appendix A.

Proposition 2.12. Let (X, d) be a pseudometric space. If members x and y of
X are called equivalent whenever d(x, y) = 0, then the result is an equivalence
relation. Denote by [x] the equivalence class of x and by X, the set of all
equivalence classes. The definition do([x], [y]) = d(x, y) consistently defines a
functiondy : Xo x Xo — R, and (X, dp) is a metric space. A subset A is open in
X if and only if two conditions are satisfied: A is a union of equivalence classes,
and the set Ag of such classes is an open subset of Xj.

PROOF. The reflexive, symmetric, and transitive properties of the relation
“equivalent” are immediate from the defining properties of a metric. Let x and
x" be equivalent, and let y and y’ be equivalent. Then

dx,y) <d(x,x)+dx', y)+d(Q,y) =0+dx,y)+0=d(x',y"),

and similarly

d(x',y) =d(x, y).
Thus d(x, y) = d(x', y'), and dy is well defined. The properties showing that dj
is a metric are immediate from the corresponding properties for d.

Next let x be in an open set A, and let x’ be equivalent to x. Since A is open,
some open ball B(r; x) is contained in A. Since x" has d(x, x’) = 0, x’ lies in
B(r; x). Thus x' lies in A, and A is the union of equivalence classes.

Finally let A be any union of equivalence classes, and let Ay be the set of those
classes. If x is in A, then the set of points in some equivalence class lying in
B(r; [x]) is just B(r; x), and it follows that A is open in X if and only if Ay is
open in Xj. (]
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3. Continuous Functions

Before we discuss continuous functions between metric spaces, let us take note
of some properties of inverse images for abstract functions as listed in Section A1l
of Appendix A. If f : X — Y is a function between two sets X and Y and E
is a subset of Y, we denote by f~!(E) the inverse image of E under f, i.e.,
{x € X | f(x) € E}. The properties are that inverse images of functions respect
unions, intersections, and complements.

Let (X, d) and (Y, p) be metric spaces. A function f : X — Y is continuous
at a point x € X if foreach € > 0, thereis a§ > 0 such that p(f(x), f(y)) <€
whenever d(x, y) < §. This definition is consistent with the definition when
(X, d) and (Y, p) are both equal to R with the usual metric.

Proposition 2.13. If (X, d) and (Y, p) are metric spaces, then a function
f + X — Y is continuous at the point x € X if and only if for any open
neighborhood V of f(x) in Y, thereisaneighborhood U of x suchthat f(U) C V.

PROOF. Let f be continuous at x and let V be given. Choose € > 0 such that
B(e; f(x)) is contained in V, and choose § > 0 such that p(f(x), f(y)) < €
whenever d(x,y) < 8. Then y € B(6; x) implies f(y) € B(e; f(x)) C V.
Thus U = B(5; x) has f(U) C V.

Conversely suppose that f satisfies the condition in the statement of the
proposition. Let € > 0 be given, and choose a neighborhood U of x such
that f(U) € B(e; f(x)). Since U is a neighborhood of x, we can find an
open ball B(§; x) lying in U. Then f(B(3;x)) < B(e; f(x)), and hence
p(f(x), f(y)) < e wheneverd(x, y) <. O

Corollary 2.14. Let f : X — Y and g : Y — Z be functions between metric
spaces. If f is continuous at x and g is continuous at f'(x), then the composition

go f,givenby (g o f)(y) = g(f(y)), is continuous at x.

PROOF. Let W be an open neighborhood of g(f(x)). By continuity of g at
f(x), we can choose a neighborhood V of f(x) such that g(V) € W. Possibly
by passing to a subset of V, we may assume that V is an open neighborhood of
f(x). By continuity of f at x, we can choose a neighborhood U of x such that
fU) C V. Then g(f(U)) € W. Taking Proposition 2.13 into account, we see
that g o f is continuous at x. (]

Proposition 2.15. If (X, d) and (Y, p) are metric spaces and f is a function
from X into Y, then the following are equivalent:
(a) the function f is continuous at every point of X,
(b) the inverse image under f of every open setin Y is open in X,
(c) the inverse image under f of every closed set in Y is closed in X.
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PROOF. Suppose (a) holds. If V is open in ¥ and x isin f~'(V), then f(x) is
in V. Since f is continuous at x by (a), Proposition 2.13 gives us a neighborhood
U of x, which we may take to be open, such that f(U) € V. Then we have
x € U C f~1(V). Since x is arbitrary in f~'(V), f~1(V) is open. Thus (b)
holds. In the reverse direction, suppose (b) holds. Let x in X be given, and let V
be an open neighborhood of f(x). By (b), U = f~!(V)is open, and U is then an
open neighborhood of x mapping into V. This proves (a), and thus (a) and (b) are
equivalent. Conditions (b) and (c) are equivalent, since f vy = (v, O

A function f : X — Y thatis continuous at every point of X, as in Proposition
2.15, will simply be said to be continuous. A function f : X — Y is a homeo-
morphism if f is continuous, if f is one-one and onto, and if f~' : ¥ — X
is continuous. The relation “is homeomorphic to” is an equivalence relation.
Namely, the identity function shows that the relation is reflexive, the symmetry of
the relation is built into the definition, and the transitivity follows from Corollary
2.14.

If (X, d) is ametric space and if A is a nonempty subset of X, then the distance
from x to A, denoted by D(x, A), is defined by

D(x, A) = inf d(x, y).
yeA

Proposition 2.16. Let A be a fixed nonempty subset of a metric space (X, d).
Then the real-valued function f defined on X by f(x) = D(x, A) is continuous.

PROOF. If x and y are in X and z is in A, then the triangle inequality gives
D(x, A) <d(x,z) <d(x,y)+d(y, 2).

Taking the infimum over z gives D(x, A) < d(x,y) + D(y, A). Reversing the
roles of x and y, we obtain D(y, A) < d(x,y) + D(x, A), since d(y,x) =
d(x, y). Therefore

|f ) = f =[D(x, A) = D(y, A)| <d(x, y).

Fix x, lete > 0 be given, and take § = €. If d(x, y) < 8 = €, then our inequality
gives us | f(x) — f(¥)] < €. Hence f is continuous at x. Since x is arbitrary, f
is continuous. O

Corollary 2.17. If (X, d) is a metric space, then the real-valued function
d(x, y) for fixed y is continuous in x.

PROOF. This is the special case of the proposition in which A is the set {y}. O
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Corollary 2.18. Let (X, d) be a metric space, and let x be in X. Then the
closed ball {y € X | d(x, y) <r}isaclosed set.

REMARK. Nevertheless, the closed ball is not necessarily the closure of the
open ball B(r;x) = {y € X | d(x,y) < r}. A counterexample is provided by
any open ball of radius 1 in a space with the discrete metric.

PROOF. If f(y) = d(x, y), the set in question is f~!([0, r]). Corollary 2.17
says that f is continuous, and the equivalence of (a) and (c) in Proposition 2.15
shows that the set in question is closed. (]

Proposition 2.19. If A is a nonempty subset of a metric space (X, d), then
A = {x | D(x, A) = 0}.

PROOF. The set {x | D(x, A) = 0} is closed by Propositions 2.16 and 2.15,
and it contains A. By Proposition 2.10 it contains A°!. For the reverse inclusion,
suppose x is not in A, hence that x is not in A and x is not a limit point of A.
These conditions imply that there is some € > 0 such that B(e; x) is disjoint
from A, hence that d(x, y) > € for all y in A. Taking the infimum over y gives
D(x, A) > € > 0. Hence D(x, A) # 0. ]

4. Sequences and Convergence

For a set S, we have already defined in Section I.1 the notion of a sequence in S
as a function from a certain kind of subset of integers into S. In this section we
work with sequences in metric spaces.

A sequence {x,} in a metric space (X, d) is eventually in a subset A of X if
there is an integer N such that x, is in A whenever n > N. The sequence {x,}
converges to a point x in X if the sequence is eventually in each neighborhood
of x. It is apparent that if {x,} converges to x, then so does every subsequence

{xn, ).

Proposition 2.20. If (X, d) is a metric space, then no sequence in X can
converge to more than one point.

PROOF. Suppose on the contrary that {x,} converges to distinct points x and
y. The number m = d(x, y) is then > 0. By the assumed convergence, x,, lies
in both open balls B(75; x) and B(7; y) if n is large enough. Thus x,, lies in the
intersection of these balls. But this intersection is empty, since the presence of a
point z in both balls would mean that d(x, y) < d(x,z)+d(z,y) < 7 +%5 =m,
contradiction. O
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If a sequence {x,} in a metric space (X, d) converges to x, we shall call x the
limit of the sequence and write lim,,_, o, X, = x or lim, x, = x or limx,, = x or
X, — x. A sequence has at most one limit, by Proposition 2.20. If the definition
of convergence is extended to pseudometric spaces, then sequences need not have
unique limits.

Let us identify convergent sequences in some of the examples of metric spaces
in Section 1.

EXAMPLES OF CONVERGENCE IN METRIC SPACES.

(0) The real line. On R with the usual metric, the convergent sequences are
the sequences convergent in the usual sense of Section I.1.

(1) Euclidean space R". Here the metric is given by

ace.y) = (Y - )"
k=1

ifx =(x1,...,x,) and y = (y1, ..., y»). Another metric d’(x, y) is given by
d'(x,y) = max |x; — yl,
1<k<n
and we readily check that

d'(x,y) =d(x,y) < /nd'(x,y).

From this inequality it follows that the convergent sequences in (R", d) are the
same as the convergent sequences in (R”, d’). On the other hand, the definition
of d’ as a maximum means that we have convergence in (R”, d’) if and only if
we have ordinary convergence in each entry. Thus convergence of a sequence of
vectors in (R", d) means convergence in the kth entry for all k with 1 <k < n.

(2) Complex Euclidean space C". As a metric space, C" gets identified with
R?". Thus a sequence of vectors in C" converges if and only if it converges entry
by entry.

(3) Extended real line R*. Here the metricis givenby d(x, y) = | f(x) — f ()|
with f(x) = x/(1 + |x|) if x isin R, f(—o0) = —1, and f(+00) = +1. We
saw in Section 1 that the intersections with R of the open balls of R* are the
open intervals in R. Thus convergence of a sequence in R* to a point x in R
means that the sequence is eventually in (—oo, +00) and thereafter is an ordinary
convergent sequence in R. Convergence to +00 of a sequence {x, } means that for
each real number M, there is an integer N such that x, > M whenevern > N.
Convergence to —oo is analogous.
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(4) Bounded scalar-valued functions on § in the uniform metric. A sequence
{ fn} in B(S) converges in the uniform metric on B(S) if and only if { f,, } converges
uniformly, in the sense below, to some member f of B(S). The definition of
uniform convergence here is the natural generalization of the one in Section 1.3:
{ fn} converges to f uniformly if for each € > 0, there is an integer N such that
n > N implies | f,(s) — f(s)| < € for all s simultaneously. An important fact
in this case is that the sequence { f;,} is uniformly bounded, i.e., that there exists
a real number M such that | f,,(s)| < M for all n and s. In fact, choose some
integer N for € = 1. Then the triangle inequality gives

Lfn ] = [fa($) = FONF1f(8) = NI+ [fn)] =24 [fn(s)]

forall s if n > N, so that M can be taken to be max;<,<y { SUPgcg |fn(s)|} + 2.

(5) Bounded functions from S into a metric space (R, p). Convergence here
is the expected generalization of uniform convergence: {f,} converges to f
uniformly if for each € > 0, there is an integer N such that n > N implies
p(fu(s), f(s)) < € for all s simultaneously. As in Example 4, a uniformly
convergent sequence of bounded functions is uniformly bounded in the sense
that p(f,,(s), ro) < M for all n and 5, M being some real number. Here ry is any
fixed member of R.

(7) Indiscrete space X. The function d(x, y) in this case is a pseudometric, not
a metric, unless X has only one point. Every sequence in X converges to every
point in X.

(8) Discrete metric. Convergence of a sequence {x,} in a space X with the
discrete metric means that {x,} is eventually constant.

(11) Hilbert cube. For each n, let ({x,,},_,), be a member of the Hilbert cube,

and write x,,, for the m™ term of the n™ sequence. As n varies, the sequence of
sequences converges if and only if lim,, x,,, exists for each m.

(12) L' metric on Riemann integrable functions. The function d( f, g) defined
in this case is a pseudometric, not a metric. Convergence in the corresponding
metric space as in Proposition 2.12 therefore really means a certain kind of con-
vergence of equivalence classes: If { f,} and f are given, the sequence of classes
{[fn]} converges to the class [ f] if and only if lim, fab | fn(x) — f(x)|dx = 0.
The use of classes in the notation is rather cumbersome and not very helpful, and
consequently it is common practice to treat the L' space as a metric space and to
work with its members as if they were functions rather than equivalence classes.
We return to this point in Chapter V.

Let us elaborate a little on Examples 4 and 5, concerning the space B(S)
of bounded scalar-valued functions on a set S or, more generally, the space
of bounded functions from § into a metric space (R, p). Suppose that S has
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the additional structure of a metric space (S, d). We let C(S) be the subset of
B(S) consisting of bounded continuous functions on §, and we write C (S, R) or
C (S, C) if we want to be explicit about the range. More generally we consider
the space of bounded continuous functions from S into the metric space R. All
of these are metric spaces in their own right.

Proposition 2.21. Let (S, d) and (R, p) be metric spaces, let xo be in S, and
let f, : S — R be a sequence of bounded functions from S into R that converge
uniformly to f : S — R and are continuous at xp. Then f is continuous at xp.
In particular, the uniform limit of continuous functions is continuous.

PROOF. For x in S, we write

p(f(x), f(x0)) = p(f(x), fu(x)) + p(fa(x), fu(x0)) + p(fu(x0), f(x0)).

Given € > 0, we choose an integer N by the uniform convergence such that the
first and third terms on the right side are < € forn > N. With N fixed, we choose
& > 0 by the continuity of fy at xo such that p(fy(x), fn(xp)) < € whenever
d(x,xp) < §. Then the displayed inequality shows that d(x, xo) < § implies
p(f(x), f(x0)) < 3e, and the proposition follows. ]

We conclude this section with some elementary results involving convergence
of sequences in metric spaces.

Proposition 2.22. If (X, d) is a metric space, then

(a) for any subset A of X and limit point x of A, there exists a sequence in
A — {x} converging to x,

(b) any convergent sequence in X with limit x € X either has infinite image,
with x as a limit point of the image, or else is eventually constantly equal
to x.

REMARK. This result and the first corollary below are used frequently —and
often without specific reference.

PROOF OF (a). Foreachn > 1,theopenball B(1/#n; x) is an open neighborhood
of x and must contain a point x, of A distinct from the limit point x. Then
d(x,,x) < 1/n, and thus limx,, = x. Hence {x,} is the required sequence. [

PROOF OF (b). Suppose that {x,} converges to x and has infinite image. By
discarding the terms equal to x, we obtain a subsequence {x,,} with limit x. If
U is an open neighborhood of x, then {x,,} is eventually in U, by the assumed
convergence. Since no term of the subsequence equals x, U contains a member
of the image of {x,} different from x. Thus x is a limit point of the image of {x,}.
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Now suppose that {x,} converges to x and has finite image {p1, ..., p,}. If
X, is equal to some particular p;, for infinitely many 7, then {x,} has an infinite
subsequence converging to p;. Since {x,} converges to x, every convergent
subsequence converges to x. Therefore p;, = x. For j # jo, only finitely many
X, can then equal p;, and it follows that {x,} is eventually constantly equal to
Dj, = X. O

Corollary 2.23. If (X, d) is a metric space, then a subset F' of X is closed if
and only if every convergent sequence in F has its limit in F.

PROOF. Suppose that F is closed and {x,} is a convergent sequence in F' with
limit x. By Proposition 2.22b, either x is in the image of the sequence or x is
a limit point of the sequence. In either case, x is in F'; thus the limit of any
convergent sequence in F isin F.

Conversely suppose every convergent sequence in F has its limit in F. If x
is a limit point of F, then Proposition 2.22a produces a sequence in F' — {x}
converging to x. By assumption, the limit x is in F. Therefore F' contains all its
limit points and is closed. ([l

Corollary 2.24. If (S, d) is a metric space, then the set C(S) of bounded
continuous scalar-valued functions on S is a closed subset of the metric space
B(S) of all bounded scalar-valued functions on S.

PROOF. Proposition 2.21 shows for any sequence in C (S) convergent in B(S)
that the limit is actually in C(S). By Corollary 2.23, C(S) is closed in B(S). U

Proposition 2.25. Let f : X — Y be a function between metric spaces. Then
f is continuous at a point x in X if and only if whenever {x,} is a convergent
sequence in X with limit x, then { f (x,,)} is convergent in Y with limit f (x).

REMARK. In the special case of domain and range R, this result was mentioned
in Section .1 after the definition of continuity. We deferred the proof of the special
case until now to avoid repetition.

PROOF. Supposethat f is continuous at x and that {x, } is aconvergent sequence
in X with limit x. Let V be any open neighborhood of f(x). By continuity, there
exists an open neighborhood U of x such that f(U) € V. Since x, — x, there
exists N such that x, is in U whenever n > N. Then f(x,) isin f(U) C V
whenever n > N. Hence { f(x,)} converges to f(x).

Conversely suppose that x, — x always implies f(x,) — f(x). We are to
show that f is continuous. Let V be an open neighborhood of f(x). We are to
show that some open neighborhood of x maps into V under f. Assuming the
contrary, we can find, for each n > 1, some x, in B(1/n; x) such that f(x,) is
not in V. Then x,, — x, but the distance of f(x,) from f(x) is bounded away
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from 0. Thus f(x,) cannot converge to f(x). This is a contradiction, and we
conclude that some B(1/n; x) maps into V under f; since V is arbitrary, f is
continuous. O

5. Subspaces and Products

When working with functions on the real line, one frequently has to address
situations in which the domain of the function is just an open interval or a closed
interval, rather than the whole line. When one uses the €-§ definition of continuity,
the subject does not become much more cumbersome, but it can become more
cumbersome if one uses some other definition, such as one involving limits. The
theory of metric spaces has a device for addressing smaller domains than the
whole space—the notion of a subspace—and then the theory of functions on a
subspace stands on an equal footing with the theory of functions on the whole
space.

Let (X, d) be a metric space, and let A be a nonempty subset of X. There is
a natural way of making A into a metric space, namely by taking the restriction
d | Axa as ametric for A. When we do so, we speak of A as a subspace of X.
When there is a need to be more specific, we may say that A is a metric subspace
of X. If A is an open subset of X, we may say that A is an open subspace; if A
is a closed subset of X, we may say that A is a closed subspace.

Proposition 2.26. If A is a subspace of a metric space (X, d), then the open
sets of A are exactly all sets U N A, where U is open in X, and the closed sets of
A are all sets F N A, where F is closed in X.

PROOF. The open balls in A are the intersections with A of the open balls of
X, and the statement about open sets follows by taking unions. The closed sets
of A are the complements within A of all the open sets of A, thus all sets of the
form A— (U N A) with U openin X. Since A — (U N A) = ANU¢, the statement
about closed sets follows. O

Corollary 2.27. If A is a subspace of (X, d) and if f : X — Y is continuous
at a point a of A, then the restriction f | 4> Mapping A into Y, is continuous at a.
Also, f is continuous at a if and only if the function fy : X — f(X) obtained
by redefining the range to be the image is continuous at a.

PROOF. Let V be an open neighborhood of f(a) in Y. By continuity of f ata
as a function on X, choose an open neighborhood U of a in X with f(U) C V.
Then U N A is an open neighborhood of @ in A, and f(U N A) € V. Hence f’A
is continuous at a.
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The most general open neighborhood of f(a) in f(X) is of the form V N f(X)
with V an open neighborhood of f(a) in Y. Since f~1(V) = fofl (VN (X)),
the condition for continuity of fj at a is the same as the condition for continuity
of f ata. (|

We now turn our attention to product spaces. Product spaces are a convenient
device for considering functions of several variables.

If (X, d) and (Y, d') are metric spaces, there are several natural ways of making
the product set X x Y, the set of ordered pairs with the first member from X and
the second from Y, into a metric space, but all such ways lead to the same class
of open sets and therefore also the same class of convergent sequences. We
discussed an instance of this phenomenon in Example 1 of Section 4. For general
X and Y, three such metrics on X x Y are

p1((x1, Y1), (x2, y2)) = d(x1, x2) + d'(y1, y2),
p2((x1, Y1), (2, ¥2)) = (d(x1, x2)* + d' (31, J’2)2)1/2,
oo ((X1, ¥1), (X2, ¥2)) = max{d(x1, x2), d'(y1, y2)}-

Each satisfies the defining properties of a metric. Simple algebra gives
max{a, b} < (@*> + b*)'? < a + b < 2max{a, b}
whenever a and b are nonnegative reals, and therefore

Poo < P2 < 1 < 2Ps0-

Let us check that this chain of inequalities implies that the neighborhoods of
a point (xo, yo) are the same in all three metrics, hence that the open sets are the
same in all three metrics. For any r > 0, the open balls about (xg, yp) in the three
metrics satisfy

Bi(r; (x0, y0)) € Ba(r; (x0, ¥0)) € Boo(r; (x0, ¥0)) € B1(2r; (x0, ¥0))-

The first and second inclusions show that open balls about (xg, yo) in the metrics
P2 and p, are neighborhoods of (xg, yo) in the metric p;. Similarly the second and
third inclusions show that open balls in the metrics p, and p; are neighborhoods
in the metric p,, and the third and first inclusions show that open balls in the
metrics p; and p; are neighborhoods in the metric pe.

We shall refer to the metric po as the product metric for X x Y. If X x Y is
being regarded as a metric space and no metric has been mentioned, p is to be
understood. But it is worth keeping in mind that p; and p, yield the same open
sets. In the case of Euclidean space, it is the metric p, on R™ x R” that gives the
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Euclidean metric on R™*"; thus the product metric and the Euclidean metric are
distinct but yield the same open sets.

A sequence {(x,, y,)} in the product metric converges to (xp, yp) in X x Y if
and only if {x, } converges to xo and {y,} converges to yg. Since the three metrics
on X x Y yield the same convergent sequences, this statement is valid in the
metrics p; and p, as well.

It is an elementary property of the arithmetic operations in R that if {x,}
converges to xp and {y,} converges to yo, then {x, + y,} converges to xo + yo.
Similar statements apply to subtraction, multiplication, maximum, and minimum,
and then to absolute value and to division except where division by 0 is involved.
Further similar statements apply to those operations on vectors that make sense.
Applying Proposition 2.25, we obtain (a) through (e) in the following proposition.
Conclusions (a’) through (e") are proved similarly.

Proposition 2.28. The following operations are continuous:

(a) addition and subtraction from R” x R” into R”,

(b) scalar multiplication from R x R" into R",

(c) the map x — x~! from R — {0} to R — {0},

(d) the map x — |x| from R" to R,

(e) the operations from R? to R of taking the maximum of two real numbers
and taking the minimum of two real numbers,

(a") addition and subtraction from C" x C" into C",

(b') scalar multiplication from C x C" into C",

(c') the map x — x~! from C — {0} to C — {0},

(d’) the map x — |x| from C" to R,

(¢/) the map x — x from C to C.

Corollary 2.29. Let (X, d) be a metric space, and let f and g be continuous
functions from X into R” or C". If c is a scalar, then f + g, cf, f — g, and | f| are
continuous. If n = 1, then the product fg is continuous, and the function 1/f is
continuous on the set where f is not zero. If n = 1 and the functions take values
in R, then max{ f, g} and min{ f, g} are continuous. If n = 1 and the functions
take values in C, then the complex conjugate f is continuous.

REMARKS. If (S, d) is a metric space, then it follows that the metric space
C(S) of bounded continuous scalar-valued functions on S is a vector space. As
such, it is a vector subspace of the metric space B(S) of bounded scalar-valued
functions on S, and it is a metric subspace as well.?

3The word “subspace” can now be used in two senses, that of a metric subspace of a metric space
and that of a vector subspace of a vector space. The latter kind of subspace we shall always refer to
as a “vector subspace,” retaining the word “vector” for clarity. A “closed vector subspace” of B(S)
then has to mean a closed metric subspace that is also a vector subspace.
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PROOF. The argument for f + g and for functions with values in R" will illus-
trate matters sufficiently. We setup x — f(x) + g(x) as a suitable composition,
expressing the composition in a diagram:

X x> (x,x) X x X (. y)= (f(x),8(y) R" x R" R".

Each function in the diagram is continuous, the last of them by Proposition 2.28a,
and then the composition is continuous by Corollary 2.14. t

(u,v)>u+v

We conclude this section with one further remark. When (X, d) is a metric
space, we saw in Corollary 2.17 thatx — d(x, y) and y — d(x, y) are continuous
functions from X to R. Actually, (x,y) — d(x,y) is a continuous function
from X x X into R if we use the product metric. In fact, if po, denotes the
product metric with ,ooo((x, v), (X0, yo)) = max{d(x, x9), d(y, yo)}, then we
have d(x, y) < d(x, xo) + d(x0, yo) + d(yo, ¥) and therefore

d(x,y) —d(xo, yo) < d(x,x0) +d(y, yo)-
Reversing the roles of (x, y) and (xg, yo), we see that

|d(x,y) —d(xo, yo)| <d(x,x0) +d(y, yo)
< 2max{d(x, xo), d(y, yo)}

= zpoo((X, y)v (x()s yo))
From this chain of inequalities, it follows that d is continuous with § = €/2.

6. Properties of Metric Spaces

This section contains two results about metric spaces. One lists a number of
“separation properties” of sets within any metric space. The other concerns the
completely different property of “separability,” which is satisfied by some metric
spaces and not by others, and it says that separability may be defined in any of
three equivalent ways.

Proposition 2.30 (separation properties). Let (X, d) be a metric space. Then

(a) every one-point subset of X is a closed set, i.e., X is T,

(b) for any two distinct points x and y of X, there are disjoint open sets U
and V withx € U and y € V, i.e., X is Hausdorff,

(c) for any point x € X and any closed set F' C X with x ¢ F, there are
disjoint open sets U and V withx € U and F C V,i.e., X is regular,

(d) for any two disjoint closed subsets E and F of X, there are disjoint open
sets U and V suchthat E C U and F C V,i.e., X is normal,

(e) for any two disjoint closed subsets E and F of X, there is a continuous
function f : X — [0, 1] such that f is 0 exactly on E and f is 1 exactly
on F.
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PROOF. For (a), the set {x} is the intersection of all closed balls B(r; x) for
r > 0 and hence is closed by Corollary 2.18 and Proposition 2.8b. For (e), the
function f(x) = D(x; E)/(D(x; E) + D(x; F)) is continuous by Proposition
2.16 and Corollary 2.29 and takes on the values 0 and 1 exactly on E and F,
respectively, by Proposition 2.19.

For (d), we need only apply (e) and Proposition 2.15b with U = f~!((—o0, 1))
andV = f~! ((%, —I—oo)). Conclusions (a) and (d) imply (c), and conclusions (a)
and (c) imply (b). This completes the proof. (]

A base B for a metric space (X, d) is a family of open sets such that every
open set is a union of members of B. The family of all open balls is an example
of a base.

Proposition 2.31. If (X, d) is a metric space, then a family B of subsets of X
is a base for (X, d) if and only if

(a) every member of B is open and
(b) for each x € X and open neighborhood U of x, there is some member B
of B such that x is in B and B is contained in U.

PROOF. If B is a base, then (a) holds by definition of base. If U is open in X,
then U = |, By for some members B, of B3, and any such B, containing x can
be taken as the set B in (b).

Conversely suppose that B satisfies (a) and (b). By (a), each member of B is
openin X. If U is open in X, we are to show that U is a union of members of B.
For each x € U, choose some set B = B, as in (b). Then U = J, ., By, and
hence each open set in X is a union of members of B. Thus 5 is a base. (]

This book uses the word countable to mean finite or countably infinite. It is
then meaningful to ask whether a particular metric space (X, d) has a countable
base. On the real line R, the open intervals with rational endpoints form a
countable base.

A subset D of X is dense in a subset A of X if D! D A; D is dense, or
everywhere dense, if D is dense in X. A set D is dense if and only if there is
some point of D in each nonempty open set of X.

A family U of open sets is an open cover of X if the union of the sets in I/ is
X. An open subcover of I/ is a subfamily of I/ that is itself an open cover.

Proposition 2.32. The following three conditions are equivalent for a metric
space (X, d):
(a) X has a countable base,
(b) every open cover of X has a countable open subcover,
(c) X has a countable dense subset.
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PROOF. If (a) holds, let B = {B,},>1 be a countable base, and let I/ be an
open cover of X. Any U € U is the union of the B, € Bwith B, C U. If By =
{B, € B| B, C U forsome U € U}, then it follows that UBneBo =Upcyy =
X. For each B, in By, select some U, in U with B, € U,. Then | J, U, 2
U BBy = X, and {U,} is a countable open subcover of /. Thus (b) holds.

If (b) holds, form, for each fixed n > 1, the open cover of X consisting of
all open balls B(1/n; x). For that n, let {B(1/n; X;u,)}m>1 be a countable open
subcover. We shall prove that the set D of all x,,,,, with m and n arbitrary, is dense
in X. It is enough to prove that each nonempty open set in X contains a member
of D, hence to prove, for each n, that each open ball of radius 1/n contains a
member of D. Thus consider B(1/n; x). Since the open balls B(1/n; x,,,) with
m > 1 cover X, x is in some B(1/n; x,,). Then that x,,,, has d(x,,, x) < 1/n,
and hence x,,, is in B(1/n; x). Thus D is dense, and (c) holds.

If (c) holds, let {x, },>1 be a countable dense set. Form the collection of all open
balls centered at some x,, and having rational radius. Let us use Proposition 2.31
to see that this collection of open sets, which is certainly countable, is a base. Let
U be an open neighborhood of x. We are to see that there is some member B of our
collection such that x is in B and B is contained in U. Since U is a neighborhood
of x, we can find an open ball B(r; x) such that B(r; x) € U; we may assume
that r is rational. The given set {x,},>; being dense, some x, lies in B(r/2; x).
If y is in B(r/2; x,), then d(x,y) < d(x,x,) +d(x,,y) < 5+ 5 =r. Hence
x lies in B(r/2; x,) and B(r/2; x,) € B(r;x) € U. Since r/2 is rational, the
open ball B(r/2; x,) is in our countable collection, and our countable collection
is a base. This proves (a). ]

A metric space satisfying the equivalent conditions of Proposition 2.32 is
said to be separable. Among the examples of metric spaces in Section 1, the
ones in Examples 1, 2, 3, 6, 8 if X is countable, 9, 11, 12, 13, and 14 are
separable. A countable dense set in Examples 1, 2, and 3 is given by all points
with all coordinates rational. In Example 6, one countable dense set consists
of all sequences with only finitely many nonzero entries, those being rational,
and in Examples 8 and 9, X itself is a countable dense set. In Example 11, the
sequences that are O in all but finitely many entries, those being rational, form
a countable dense set. In Example 13, the set of finite linear combinations of
exponentials e/ using scalars in Q + iQ is dense as a consequence of Par-
seval’s equality. In Example 12, when [a, b] = [—m, ], the same countable
set as for Example 13 is dense by Proposition 2.25 because the sets of func-
tions in Examples 12 and 13 coincide and the inclusion of R[—m, 7] relative
to L? into R[—m, 7] relative to L! is continuous. In Example 14, the set of
polynomials with coefficients in Q+iQ is countable and can be shown to be dense.

Example 10 is not separable, and Example 8 is not separable if X is uncount-
able.
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7. Compactness and Completeness

In Section 6 we introduced the notions of open cover and subcover for a metric
space. We call a metric space compact if every open cover of the space has a
finite subcover. A subset E of a metric space (X, d) is compact if it is compact
as a subspace of the whole space, i.e., if every collection of open sets in X whose
union contains E has a finite subcollection whose union contains E.

Historically this notion was embodied in the Heine—Borel Theorem, which
says that any closed bounded subset of Euclidean space has the property that
has just been defined to be compactness. As we shall see in Theorem 2.36 and
Corollary 2.37 below, the Heine—Borel Theorem can be proved from the Bolzano—
Weierstrass Theorem (Theorem 1.8) and leads to faster, more transparent proofs of
some of the consequences of the Bolzano—Weierstrass Theorem. Even more im-
portantis that it generalizes beyond metric spaces and produces useful conclusions
about certain spaces of functions when statements about pointwise convergence
of a sequence of functions are inadequate.

Easily established examples of compact sets are hard to come by. For one
example, consider in a metric space (X, d) a convergent sequence {x,} along
with its limit x. The subset E = {x} U |, {x,} of X is compact. In fact, if ¢/ is
an open cover of E, some member U of U/ has x as an element, and then all but
finitely many elements of the sequence must be in U as well. Say that U contains
x and all x, withn > N. For 1 <n < N, let U, be a member of I/ containing
Xy. Then {U, Uy, ..., Uy_} is a finite subcover of 4.

It is easier to exhibit noncompact sets. The open interval (0, 1) is not compact,
as is seen from the open cover {(%, 1)}. Nor is an infinite discrete space, since
one-point sets form an open cover. A subtle dramatic example is the closed unit
ball C of the hedgehog space X, Example 10 in Section 1; this set is not compact.
In fact, the open ball of radius 1/2 about the origin is an open set in X, and so
is each open ray from the origin out to infinity. Let U/ be this collection of open
sets. Then U/ is an open cover of C. However, no member of I/ is superfluous,
since for each U in U, there is some point x in C such that x is in C but x is in no
other member of . Thus U/ does not contain even a countable subcover.

Let us now work directly toward a proof of the equivalence of compactness
and the Bolzano—Weierstrass property in a metric space.

Proposition 2.33. A compact metric space is separable.

PROOF. This is immediate from equivalent condition (b) for the definition of
separability in Proposition 2.32. (]
Proposition 2.34. In any metric space (X, d),

(a) every compact subset is closed and bounded and
(b) any closed subset of a compact set is compact.
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PROOF. For (a), let E be a compact subset of X, fix xo in X, and let U,, for
n > 1bethe openball {x € X | d(xp, x) < n}. Then {U,} is an open cover of E.
Since the U,,’s are nested, the compactness of E implies that E is contained in a
single Uy for some N. Then every member of E is at distance at most N from
Xxg, and E is bounded.

To see that E is closed, we argue by contradiction. Let x; be a limit point of £
that is not in E. By the Hausdorff property (Proposition 2.30b), we can find, for
each x € E, open sets Uy and V, with x € U,, x(/) e Vi,and U, NV, = &. The
sets U, form an open cover of E. By compactness let {U,,, ..., U,,} be a finite
subcover. Then E C U,, U---U U, , which is disjoint from the neighborhood
Vi, N---NV,, of xj. Thus x; cannot be a limit point of E, and we have arrived
at a contradiction. This proves (a).

For (b), let E be compact, and let F be a closed subset of E. Because of (a), F
is a closed subset of X. Let U/ be an open cover of F. Then U/ U { F¢} is an open
cover of E. Passing to a finite subcover and discarding ¢, we obtain a finite
subcover of F. Thus F is compact. ([l

A collection of subsets of a nonempty set is said to have the finite-intersection
property if each intersection of finitely many of the subsets is nonempty.

Proposition 2.35. A metric space (X, d) is compact if and only if each col-
lection of closed subsets of X with the finite-intersection property has nonempty
intersection.

PROOF. Closed sets with the finite-intersection property have complements
that are open sets, no finite subcollection of which is an open cover. O

Theorem 2.36. A metric space (X, d) is compactif and only if every sequence
has a convergent subsequence.

PROOF. Suppose that X is compact. Arguing by contradiction, suppose that
{xn}n>11s a sequence in X with no convergent subsequence. Put F = UZ’;I {x,}.
The subset F of X is closed by Corollary 2.23, hence compact by Proposition
2.34b. Since no x,, is a limit point of F, there exists an open set U,, in X containing
X, but no other member of F. Then {U,},>: is an open cover of F with no finite
subcover, and we have arrived at a contradiction.

Conversely suppose that every sequence has a convergent subsequence. We
first show that X is separable. Fix an integer n. There cannot be infinitely many
disjoint open balls of radius 1/n, since otherwise we could find a sequence from
among their centers with no convergent subsequence. Thus we can choose a finite
disjoint collection of these open balls that is not contained in a larger such finite
collection. Let their centers be x1, ..., xy. The claim is that every point of X is
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at distance < 2/n from one of these finitely many centers. In fact, if x € X is
given, form B (%; x). This must meet some B (%; X;) at a point y, and then

dx,x;) <d(x,y)+d(y,x) <+ +1=2

n n n

Thus x is at distance < 2/n from one of the finitely many centers, as asserted.
Now let n vary, and let D be the set of all these centers for all n. Then every point
of X has members of D arbitrarily close to it, and hence D is a countable dense
setin X. Thus X is separable.

Let U be an open cover of X having no finite subcover. By the separability
and condition (b) in Proposition 2.32, we may assume that {/ is countable, say
U={U,,U,,...}. Since Uy U U, U ---U U, is not a cover, there exists a point
X, not in the union of the first n sets. By hypothesis the sequence {x,} has a
convergent subsequence {x,, }, say with limit x. Since {is a cover, some member
Uy of U contains x. Then {x,,} is eventually in Uy, and some n; with ny > N
has x,, in Uy. But x,, isnotin U; U --- U U, by construction, and this union
contains Uy, since n; > N. We have arrived at a contradiction, and we conclude
that ¢/ must have had a finite subcover. U

Corollary 2.37 (Heine—Borel Theorem) In Euclidean space R", every closed
bounded set is compact.

REMARK. Conversely we saw in Proposition 2.34a that every compact subset
of any metric space is closed and bounded.

PROOF. Let C be aclosed rectangular solid in R”, and let x® = (x
be the members of a sequence in C. By the Bolzano—Weierstrass Theorem
(Theorem 1.8) for R!, we can find a subsequence convergent in the first coordinate,
a subsequence of that convergent in the second coordinate, and so on. Thus {x®}
has a subsequence convergent in R”. By Corollary 2.23 the limit is in C. By
Theorem 2.36, C is compact. Applying Corollary 2.34b, we see that every closed
bounded subset of R” is compact. (]

k k
)

The next few results will show how the use of compactness both simplifies and
generalizes some of the theorems proved in Section I.1.

Proposition 2.38. Let (X, d) and (Y, p) be metric spaces with X compact. If
f : X — Y is continuous, then f(X) is a compact subset of Y.

PROOF. If {U,} is an open cover of f(X), then { f~!(U,)} is an open cover of
X. Let{f _1(UJ-)}}1=1 be a finite subcover. Then {U; };’:1 is a finite subcover of
F(X). U

Corollary 2.39. Let (X, d) be a compact metric space, and let f : X — R be
a continuous function. Then f attains its maximum and minimum values.
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REMARK. Theorem 1.11 was the special case of this result with X = [a, b].
This particular space X is compact by the Heine—Borel Theorem (Corollary 2.37),
and the corollary applies to yield exactly the conclusion of Theorem 1.11.

PROOF. By Proposition 2.38, f(X) is a compact subset of R. By Proposition
2.34a, f(X) is closed and bounded. The supremum and infimum of the members
of f(X)inR*liein R, since f(X) is bounded, and they are limits of sequences in
f(X). Since f(X) is closed, Proposition 2.23 shows that they must lie in f(X).

0

Corollary 2.40. Let (X, d) and (Y, p) be metric spaces with X compact. If
f : X — Y is continuous, one-one, and onto, then f is a homeomorphism.

REMARK. In the hypotheses of the change of variables formula for integrals
in R! (Theorem 1.34), a function ¢ : [A, B] — [a, b] was given as strictly
increasing, continuous, and onto. Another hypothesis of the theorem was that
@~ ! was continuous. Corollary 2.40 shows that this last hypothesis was redundant.

PROOF. Let E be a closed subset of X, and consider (f~)~(E) = f(E).
The set E is compact by Proposition 2.34b, f(E) is compact by Proposition 2.38,
and f(E) is closed by Proposition 2.34a. Proposition 2.15b thus shows that f~!
is continuous. g

If (X, d) and (Y, p) are metric spaces, a function f : X — Y is uniformly
continuous if for each € > 0, there is some § > 0 such that d(x1, x) < §
implies p(f(x1), f(x2)) < €. This is the natural generalization of the definition
in Section 1.1 for the special case of a real-valued function of a real variable.

Proposition 2.41. Let (X, d) and (Y, p) be metric spaces with X compact. If
f 1 X — Y is continuous, then f is uniformly continuous.

REMARK. This result generalizes Theorem 1.10, which is the special case
X =la,b]and Y =R.

PROOF. Let € > 0 be given. For each x € X, choose §, > 0 such
that d(x’, x) < &, implies p(f(x'), f(x)) < €/2. The open balls B(%(Sx; X)
cover X; let the balls with centers xi,...,x, be a finite subcover. Put § =
% min{$y,, ..., 8y, }. Now suppose that d(x’, x) < §. The point x is in some ball
in the finite subcover; suppose x is in B(%ij; x;). Thend(x, x;) < %ij, so that

d(x',x;)) <d(x',x) +d(x,x;) <8+ 38 <8y

By definition of 4y, p(f(x"), f(x;)) < €/2and p(f(x)), f(x)) < €/2. There-
fore

p(f(N, f(x) < p(f (), f(x)) +p(f(x)), f(x) <5+5 =F€,

and the proof is complete. (]
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One final application of compactness is the Fundamental Theorem of Algebra,
which is discussed in Section A8 of Appendix A in the context of properties of
polynomials.

Theorem 2.42 (Fundamental Theorem of Algebra). Every polynomial with
complex coefficients and degree > 1 has a complex root.

PROOF. Let P : C — C be the function P(z) = Z;'ZO a;z/, where ay, . .., ay
are in C with a, # 0 and with n > 1. We may assume that a, = 1. Let m =
inf.ec | P(2)]. Since P(2) = 2" (1+ap—127" +- - +a;z= "V +apz™"), we have
lim,_, o P(z)/z" = 1. Thus there exists an R such that | P(z)| > %lzl” whenever
|z] = R. Choosing R = Ry such that %R(’)’ > 2m, we see that | P(z)| > 2m for
|z] = Ro. Consequently m = infj;j<g, |P(z)|. The set § = {z € (C| |z] < Ro}
is compact by the Heine—Borel Theorem (Corollary 2.37), and Corollary 2.39
shows that | P(z)| attains its minimum on § at some point zo in S. Then |P(z)|
attains its minimum on C at 7. We shall show that this minimum value m is 0.

Assuming the contrary, define Q(z) = P(z + z9)/P(z0), so that Q(z) is a
polynomial of degree n > 1 with Q(0) = 1 and |Q(z)| > 1 for all z. Write

0@) =1+ b2 + b ™+ 4+ b,z withby #0.

Corollary 1.45 produces a real number 6 such that e’*h, = —|by|. Forany r > 0
with r¥|b;| < 1, we then have

|1 +bkrkeik6| =1—rkby).
For such r and that 6, this equality implies that

10@re®)| < |1+ ber*e™| + r* | + -+ 1" |by

< 1—r*(1bel = rlbega] — -+ — r" ¥ by)).

For sufficiently small » > 0, the expression in parentheses on the right side is
positive, and then |Q(re'?)| < 1, in contradiction to hypothesis. Thus we must
have had m = 0, and we obtain P(zo9) = 0. O

Another theme discussed in Section 1.1 is that Cauchy sequences in R! are
convergent. This convergence was proved in Theorem 1.9 as a consequence of
the Bolzano—Weierstrass Theorem. Actually, many sequences in metric spaces of
importance in analysis are shown to converge without one’s knowing the limit in
advance and without using any compactness, and we therefore isolate the forced
convergence of Cauchy sequences as a definition. In a metric space (X, d), a
sequence {x,} is a Cauchy sequence if for any € > 0, there is some integer N
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such that d(x,,, x,) < € whenever m and n are > N. A familiar 2¢ argument
shows that convergent sequences are Cauchy. Other familiar arguments show
that any Cauchy sequence with a convergent subsequence is convergent and that
any Cauchy sequence is bounded.

We say that the metric space (X, d) is complete if every Cauchy sequence in
X converges to a point in X. We know that the line R! is complete. It follows that
R" is complete because a Cauchy sequence in R” is Cauchy in each coordinate.
A nonempty subset E of X is complete if E as a subspace is a complete metric
space. The next two propositions and corollary give three examples of complete
metric spaces.

Proposition 2.43. A subset E of a complete metric space X is complete if and
only if it is closed.

REMARK. In particular every closed subset of R" is a complete metric space.

PROOF. Suppose E is closed. Let {x,} be a Cauchy sequence in E. Then {x,}
is Cauchy in X, and the completeness of X implies that {x,} converges, say to
some x € X. By Corollary 2.23, x is in E. Thus {x,} is convergent in E. The
converse is immediate from Corollary 2.23. (]

Proposition 2.44. If S is a nonempty set, then the vector space B(S) of
bounded scalar-valued functions on §, with the uniform metric, is a complete
metric space.

PROOF. Let {f,} be a Cauchy sequence in B(S). Then {f,(x)} is a Cauchy
sequence in C for each x in S. Define f(x) = lim, f,(x). For any ¢ > 0,
we know that there is an integer N such that | f,(x) — f,(x)| < € whenever
n and m are > N. Taking into account the continuity of the distance function
on C, i.e., the continuity of absolute value, we let m tend to infinity and obtain
| fu(x) — f(x)] < eforn > N. Thus {f,} converges to f in B(S). ]

Corollary 2.45. Let (S, d) be a metric space. Then the vector space C(S) of
bounded continuous scalar-valued functions on S, with the uniform metric, is a
complete metric space.

REMARK. C(S) was observed to be a vector subspace in the remarks with
Corollary 2.29.

PROOF. The space B(S) is complete by Proposition 2.44, and C(S) is a closed

metric subspace by Corollary 2.24. Then C(S) is complete by Proposition 2.43.
g

Now we shall relate compactness and completeness. A metric space (X, d) is
said to be totally bounded if for any € > 0, finitely many open balls of radius €
cover X.
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Theorem 2.46. A metric space (X, d) is compact if and only if it is totally
bounded and complete.

PROOF. Let (X, d) be compact. If € > 0 is given, the open balls B(e; x)
cover X. By compactness some finite number of the balls cover X. Therefore
X is totally bounded. Next let a Cauchy sequence {x,} be given. By Theorem
2.36, {x,} has a convergent subsequence. A Cauchy sequence with a convergent
subsequence is necessarily convergent, and it follows that X is complete.

In the reverse direction, let X be totally bounded and complete. Theorem 2.36
shows that it is enough to prove that any sequence {x,} in X has a convergent
subsequence. By total boundedness, find finitely many open balls of radius 1
covering X. Then infinitely many of the x,’s have to lie in one of these balls,
and hence there is a subsequence {x,, } that lies in a single one of these balls of
radius 1. Next finitely many open balls of radius 1/2 cover X. In the same way
there is a subsequence {xnkl} of {x,,} that lies in a single one of these balls of
radius 1/2. Continuing in this way, we can find successive subsequences, the m™
of which lies in a single ball of radius 1/m. The Cantor diagonal process, used in
the proof of Theorem 1.22, allows us to form a single subsequence {x;,} of {x,}
such that for each m, {x;,} is eventually in a ball of radius 1/m. If € > 0 is given,
find m such that 1/m < €, and let ¢,, be the center of the ball of radius 1/m.
Choose an integer N such that x;, liesin B(1/m; c,) whenever j; > N. If j; > N
and ji > N, then d(cy, xj;) < € and d(cy, xj,) < €, whence d(xj;, xj,) < 2e.
Therefore the subsequence {x;, } is Cauchy. By completeness it converges. Hence
{x,} has a convergent subsequence, and the theorem is proved. (]

Let (X, d) and (Y, p) be metric spaces, and let f : X — Y be uniformly
continuous. Then f carries Cauchy sequences to Cauchy sequences. In fact, if
{x,} is Cauchy in X and if € > O is given, choose some § of uniform continuity
for f and €, and find an integer N such that d (x,,, x,;) < 8 whenever n and n’ are
> N. Then p(f(x,), f(x)) < € for the same n’s and n’’s, and hence {f (x,)}
is Cauchy.

Proposition 2.47. Let (X, d) and (Y, p) be metric spaces with ¥ complete,
let D be a dense subset of X, and let f : D — Y be uniformly continuous. Then
f extends uniquely to a continuous function F : X — Y, and F is uniformly
continuous.

PROOF OF UNIQUENESS. If x is in X, apply Proposition 2.22a to choose a
sequence {x,} in D with x, — x. Continuity of F forces F(x,) — F(x). But
F(x,) = f(x,) for all n. Thus F(x) = lim, f(x,) is forced. U]

PROOF OF EXISTENCE. If x is in X, choose x, € D with x, — x. Since
{x,} is convergent, it is Cauchy. Since f is uniformly continuous, {f(x,)} is
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Cauchy. The completeness of Y then allows us to define F(x) = lim f(x,), but
we must see that F' is well defined. For this purpose, suppose also that {y,} is a
sequence in D that converges to x. Let {z,} be the sequence xi, yi, X2, ¥2, ... .
This sequence is Cauchy, and {x,} and {y,} are subsequences of it. Therefore
lim f(y,) =lim f(z,) = lim f(x,), and F(x) is well defined.

For the uniform continuity of F, let ¢ > 0 be given, and choose some &
of uniform continuity for f and €¢/3. Suppose that x and x" are in X with
d(x,x’) < 8/3. Choose x, in D withd(x,, x) < §/3and p(f(x,), F(x)) < €/3,
and choose x), in D with d(x),, x") < §/3 and p(f(x,), F(x’)) < €/3. Then
d(x,,x)) < & by the triangle inequality, and hence p(f(x,), f(x,)) < €/3.
Thus p(F (x), F(x")) < € by the triangle inequality. g

8. Connectedness

Although the Intermediate Value Theorem (Theorem 1.12) in Section 1.1 was
derived from the Bolzano—Weierstrass Theorem, the Intermediate Value Theorem
is not to be regarded as a consequence of compactness. Instead, the relevant
property is “connectedness,” which we discuss in this section.

A metric space (X, d) is connected if X cannot be writtenas X = U UV
with U and V open, disjoint, and nonempty. A subset E of X is connected if E
is connected as a subspace of X, i.e., if E cannot be written as a disjoint union
(ENU)U(ENV)with U and V open in X and with E N U and E N V both
nonempty. The disjointness in this definition is of £ N U and E N V; the open
sets U and V may have nonempty intersection.

Proposition 2.48. The connected subsets of R are the intervals—open, closed,
and half open.

PROOF. Let E be a connected subset of R, and suppose that there are real
numbers a, b, c suchthata < ¢ < b,a and b are in E, and c is not in E. Forming
the open sets U = (—o0, ¢) and V = (¢, +00) in R, we see that E is the disjoint
union of £ N U and E N V and that these two sets are nonempty. Thus E is not
connected.

Conversely suppose that / is an open, closed, or half-open interval of R from
a to b, with a # b but with a or b or both allowed to be infinite. Arguing
by contradiction, suppose that I is not connected. Choose open sets U and
V in R such that [ is the disjoint union of / N U and I N V and these two
sets are nonempty. Without loss of generality, there exist members ¢ and ¢’ of
I NU and I NV, respectively, with ¢ < ¢/. Since U is open and ¢ has to be
< b, all real numbers ¢ + € with € > 0 sufficiently small are in / N U. Let
d = sup {x | [c,x) C IﬁU},sothatd > C.



8. Connectedness 117

If d < b, then the fact that U is open implies that d isnotin / N U. Thus d is
in/ NV. Since Visopenandd > a,d —eisin I NV if € > 0 is sufficiently
small. Butthend — e isinboth I N U and I NV for € sufficiently small. This is
a contradiction, and we conclude that d = b.

Ifd = bisin I NV, then the same argument shows that b — € is in both / N U
and I NV for € positive and sufficiently small, and we again have a contradiction.
Consequently all points from c to the right end of I are in / N U. This is again a
contradiction, since ¢’ is knowntobein I NV. O

Proposition 2.49. The continuous image of a connected metric space is
connected.

PROOF. Let (X, d) and (Y, p) be metric spaces with X connected, and let
f : X — Y be continuous. We are to prove that f(X) is connected. Corollary
2.27 shows that there is no loss of generality in assuming that f(X) =Y, i.e.,
f is onto. Arguing by contradiction, suppose that Y is the union ¥ = U U V
of disjoint nonempty open sets. Then X = f~'(U) U f~!(V) exhibits X as
the disjoint union of nonempty sets, and these sets are open as a consequence of
Proposition 2.15a. Thus X is not connected. O

Corollary 2.50 (Intermediate Value Theorem). For real-valued functions of a
real variable, the continuous image of any interval is an interval.

PROOF. This is immediate from Propositions 2.48 and 2.49. O

Further connected sets beyond those in R are typically built from other con-
nected sets. One tool is a path in X, which is a continuous function from a closed
bounded interval [a, b] into X. The image of a path is connected by Propositions
2.48 and 2.49. A metric space (X, d) is pathwise connected if for any two points
x1 and x, in X, there is some path p from x| to x», i.e., if there is some continuous
p :la, b] — X with p(a) = x; and p(b) = x».

A pathwise-connected metric space (X, d) is necessarily connected. In fact,
otherwise we could write X as a disjoint union of two nonempty open sets U and
V. Letx; bein U and x; be in V, and let p : [a, b)] — X be a path from x; to
x3. Then p([a, b]) = (p(la, b)) NU) U (p(la, b]) N V) exhibits p([a, b]) as a
disjoint union of relatively open sets, and these sets are nonempty, since x; is in
the first set and x, is in the second set. Consequently p([a, b]) is not connected,
in contradiction to the fact that the image of any path is connected.

We can view a pathwise-connected metric space as the union of images of
paths from a single point to all other points, and such a union is then connected.
The following proposition generalizes this construction.
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Proposition 2.51. If (X, d) is a metric space and { £, } is a system of connected
subsets of X with a point xo in common, then | J, E, is connected.

PROOF. Assuming the contrary, find open sets U and V in X such that |, E,
is the disjoint union of its intersections with U and V and these two intersections
are both nonempty. Say that xg isin U. Since E,, is connected and xg is in E,NU,
the decomposition E, = (E, NU) U (E, NV) forces E, NV to be empty. Then
(Ua E,) NV =, (E, NV) is empty, and we have arrived at a contradiction.

0

It follows from Proposition 2.51 that the union of all connected subsets of X
that contain x is connected. This set is called the connected component of x;
in X. The metric space X is the disjoint union of its connected components. The
next result implies that these connected components are closed sets.

Proposition 2.52. If (X, d) is a metric space and E is a connected subset of
X, then the closure E¢ is connected.

PROOF. Suppose that U and V are open sets in X such that E° is contained
inU UV and ESNU NV is empty. We are to prove that E' N U and E' NV
cannot both be nonempty. Arguing by contradiction, let x be in E N U and let y
bein ES'N V. Since E is connected, ENU and E NV cannot both be nonempty,
and thus x and y cannot both be in E. Thus at least one of them, say x, is a limit
point of E. Since U is a neighborhood of x, U contains a point e of E different
from x. Thus e is in £ N U. Since y cannot then be in £ N V, y is a limit point
of E. Since V is a neighborhood of y, V contains a point f of E different from
y. Thus f isin E NV, and we have arrived at a contradiction. (|

EXAMPLE. The graph in R? of sin(1/x) for 0 < x < 1 is pathwise connected,
and we have seen that pathwise-connected sets are connected. The closure of this
graph consists of the graph together with all points (0, ¢) for —1 < ¢ < 1, and
this closure is connected by Proposition 2.52. One can show, however, that this
closure is not pathwise connected. Thus we obtain an example of a connected set
in R? that is not pathwise connected.

9. Baire Category Theorem

A number of deep results in analysis depend critically on the fact that some metric
space is complete. Already we have seen that the metric space C(S) of bounded
continuous scalar-valued functions on a metric space is complete, and we shall
see as not too hard a consequence in Chapter XII that there exists a continuous
periodic function whose Fourier series diverges at a point. One of the features
of the Lebesgue integral in Chapter V will be that the metric spaces of integrable
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functions and of square-integrable functions, with their natural metrics, are further
examples of complete metric spaces. Thus these spaces too are available for
applications that make use of completeness.

The main device through which completeness is transformed into a powerful
hypothesis is the Baire Category Theorem below. A closed set in a metric space
is nowhere dense if its interior is empty. Its complement is an open dense set,
and conversely the complement of any open dense set is closed nowhere dense.

EXAMPLE. A nontrivial example of a closed nowhere dense set is a Cantor set*
in R. This is a set constructed from a closed bounded interval of R by removing
an open interval in the middle of length a fraction r; of the total length with
0 < r; < 1, removing from each of the 2 remaining closed subintervals an open
interval in the middle of length a fraction r, of the total length of the subinterval,
removing from each of the 4 remaining closed subintervals an open interval in
the middle of length a fraction r3 of the total length of the interval, and so on
indefinitely. The Cantor set is obtained as the intersection of the approximating
sets. It is closed, being the intersection of closed sets, and it is nowhere dense
because it contains no interval of more than one point. For the standard Cantor
set, the starting interval is [0, 1], and the fractions are givenbyr| =r, = - -+ = %
at every stage. In general, the “length” of the resulting set® is the product of the

length of the starting interval and [~ (1 — r,,).

Theorem 2.53 (Baire Category Theorem). If (X, d) is a complete metric
space, then

(a) the intersection of countably many open dense sets is nonempty,
(b) X is not the union of countably many closed nowhere dense sets.

PROOF. Conclusions (a) and (b) are equivalent by taking complements. Let us
prove (a). Suppose that U, is open and dense for n > 1. Since U, is nonempty
and open, let E| be an open ball B(r;; x;) whose closure is in U; and whose radius
is r; < 1. We construct inductively open balls E, = B(r,; x,) withr, < % such
that E, C Uy N---NU, and E € E,_;. Suppose E, with n > 1 has been
constructed. Since U,y is dense and E,, is nonempty and open, U, N E, is
not empty. Let x,; be a point in U,4; N E,. Since U, N E, is open, we can

find an open ball E, | = B(rp+1; Xpt1) with radius r,4; < n—}rl and center a
point x,,4; in U,y such that E§]+1 C Uy4+1 N E,. Then E,; has the required

properties, and the inductive construction is complete. The sequence {x,} is

4Often a mathematician who refers to “the” Cantor set is referring to what is called the “standard
Cantor set” later in the present paragraph.

5To be precise, the length is the “Lebesgue measure” of the set in the sense to be defined in
Chapter V.
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Cauchy because whenever n > m, the points x,, and x,, are both in E,, and thus
have d(x,, x,,) < % Since X is by assumption complete, let x, — x. For any
integer N, the inequality n > N implies that x,, is in Ex ;. Thus the limit x is in
E$. S Ey CU N---NUy. Since N is arbitrary, x is in ()| U,. O

REMARK. In (a), the intersection in question is dense, not merely nonempty.
To see this, we observe in the first part of the proof that since U, is dense, E| can
be chosen to be arbitrarily close to any member of X and to have arbitrarily small
radius. Following through the construction, we see that x is in £ and hence can
be arranged to be as close as we want to any member of X. The corresponding
conclusion in (b) is that a nonempty open subset of X is never contained in the
countable union of closed nowhere dense sets.

EXAMPLES.

(1) The subset Q of rationals in R is not the countable intersection of open
sets. In fact, assume the contrary, and write Q = ("2, U, with U, open. Each
set U, contains Q and hence is dense in R. Also, for g € Q, the set R — {¢} is
open and dense. Thus the equality Q = (2, U, implies that

(ﬁm)m(g@@@—{q}))

n=1
is empty, in contradiction to Theorem 2.53.

(2) Let us start with a Cantor set as at the beginning of this section. The total
interval is to be [0, 1], and the set is to be built with middle segments of fractions
ri, 17, ... . Within the closure of each removed open interval, we insert a Cantor
set for that interval, possibly with different fractions ry, r;, ... for each inserted
Cantor set. This insertion involves further removed open intervals, and we insert
a Cantor set into each of these. We continue this process indefinitely. The union
of the constructed sets is dense. Can it be the entire interval [0, 1]? The answer
is “no” because each of the Cantor sets is closed nowhere dense and because by
Theorem 2.53, the interval [0, 1] is not the countable union of closed nowhere
dense sets.

A subset E of a metric space is said to be of the first category if it is contained
in the countable union of closed nowhere dense sets. Theorem 2.53 and the
remark after it together imply that no nonempty open set in a complete metric
space is of the first category.

Theorem 2.54. Let (X, d) be a complete metric space, and let U be an open
subset of X. Supposeforn > 1that f,, : U — Cisacontinuou